
 

Int. J. Mol. Sci. 2014, 15, 2538-2553; doi:10.3390/ijms15022538 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Review  

Xenobiotic Metabolism: The Effect of Acute Kidney Injury on 
Non-Renal Drug Clearance and Hepatic Drug Metabolism 

John Dixon 1,2, Katie Lane 1,2, Iain MacPhee 2,3 and Barbara Philips 1,2,* 

1 General Intensive Care Unit, St. George’s Hospital, London SW17 0QT, UK;  

E-Mails: johndixon3@nhs.net (J.D.); klane@sgul.ac.uk (K.L.) 
2 Division of Clinical Sciences, St. George’s, University of London, London SW17 0RE, UK 
3 Renal Medicine, St. George’s Hospital, London SW17 0QT, UK; E-Mail: imacphee@sgul.ac.uk 

* Author to whom correspondence should be addressed; E-Mail: bphilips@sgul.ac.uk;  

Tel.: +44-20-8725-5071; Fax: +44-20-8725-3296. 

Received: 9 December 2013; in revised form: 12 December 2013 / Accepted: 27 December 2013 /  

Published: 13 February 2014 

 

Abstract: Acute kidney injury (AKI) is a common complication of critical illness, and 

evidence is emerging that suggests AKI disrupts the function of other organs. It is  

a recognized phenomenon that patients with chronic kidney disease (CKD) have reduced 

hepatic metabolism of drugs, via the cytochrome P450 (CYP) enzyme group, and drug 

dosing guidelines in AKI are often extrapolated from data obtained from patients with 

CKD. This approach, however, is flawed because several confounding factors exist in AKI. 

The data from animal studies investigating the effects of AKI on CYP activity are 

conflicting, although the results of the majority do suggest that AKI impairs hepatic CYP 

activity. More recently, human study data have also demonstrated decreased CYP activity 

associated with AKI, in particular the CYP3A subtypes. Furthermore, preliminary data 

suggest that patients expressing the functional allele variant CYP3A5*1 may be protected 

from the deleterious effects of AKI when compared with patients homozygous for the 

variant CYP3A5*3, which codes for a non-functional protein. In conclusion, there is a need 

to individualize drug prescribing, particularly for the more sick and vulnerable patients, but 

this needs to be explored in greater depth.  

Keywords: acute kidney injury; cytochrome P450; drug metabolism; pharmacogenetics; 

pharmacokinetics; CYP3A 
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1. Introduction 

The liver is the organ responsible for the majority of drug metabolism through the actions of the 

cytochrome P450 (CYP) enzyme group (Phase 1 reactions) and the enzymes of conjugation (Phase 2 

reactions) [1]. Although these enzymes are predominantly active within the liver, many may also be 

found in various other organs including, kidney, gastrointestinal tract and lung [2]. Their function 

within these tissues may be of great importance to the function of that organ but with the exception of 

enzymes within the gastrointestinal wall, it is thought that overall drug metabolism is predominantly 

determined by the liver enzymes because of their abundance. Cytochrome P450 activity within the  

gut may have a marked effect on the bioavailability of orally administered medicines, less so on 

parenterally administered drugs. 

Drug elimination however, occurs mainly via the kidneys [1]. This may be the parent drug itself or 

active or non-active metabolites and excretion predominantly occurs through filtration of hydrophilic 

compounds. However, there may also be significant secretion and re-absorption of compounds within 

the renal tubules, the importance of which varies between drugs and may change markedly in critical 

illness [3]. Other organs involved in the elimination of drugs include; the liver (through biliary 

excretion), the gastro-intestinal tract, lung and skin. 

