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Abstract: Multi-walled carbon nanotubes (MWCNTs) were prepared via chemical vapor 

deposition (CVD) using a series of different catalysts, derived from FeCoNiAl, CoNiAl 

and FeNiAl layered double hydroxides (LDHs). Catalyst-active particles were obtained by 

calcination of LDHs at 800 °C for 5 h. Nitrogen and hexane were used as the carrier gas and 

carbon source respectively, for preparation of MWCNTs using CVD methods at 800 °C. 

MWCNTs were allowed to grow for 30 min on the catalyst spread on an alumina boat in a 

quartz tube. The materials were subsequently characterized through X-ray diffraction, 

Fourier transform infrared spectroscopy, surface area analysis, field emission scanning 

electron microscopy and transmission electron microscopy. It was determined that size and 
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yield of MWCNTs varied depending on the type of LDH catalyst precursor that is used 

during synthesis. MWCNTs obtained using CoNiAl-LDH as the catalyst precursor showed 

smaller diameter and higher yield compared to FeCoNiAl and FeNiAl LDHs. 
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1. Introduction 

Layered double hydroxides (LDHs), also variedly known as anionic clays, can be structurally 

described as stacks of positively charged layers intercalated with anions within its inter-spacing. The 

structure of LDHs follows that of brucite-like layers, in which a divalent metal cation is located within 

the center of an oxygen octahedra, and two-dimensional infinite layers are formed through edge 

sharing of the octahedra. The partial isomorphous substitution of trivalent cations for divalent cations 

results in a net positive charge of the layers. Conferment of a positive charge allows for any organic or 

inorganic anions to be readily intercalated between the brucite layers, in order to maintain a structural 

charge balance. Often, water molecules arising from the crystallization process also associates within 

these interlayer galleries. LDHs classes of materials generally follow a chemical formula representing 

of [MII
1−x MIII

x (OH)2]b+ [Am−
b/m].nH2O, where M (II) is a divalent cation, M (III) is a trivalent cation 

and A is an anion with charge of n [1]. 

The interlayer spacing of LDH has been shown to provide for a potent reactive environment, even 

in gentle thermal treatments. Calcination reactions at intermediate temperatures (450–600 °C) showed 

persistence of the layered brucite, but subsequently collapsed at significantly higher temperatures. 

Calcined LDH products often exist in the form of mixed metal oxides. During LDH calcination under 

inert gas environments, both spinel M(II)M(III)2O4 and free M(II)O are frequently produced. Mixed 

metal oxides have attracted an appreciable research fascination, both as catalysts and catalyst supports, 

due to their high metal dispersion, and stable-supported metal particles, which possess both basic  

and acidic group sites. The mixed oxide catalysts obtained by thermal decomposition of LDHs also 

confer advantageous modifications of enhanced surface areas, thus creating active sites for reactions to 

readily occur with the possibility of higher percentage product outputs [1]. 

Since its discovery by Iijima in 1991, carbon nanotubes (CNT) have garnered great interest in 

material science research, both from a fundamental perspective, as well as its potential for various 

practical applications. CNTs are versatile nanosized structures, with unique electronic, mechanical, 

optical, and chemical characteristics that pave the way towards a myriad of potential interdisciplinary 

applications. These types of materials have been especially studied for applications in transistors,  

field-emission tips, sensors, supercapacitors and in the biomedical field [2–6]. Apart from electric-arc 

discharge and laser ablation techniques, carbon nanotubes can also be prepared through catalytic 

pyrolysis of carbon-containing gases via catalytic chemical vapor deposition (CCVD) [7]. The CCVD 

technique has been widely explored in the production of several CNT, such as single-walled,  

double-walled, and multi-walled derivatives [8–10]. Concurrently, efforts have now focused towards 

the determination of optimal catalysts for efficient nanotube fabrication, which mostly consists of Fe, 
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Co, Ni elements over porous material supports, or high-surface-area oxide matrices that increase their 

reactivity as catalyst clusters [11–14]. 

The successful application of metal oxides catalyst derived from LDH-based materials have 

attracted its application in the synthesis of CNT formation through carbon vapor deposition routes. 