Drug dosing in AKI (acute kidney injury) is usually based upon empiric principles or is 

extrapolated from data obtained from patients with chronic kidney disease (CKD). This rationale, 

however, is flawed because AKI and CKD are different clinical entities with different etiologies and, 

for example, AKI occurring in the context of multi-organ dysfunction [4] has a different inflammatory 

milieu to CKD. Causes of AKI are outlined in Table 1. Furthermore, the time course for disease 

progression and adaptability differs which may result in varying pharmacokinetic and pharmacodynamic 

responses to the same drug in time: the rapidly changing nature of AKI means that therapeutic drug 

concentrations may not be achieved, or, alternatively, drug toxicity may ensue. Nevertheless, some 

mechanistic processes may be shared between CKD and AKI. AKI is inherently difficult to study, so, 

interesting results from investigations in patients with CKD may be useful in informing targets for 

research in AKI. The impact of CKD on non-renal clearance, particularly upon the function of CYP 

enzymes is now well recognized [5–7] and recommendations for drug dosing and interactions have 

been adjusted accordingly by the Food and Drug Administration (FDA) [8] The activity of the CYP 

enzymes may be similarly impaired in critically ill patients [3,9] and evidence suggests that acute 

kidney injury (AKI) may be implicated [10,11]. This review will focus on the evidence of the impact 

of AKI on non-renal drug clearance, with particular reference to CYP activity and expression.  

2. The Kidney as a Metabolic Organ 

Although the kidney is largely thought of as the organ responsible for elimination of waste 

products, toxins and drugs from the body, it is in fact more complex and has many other functions. 

These include; water and electrolyte homeostasis, maintenance of plasma osmolarity, acid-base balance, 

and the production and secretion of hormones, e.g., renin, erythropoietin, 1,25-dihydroxyvitamin  

D3 [12,13]. Some functions may be more important in pathological states [4], such as catabolism of 

peptide hormones and gluconeogenesis in fasting conditions. The kidneys receive 25% of the cardiac 
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output under normal conditions and have high oxygen needs, largely caused by the energy required for 

the reabsorption of sodium ions in the proximal tubules [14]. 

As renal function declines, each of the kidney’s functions is affected, including clearance of drugs 

and their metabolites, although different functions may decline at different rates. 

Table 1. Causes of acute kidney injury (AKI). 

Category of AKI Mechanism Causes 

Pre-renal failure  
Renal hypoperfusion 

Hypovolaemia/Hypotension 
Haemorrhage, dehydration (diarrhoea and 

vomiting, heat), Osmotic diuresis (hyperglycaemia, 
iatrogenic), excessive diuretic use 

Redistributive shock 
Sepsis, anaphylaxis, reduced plasma oncotic 
pressure in nephrotic syndrome, pancreatitis 

Poor cardiac function Cardiogenic shock, severe sepsis, 

Renal vascular changes 
Afferent arteriolar vasoconstriction  

(NSAIDs, ACE inhibitors, vasoconstrictors) 

Intrinsic-renal failure  
Damage to the renal 

parenchyma 

Glomerular damage 
Primary or secondary glomerulonephritis 
(infective, autoimmune, inflammatory) 

Tubular damage Ischaemia or nephrotoxins, sepsis 
Damage to the renal  

blood vessels 
Haemolytic uraemic syndrome 

Interstitial damage Nephrotoxins or infection, sepsis 

Post-renal failure  
Damage to the renal 

outflow of urine 

Obstruction within the upper 
renal tract 

Stones or malignancy 

External obstruction of the 
upper renal tract 

External compression due to a mass,  
constriction due to retroperitoneal fibrosis,  
Intra-abdominal compartment syndrome 

Obstruction to the lower  
renal tract 

Bladder neck dysfunction, prostatic enlargement, 
uterine disease, obstructed catheters 

3. Importance of AKI (Acute Kidney Injury) 

AKI is a clinical syndrome, defined in recent Kidney Disease Improving Global Outcomes 

(KDIGO) guidelines as “an abrupt decrease in kidney function that includes, but is not limited to, 

acute renal failure” [15]. AKI is defined according to three stages of severity: Stage 1 is defined by  

a rise in serum creatinine (SCr) of >1.5 times the baseline over the preceding seven days, a rise  