Recently, the efficacy of LDHs as catalyst precursors for the synthesis of carbon nanotubes via 

catalytic chemical vapor deposition of acetylene has been reported. Nanometer-sized cobalt particles 

were prepared by the calcination and subsequent reduction of a single LDH precursor containing 

cobalt (II) and aluminum ions homogeneously dispersed at the atomic level. The Co nanoparticles have 

been employed as catalytically active sites for growth of CNTs. Multi-walled carbon nanotubes 

(MWCNTs) with uniform diameters were obtained [15]. Enhanced catalytic activities can be observed 

by incorporating transition metal cations into the brucite-like layers of LDHs, contributed by the 

unique properties of the final catalysts, such as high metal dispersion and large surface area after a 

controlled thermal treatment. Better control in the dispersion and size of the catalyst particles is also 

achieved, through the ordered prearrangement of metal cations in the layers of the LDH precursor at an 

atomic level. 

This study reports the application of three metal-based catalysts; FeCoNiAl-DH, CoNiAl-LDH,  

and FeNiAl-LDH for use in the formation of CNTs. The preparation of CNTs via use of LDH-based 

catalysts confers the advantage of low synthesis temperatures using cheap, simple instrumentation, and 

a robust prospective for large-scale productions. Here, FeCoNiAl-DH, CoNiAl-LDH, and FeNiAl-LDH 

previously prepared at the fixed ratio of R = 4 was initially prepared via co-precipitation methods.  

The resulting FeCoNiAl, CoNiAl, and FeNiAl composite oxides were then obtained by calcination of 

corresponding LDH precursors at 800 °C, and were then used as catalyst or substrate in the formation 

of carbon nanotubes. The influence of these three types of material towards growth of CNTs was then 

examined and visualized via various means of physiochemical analyses. 

2. Results and Discussion 

2.1. Carbon Yield 

The catalytic activity of CoNiAl, FeNiAl and FeCoNiAl mixed oxide catalyst were tested in hexane 

decomposition at a reaction temperature of 800 °C. As expected, different mixed oxide catalysts 

notably affected carbon yield. Carbon yields of 183.5%, 124.8%, and 110.5% were obtained for 

synthesized CoNiAl-CNT, FeCoNiAl-CNT and FeNiAl-CNT, respectively. 

2.2. Powder X-ray Diffraction 

Figure 1a shows the x-ray diffraction (XRD) patterns of the catalysts CoNiAl-LDH, FeCoNiAl-LDH, 

and FeNiAl-LDH precursors. Characteristic reflections corresponding to hydrotalcite-like LDHs were 

observed in all three samples, indicating a potent formation of brucite structures. Other crystalline 

phases non-indicative of the LDH structure were not detected. The narrow and sharp reflections 

observed had suggested that the LDH products confer good crystallinity and structural integrity. 

However, XRD patterns of LDH samples following calcination (Figure 1b) did not show these 
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characteristic reflections, which indicates an absence of the layered structure of LDHs. This observation 

was expected, due to the collapse of the LDH metal layers after thermal treatment. 

The use of the LDH precursors with uniformly distributed cations seemed to facilitate the formation 

of spinel phases [16]. However, it is difficult to distinguish the different phases, due to its superposition 

of characteristic reflections in the XRD spectras. The position and relative intensity of the reflections 

were basically identical for all samples. Powder x-ray diffraction (PXRD) patterns for synthesized 

CNT materials are as shown in Figure 1c, where a peak centered at approximately 26.1° in all three 

samples was determined as the reflection plane of graphite, thus confirming existence of a carbon 

element [17] that is CNTs. 