>26.4 µmol/L over the previous 2 days, or <0.5 mL/Kg/h urine output for >6 h; Stage 2 is defined by  

SCr > 2.0 the baseline, or urine output <0.5 mL/Kg/h for 12 h; and Stage 3 is defined by SCr greater 

than three times the baseline, initiation of renal replacement therapy, increase of SCr to >354 µmol/L 

or urine output <0.3 mL/Kg/h for >24 h or anuria for >12 h. An important feature of KDIGO criteria is 

that it defines AKI by relatively small increases in SCr. Retrospective observational cohort studies of 

patients with AKI reveal that small increases in SCr (>26.4 µmol/L) are associated with increased 

mortality when compared with patients without a change in renal function or patients with CKD [16]. 

The fact that relatively small changes in renal function affect mortality adds strength to the proposal 

that increased mortality is not merely due to retention of uraemic toxins, and that an underlying 

pathophysiological process may be affecting mortality in AKI. 
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There are several limitations to creatinine-based definitions of AKI; the most important are reduced 

sensitivity in patients with CKD [17] and reduced formation of SCr in critically ill patients [18]. 

Within critical care units, hypo-perfusion is the commonest cause of AKI [19], resulting in  

a mixture of pre renal failure and intrinsic AKI due to acute tubular necrosis (ATN). Once AKI 

develops, patients may experience some clinical effects generic to all causes of AKI, regardless  

of its aetiology, in addition to any effects specific to the illness causing AKI in that individual. It has 

not yet been established, however, whether different etiologies of AKI result in different clinical 

effects predominating. 

AKI is a common complication of critical illness, and AKI requiring renal replacement therapy 

alone accounts for approximately 9% of all bed-days in general adult critical care units [20] and 

considerably more if all severities of AKI are included. Mortality from AKI requiring renal 

replacement therapy is between 43.3% and 74.5% [20,21] and has remained unchanged over the  

last 40 years, despite advances in renal replacement therapy. The reasons for the poor outcome from 

AKI are unclear. It is possible that the poor outcome is due to the decreased renal excretion of drugs 

and toxins. Decreased excretion may be directly attributable to a reduced glomerular filtration rate 

(GFR), reduced tubular secretion or impaired renal metabolism of drugs. There is, however, emerging 

evidence that AKI also affects the clearance of drugs and toxins by other organs (i.e., non-renal 

clearance; ClNR). These may contribute to high mortality associated with AKI. The evidence for this 

will be evaluated later and placed into clinical context. 

4. Pharmacokinetics in AKI 

There is a general paucity of pharmacokinetic (PK) studies concerning drugs in AKI and it is 

suggested that this may be due to a lack of incentive by pharmaceutical companies to fund studies in 

AKI because this is not yet a requirement of the FDA [10]. This complicates our understanding of such 

changes and in critically ill patients this is further complicated by multi-organ effects and cross talk 

between organs. Pro and anti-inflammatory changes, kidney, liver and endothelial dysfunction, drug 

interactions, therapeutic interventions, perfusion abnormalities, intestinal atrophy or gut dysmotility 

(impairing absorption of enterally administered drugs) are amongst the many confounding factors 

affecting the PK of any drugs administered in critically ill patients [9]. The volume of distribution of  

a drug may be affected by changes to cardiac output and peripheral perfusion [22]; and depends upon 

the degree of protein binding, tissue permeability and lipid solubility [23]. Other influential factors 

during AKI include changes to blood pH, the impact of AKI on pKa of the drug and the effects of fluid 

shifts between body compartments [24]. Each of these aspects may be influenced by renal dysfunction.  

Currently, most drug-dosing regimens in patients with AKI are extrapolated from patients with 

CKD and of the evidence from studies of PK in AKI most are obtained from animal studies or are  

ex vivo investigations using cell cultures or microsomal systems. Interestingly it is suggested that  

in vitro studies using homogenates of renal cells may vastly underestimate the impact of AKI on drug 

metabolic pathways. Drug metabolizing enzymes are sited regionally within the kidney, for example; 

CYP enzymes are situated within the renal cortex, prostaglandin synthase within the medulla,  

N-acetyl transferase within both cortex and medulla [25]. Homogenizing a whole kidney means that 

enzyme activity may be grossly underestimated.  
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AKI has many etiologies, each with differing effects, e.g., Gentamicin accumulation within the 

renal cortex results in toxicity [26], causing acute tubular necrosis, whereas Cyclosporine toxicity 

causes altered renal haemodynamics and vasoconstriction [27]. It is possible that different etiologies of 

AKI have differing effects on hepatic enzyme activity. 

5. Organ Crosstalk 

Non-renal clearance (ClNR) in AKI differs from that observed in patients without renal impairment. 

Even drugs normally associated with predominantly renal clearance (e.g., vancomycin) appear to be 

impacted upon by change in ClNR in AKI [10] although the mechanisms are unclear. A possible 

explanation for non-renal effects of AKI is “organ crosstalk”, that is, in the case of the kidneys, the 

effect of AKI on the function of other organs. Organ crosstalk has been defined as “the effects of one 

malfunctioning organ upon the function of another” [28], and is usually associated with injurious 

effects. An often studied example is that of acute lung injury following AKI. AKI results in increased 

pulmonary vasculature permeability to albumin, erythrocyte sludging in lung capillaries, interstitial 

edema and an inflammatory cell infiltrate in affected lung tissue [29]. Interestingly, these changes have 

been observed in rat models following kidney-ischaemia reperfusion injury [30] but not following 

bilateral nephrectomies [31], perhaps supporting the argument that this phenomenon is not purely due 

to uremia alone. Inflammation may contribute to remote organ dysfunction in AKI and may be 

important in the development of AKI. Animal models of ischemic AKI have demonstrated an 

abundance of cell adhesion molecules, increased cytokine-chemokine expression, leukocyte 

trafficking, dysregulation of apoptosis and increased oxidative stress in distant organs [31]. 

6. Potential Mechanisms of How AKI Affects Non-Renal Drug Clearance 

The major contributor to ClNR is clearly hepatic clearance (ClHEP) determined by the following 

equation [32]: 

ClHEP = [Q × (ClINT × fUB)]/[Q + (ClINT × fUB)  

Q = liver blood flow, ClINT = intrinsic hepatic clearance and fUB = fraction of unbound drug 
(1)

AKI may theoretically impact on each aspect of ClHEP. Changes to liver blood flow affect uptake 

and elimination of drugs with a high extraction rate [33]. How important this is in renal-hepatic cross 

talk is uncertain as the full impact of AKI on liver blood flow and the liver micro-circulation is 

unknown. What is known is patients with CKD [34] and sepsis [35] have preserved global hepatic 

blood flow, perhaps suggesting it is not the most important factor. 

Changes to protein binding and, hence the unbound fraction of a drug, have been observed in 

critically ill patients, thus altering the amount of drug available for metabolism within the liver [36]. 

Decreased serum albumin is initially a consequence of redistribution into interstitial fluids and later 

contributed to by decreased synthesis. Albumin binds mainly neutral and acidic drugs [37]. An 

important example is phenytoin which is highly bound to albumin, but its free fraction is increased in 

trauma patients as the serum albumin decreases [3]. The direct impact of AKI on serum albumin 

concentrations is uncertain but given that AKI is a pro-inflammatory state it is likely that it has some 

effect [37]. 
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The usual rate-limiting step of intrinsic hepatic clearance is CYP activity [1]. CYP3A is responsible 

for metabolism of over 50% of drugs and there are two predominant isoforms CYP3A4 and CYP3A5. 