Figure 1. Powder X-ray diffraction (PXRD) patterns of layered double hydroxides (LDH) 

(a) calcined LDH (b) and CNT over calcined LDH (c). Asterisks (*) show characteristic 

peaks for LDH at 8.5 Å (003). Dots (•) indicate the characteristic peaks for carbon (26.1 Å, 

44.8 Å), indicating the formation of CNT. 
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2.3. Fourier Transform Infrared 

The Fourier Transform Infrared (FTIR) spectra in Figure 2a show the typical features of LDH with 

carbonate as the anion in the interlayer. The FTIR analysis shows that the appearance of a broad band 

at 3277–3388 cm−1 corresponds to the O-H vibration mode, υOH. At around 1630–1634 cm−1, weak 

bands could be observed which is attributed to the δH2O. Strong peaks in the range of 1351–1360 cm−1 

correspond to the vibration of CO3
2−. Sharp and strong bands located at less than 1000 cm−1 

correspond to MO vibrations and MOH bending [18,19]. Figure 2b shows that the O-H vibration mode 

groups at 3409 cm−1 had decreased in calcined CoNiAl material, and was absent in other calcined 

samples. However, this O-H vibration mode peak intensity was still found uncalcined LDH, suggesting 
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a dissociation of the LDH structure in calcined materials. The thermal treatment of LDHs has also 

shown its effect on the CO3
2− vibration band which caused the band to decrease in size. As discussed 

in the FTIR of LDHs, the bands at lower wavenumber are due to the vibrations of M-O, M-O-M, and 

O-M-O bonds in the layers, which are typical for this kind of layered solids [20]. There are a few 

infrared active modes of CNTs and it depends on the symmetry of the CNTs, which is chiral, zigzag 

and armchair [21]. In Figure 2c, the features at 1739–1745 cm−1 [22] and 1537–1541 cm−1 [23,24] are 

attributed to the MWCNT vibration modes. From the FTIR analysis, the CNTs were observed to exist in 

the sample and this is in agreement with the PXRD analysis. 

Figure 2. FTIR of LDH (a) calcined LDH (b) and CNT over calcined LDH (c). 

 

2.4. Surface Area Analysis 

From Figure 3, FeCoNiAl, CoNiAl and FeNiAl based material in the form of LDHs (a), calcined 

LDHs (b) and CNTs (c) exhibited surface properties of Type IV isotherms which can be attributed by 

the mesoporous-type structure (20–500 Å) [25]. All of the isotherms showed almost the same trend of 

little difference being exhibited at low relative pressures. However, the slope increase at high relative 

pressures indicates an increased uptake of adsorbate due to adsorption in mesopores, which leads  

to multilayer formation until a certain pressure where condensation takes place. A very narrow H3 

hysteresis loop could be observed at high pressures, which exhibit no limit to the adsorption at high  

P/P° [25]. All of the adsorption and desorption branches shown in Figure 3 are parallel except for 

FeNiAl and FeCoNiAl-LDH which could be due to the complex pore structures. Figure 4a–c showed 

that the pore was distributed randomly at 1–90 nm in FeCoNiAl, CoNiAl and FeNiAl based material in 

the form of LDHs, calcined LDHs and CNTs, respectively. Significant modifications in the pore size 
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of CoNiAl based material could be observed as shown in Table 1. CoNiAl-CNT possesses the highest 

BET surface area at 47.56 m2·g−1 and the smallest BJH desorption average pore diameter value of  

0.98 nm, which could lead to the formation of carbon nanotubes with small diameters. 

Figure 3. Adsorption-desorption isotherms of LDH (a) calcined LDH (b) and CNT over 

calcined LDH (c). 

 

Figure 4. Pore size distribution of LDH (a) calcined LDH (b) and CNT over calcined LDH (c). 

 



Int. J. Mol. Sci. 2014, 15 20260 

 

 

Table 1. Surface properties of FeNiAl, CoNiAl and FeCoNiAl LDH, calcined LDH and 

CNT over calcined LDH. 