Individuals who possess at least one allele for the wild type CYP3A5*1 gene (i.e., both homozygotes 

and heterozygotes) produce a functional protein. People homozygous for CYP3A5*3 produce a  

non-functioning CYP3A5 protein which is the predominant form in 80% of Caucasian populations. 

The wild type predominates in Sub-Saharan Africans [38], 60% are homozygous for CYP3A5*1. Other 

CYP enzymes involved in drug metabolism in humans include CYP1A, CYP2C19, CYP2C9 and 

CYP2D6, together they account for 80% of all drug metabolism [39]. CYP3A activity is impaired in 

CKD [40] and in AKI [11,41,42]. The impact of renal impairment on other CYP enzymes remains 

uncertain and may vary. 

The underlying mechanisms for the inhibition of CYP enzymes are obscure. Parathyroid hormone, 

urea, and cytokines are all proposed as potential mediators [43]. Serum fractionation experiments in 

rodents suggest a 10–15 kDa substance may be responsible [44], but its identity is yet to be established. 

Although CYP activity is responsible for the majority of drug metabolism, other enzyme systems 

have a role. 

Flavin-containing-mono-oxygenase (FMOs) oxidizes xenobiotics containing Nitrogen, Sulfur, or 

Phosphorus [45]. They catalyze some of the same reactions as CYP enzymes [46], although they often 

result in different metabolites with potentially different pharmacological actions. The physiological 

functions of FMOs are currently poorly understood. Genetic polymorphism has been observed in three 

of the five human expressed FMO genes, FMO1, FMO2 and FMO3 [45]. The consequences of the 

genetic polymorphisms on drug metabolism remain poorly understood. The impact of AKI on FMO 

gene expression and FMO activity remains unclear. 

There have been no studies directly investigating the effect of AKI on mono-amine oxidase  

(MAO), however, administration of pargyline, an irreversible MAO inhibitor, to a rat model of renal 

ischemia-reperfusion resulted in decreased tubular apoptosis and necrosis and increased proximal 

tubular cell proliferation [47]. This study demonstrated a central role of MAO in mediating the 

production of reactive oxygen species, which contribute to ischemia-reperfusion injury. 

We have been unable to find in vitro, animal, or human studies investigating the impact of AKI on 

other enzyme systems, such as alcohol dehydrogenase, epoxide hydrolase, prostaglandin synthase or 

conjugation (Phase II) pathways. 

Hepatic drug clearance also depends on drug transport systems including; organic anion transporter 

proteins (OATPs) which control uptake of drugs into hepatocytes [10] and P-glycoprotein which 

facilitates the elimination of drugs and metabolites from hepatocytes into the bile or blood. This is 

discussed in greater detail in Section 8. The impact of AKI on these systems remains unclear. 

7. Evidence for Kidney-Liver Crosstalk 

Experiments performed in animal models of AKI suggest a significant effect of AKI upon the 

inflammatory response and subsequent hepatic function. An altered balance of anti-inflammatory 

cytokines (e.g., IL-4, IL-10) and pro-inflammatory cytokines (e.g., TNF-α, IL-1, IL-6) and neutrophil 

infiltration has been observed in mice [36,48–52], rats [53,54] and dogs [55] following renal 

ischaemia-reperfusion injury and bilateral nephrectomy. IL-6 is a possible mediator of down-regulation 
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of CYP activity [56]. In hepatic cell culture studies, several CYP isoforms have been down-regulated 

by IL-6 [57], but the clinical implications of this remain untested. AKI causes IL-6 to increase earlier 

and faster in sepsis [58], following cardiac surgery [59] and during acute lung injury [60]. IL-6 also 

activates the hypothalamo-pituitary axis, causing increased cortisol, which is an endogenous substrate 

of CYP enzymes and may lead to competitive inhibition [61]. This effect, however, is difficult to test 

because of the variability of cortisol in the critically ill, and because increased cortisol may induce 

CYP3A synthesis. Decreased activity of superoxide dismutase and catalase (both anti-oxidants) and 

increased malondialdehyde and transaminases concentrations have also been observed, implying that 

some of the observed changes in the liver may be due to oxidative stress [54]. 

The majority of animal studies investigating CYP activity demonstrate reduced hepatic drug 

metabolism, particularly when investigating CYP3A activity, however, some disparities exist. No 

change in Clarithromycin [62] or Telithromycin [63] metabolism via CYP3A was observed following 

Uranyl nitrate-induced AKI in rats, whereas decreased metabolism of Etoposide [64] and Losartan [65] 

metabolism via the CYP3A enzyme was demonstrated following Uranyl nitrate-induced AKI in rats. 

CYP3A activity was also reduced following Cisplatin-induced AKI in rats, as demonstrated by 

elevated Tacrolimus [66] and Quinine [67] concentrations. Gentamicin-induced AKI did not  

change CYP3A-mediated Cyclosporine metabolism in rats [68], whereas it was reduced following 

renal-ischaemia-reperfusion injury in rabbits [69]. AKI induced by bilateral ureteric ligation or by 

Uranyl nitrate did not result in altered CYP-2D6 mediated metabolism of Metoprolol in rats [70,71]; 

no change in CYP2D6-mediated metabolism of Propranolol was observed in rats when AKI was 

induced by Cisplatin [66], but elevated Propranolol concentrations were observed, implying reduced 

CYP2D6 activity, when AKI was induced by bilateral ureteric ligation in rats [72]. Increased 

metabolism of Theophylline, via the CYP2E1 enzyme, was observed following Uranyl nitrate-induced 

AKI in rats [73], and increased CYPD2C-mediated metabolism of Tolbutamide was observed 

following glycerol-induced AKI in rats [74]. 

AKI may induce modifications in the transcription and translation of CYP enzymes; however, 

changes in mRNA-CYP protein expression do not always result in altered enzyme activity. Decreased 

mRNA-directed expression of CYP2E1 was observed in AKI following renal-ischaemia-reperfusion-injury 

in rats [75], whereas it was increased following Uranyl nitrate-induced AKI [76]. 

It is difficult to directly apply data obtained from experiments in animals to humans. The apparent 

conflicting evidence may be due in part to the characteristics of the drugs studied and the model of 

AKI used. In addition, CYP isoforms are different between species and control of CYP expression may 

also differ. The changes in CYP activity that occur in one organ do not always occur in others (e.g., 

increased activity in intestine despite decreased activity of CYP3A4 in liver). While changes in hepatic 

drug metabolism was not always observed, it is possible that other pharmacokinetic changes may have 

occurred, for example, altered intestinal absorption or gut CYP3A activity, or altered protein-binding. 

Extrapolation of data from animal studies to humans requires extreme caution. 
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8. Transporters 

Few studies have been performed in AKI, and all are in animal models or cell cultures. Interspecies 

differences exist, in their tissue distribution and subtypes. These need to be taken into account when 

extrapolating data to humans. 

Renal drug clearance involves transport across the basolateral and apical tubular membranes. 

Transporter activity is a major influence on drug clearance. The main mechanisms involve (1) passive 

diffusion through the lipid cell layer, or via aqueous channels; (2) Carrier mediated transport via either 

active (ATP-dependent) transport or facilitated transport. 

Drugs passively diffuse across cell membranes along a concentration gradient without expenditure 

of energy. Important factors affecting lipid diffusion are: the concentration, the surface area of the drug 

(greater diffusibility occurs with drugs that have a larger surface area), and the lipid-solubility of the 

drug. The lipid-solubility depends on the lipid-aqueous partition co-efficient (i.e., how readily a drug 

can pass through a lipid membrane), the degree of ionization of the drug, which depends on the pKa of 

the drug and the pH of the surrounding cell medium. Aqueous diffusion occurs via aqueous pores along  

a concentration gradient. Drugs passing through aqueous pores are small (molecular mass < 30 kD) 

and water-soluble in solution. We have been unable to find data regarding the specific effects of AKI 

upon passive diffusion of drugs; however, it is possible that acidosis associated with AKI may impact 

on the lipid-aqueous partition co-efficient by altering pH of body fluids. 

Carrier-mediated transport is important for drugs that are too large or too insoluble in lipid to 

diffuse through lipid membranes. Carriers are trans-membrane proteins and mainly located in renal 

tubules, the biliary tract, the blood-brain barrier and the gastrointestinal tract. Active transport occurs 

against a concentration gradient, is energy dependent with energy obtained from hydrolysis of ATP. 

Carriers are selective, may become saturated once a threshold has been reached, and may undergo 

competitive inhibition by another drug binding to the same receptor. One large family is the ABC 

(ATP binding cassette) and includes P-glycoprotein, or multidrug resistance type 1 (MDR1) 

transporter. P-gp is an ATP-dependent efflux pump expressed in the liver, kidneys and intestines [10]. 

It assists transportation of lipophilic compounds from inside cells to the bile, urine and intestinal 

lumen, assisting with clearance of the drug from the body. Increased P-gp expression was observed in 

the kidney of rats with AKI [77], but not their liver [78] or intestines [79]. Clearance of P-gp substrates 

was decreased, however, throughout the body, including via the liver, kidneys and intestines, implying 

global suppression of P-gp function during AKI. The effect of AKI on P-gp suppression may impact 

on clearance of drugs such as Digoxin, Methotrexate and Vincristine [80]. 

The organic anion transporters (OATs) and organic cation transporters (OCTs) are important in 

transferring drugs across cell membranes. OATs mainly occur in renal tubular basolateral membranes 

and enhance uptake of small organic anions from the peri-tubular plasma into renal tubular cells, by 

efflux across the apical membrane into the tubular lumen [10]. Decreased OAT-1 and OAT-3 mRNA 

protein expression was observed in rats with AKI [81]. The role of OATs in non-renal clearance has 

not yet been clarified; however, decreased activity during AKI may impact on clearance of drugs such 

as Methotrexate and NSAIDs [82]. We could find no literature regarding the effect of AKI upon 

organic cation transporter (OCT) activity. 
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9. Human Studies 

To date, three published studies have investigated the effect of AKI on hepatic drug metabolism in 

humans [11,41,42]. Heinemeyer investigated the effect of AKI upon hepatic clearance of Cetriaxone in 

post-operative patients with pneumonia and AKI [42]. Delayed biliary excretion was demonstrated, 

however, the free-drug fraction differed between patients with AKI and those without. The underlying 

mechanisms were not explored, so the authors were unable to exclude sepsis as the cause of liver 

dysfunction, rather than AKI. A second study by the same group investigated the clearance of 

monomethylaminoantipyrine (MMAAP) in critically ill adults with AKI [41]. Significantly reduced 

Clearance of MMAAP was observed in patients with AKI compared to those without AKI. 

Furthermore, a significantly reduced rate of appearance of its metabolites N-formylaminoantipyrine 

and N-acetylaminoipyrine was observed. It appears likely that the reduced hepatic metabolism was 

responsible for decreased rate of MMAAP clearance occurring in AKI, although the authors were 

unable to exclude other potential confounders, such as hypoxia, reduced cardiac output, reduced 

protein synthesis, or competitive antagonism by other drugs. However, in contrast to their previous 

study, less than 10% of subjects had septic shock, making sepsis unlikely as the sole cause of this 

phenomenon. More recently, our group has used an intravenous Midazolam probe to investigate 

CYP3A4 and CYP3A5 activity in critically ill patients with AKI [11]. A significant decrease in 

Midazolam elimination was observed in patients with AKI, and this effect appeared to be increased 

with prolonged durations of AKI. These findings were significant, despite the heterogenous population 

studied, perhaps implying a potent effect. Other potential confounders, such as acid-base balance and 

serum albumin concentration, were not significantly different between patients with AKI and those 

without. In addition, preliminary data suggests CYP function may be preserved in patients with AKI 

who expressed either homozygous or heterozygous functional allele variant CYP3A5*1 when 

compared with those who were homozygous for the splice variant CYP3A*5, which codes for a  

non-functional truncated protein. This could have important pharmacogenetic implications for patients 

with AKI but remains to be fully tested. 

It is plausible that uraemic toxins may be responsible for the changes in CYP activity occurring 

during AKI, and it is also conceivable that removing potential toxins with renal replacement therapy or 

plasma exchange may reverse the non-renal clearance effects observed in AKI. To date, few studies 

have investigated this. In one study, patients with AKI had increased Telithromycin concentration and 

exposure (as measured by area under the curve), however, AUC approached that of healthy individuals 

within two hours of renal replacement therapy [83]. In another study, the 14C-Erythromycin breath test 

was used as a marker of CYP3A4 activity and 27% increase in activity was observed 2 h after 

initiation of renal replacement therapy [84]. 

10. Role of Intestinal Metabolism 

The majority of drug metabolism occurs in the liver, although metabolism within the gut wall is 

important for some orally administered drugs. CYP3A accounts for 80% of small intestine drug 

metabolism but only 1% of total body CYP3A activity [85]. Some drugs depend on gut wall enzymes 

to convert a pro-drug to its active form. Uptake from the gut lumen occurs either by diffusion or active 
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OAT-mediated transport, before being then passed into the portal circulation en route back to the liver 

or extracted back into the gut lumen. It is not know to what extent AKI impacts on this process, 

however, critical illness in general may impair absorption by altering gut perfusion, it may impair gut 

motility and may alter gut flora. We were unable to find any data on the effects of AKI on intestinal 

CYP2J2, the other abundant intestinal CYP enzyme. 

11. Conclusions 

Current drug-dosing guidelines and regimens in patients with AKI have several limitations.  

The majority use empiric principles or use data extrapolated from patients with CKD. The pitfalls of 

this are becoming more obvious and we have got to the stage where greater understanding of the wider 

implications of AKI is required in order to optimize drug treatment of who are very often very 

vulnerable patients. It is likely that we should be making adjustments for alterations in hepatic drug 

clearance during AKI. The mechanisms for any effect on non-renal drug clearance remain unclear but 

involve the accumulation of toxins (e.g., IL-6). 

Our understanding is limited by small studies and extrapolation of data from animal studies and  

in vitro investigations. Metabolizing enzymes and transporter isoforms differ between species and 

interpretation of data from immortal cells lines, particularly concerning the expression of certain 

proteins is fraught with problems. Nevertheless evidence is accumulating that, as with CKD, AKI does 

have a significant impact on the hepatic metabolism of drugs and could also affect drug clearance in 

other organs (e.g., intestines). Clinical studies investigating the effect of AKI may be confounded by 

the existence of multiple pathological processes in critically ill patients with AKI that may also  

impair CYP and transporter activity (e.g., sepsis, trauma, burns). It is also likely that, once the 

pharmacokinetic effects of AKI have been accounted for, inflammatory mediators occurring during 

critical illness may influence the pharmacodynamic response to drugs. 

In order to bring this field forward and improve drug prescribing on individual level, future studies 

need to elucidate mechanisms at the enzyme and mRNA levels and their clinical effects in patients 

with and without AKI. Furthermore, distinctions need to be made between gut, liver and kidney 

metabolism of the various CYP enzymes and transporters. The influence of other co-existent diseases 

that contribute to AKI needs to be accounted for and excluded if possible. Identification of putative 

uraemic toxins, and whether their removal by renal replacement therapy improves non-renal clearance, 

also needs clarification. 
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