Material BET Surface Area (m2·g−1) BJH Desorption Average Pore Diameter (nm) 

LDH 
FeNiAl 35.1 5.3 

FeCoNiAl 32.5 8.0 
CoNiAl 1.0 39.0 

Calcined 
LDH 

FeNiAl 6.4 10.7 
FeCoNiAl 6.7 8.9 
CoNiAl 22.3 1.6 

CNT 

FeNiAl 33.7 1.2 

FeCoNiAl 19.8 1.6 

CoNiAl 47.6 0.98 

2.5. Field Emission Scanning Electron Microscope 

Figure 5 shows Field Emission Scanning Electron Microscope (FESEM) images of obtained CNTs 

with various morphologies. As observed in Figure 5a, CoNiAl-CNT was found to be the smallest 

diameter, followed by FeNiAl-CNT (Figure 5b) and FeCoNiAl-CNT (Figure 5c). Reasons leading to 

the formation of different sized CNTs using different types of LDH might include the composition of 

metal interaction in the layers and the distribution of metals when calcination took place. These have 

an effect on the size of the metal catalyst, which influences the growth of carbon nanotubes [26]. 

CoNiAl-CNT produced had smooth surfaces, were long and straight, and entangled implying that the 

synthesized CNTs are of good quality and well graphitized. Both FeNiAl-CNT and FeCoNiAl-CNT 

display helical nanotubes with rough surface morphology. However, FeCoNiAl-CNT shows entanglement 

of every part of the nanotubes. 

2.6. Transmission Electron Microscope 

Figure 6 shows Transmission Electron Microscope (TEM) observations of differences in the 

structures of CNT when different mixed oxides as catalysts were used. CoNiAl-CNT in Figure 6a 

exhibited CNTs entangled with each other and contained lower amounts of amorphous carbon on  

their surfaces, indicating high quality CNTs. Both FeNiAl-CNT (Figure 6b) and FeCoNiAl-CNT 

(Figure 6c) show defects such as kinks and bends in the tubes. The outer diameters of nanotubes are 

shown in Figure 6, which exhibit diameters of 20.60, 27.08 and 43.87 nm for CoNiAl-, FeNiAl-CNT 

and FeCoNiAl-CNT, respectively. As observed, Figures 5 and 6 complement each other. The size of 

CoNiAl-CNT, which shows the smallest diameter, could be due to the stable active cobalt clusters, 

impeding agglomeration among other particles and therefore leading to better dispersion of active 

metal particles, which finally influence the formation of the CNTs [1,27]. Here, it is believed that the 

difference in the diameters of CNTs grown with different types of metal catalysts is principally 

attributed to the different agglomeration of existing metallic metal particles. 
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Figure 5. Field Emission Scanning Electron Microscope (FESEM) micrograph of  

CoNiAl-CNT (a); FeNiAl-CNT (b) and FeCoNiAl-CNT (c). 

 

Figure 6. Transmission Electron Microscope (TEM) images of carbon nanotubes of 

CoNiAl-CNT (a); FeNiAl-CNT (b) and FeCoNiAl-CNT (c). 
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3. Experimental Section 

3.1. Preparation of LDH Precursors 

The LDHs of Co-Ni-Al-SO4
2− (CoNiAl), Fe-Ni-Al-SO4

2− (FeNiAl), and Fe-Co-Ni-Al-SO4
2− 

(FeCoNiAl) were synthesized through co-precipitation methods. The molar ratios of cobalt:aluminium, 

nickel:aluminium, and iron:aluminium were set at 4:1. Mixed aqueous solutions of cobalt, nickel, iron, 

and aluminium nitrates were prepared at pH 10.00 ± 0.05 by dropwise addition of aqueous NaOH 

solution (2.00 M) with vigorous stirring. The titration of NaOH was performed under the constant  

flow of nitrogen gas to avoid, or at least minimize contamination by atmospheric CO2 throughout the 

experiment. The precipitate was then aged at 70 °C for 18 h, washed, and dried in the oven at 70 °C. 

The dried samples were then ground into fine powder by a mortar and pestle, before kept in sample 

bottles pending further use and characterisation. The as-synthesized LDH samples were calcined in air 

at 800 °C for 5 h at a heating rate of 4 °C/min. The resulting mixed metal oxides were then slowly 

cooled to room temperature. 

3.2. Growth of CNTs 

CNTs were synthesized by catalytic chemical vapor deposition of hexane, in a quartz tube housed 

inside a horizontal tube furnace equipped with gas flow controller and temperature-programmed 

control. After loading the calcined LDH samples in an alumina boat, the temperature in the furnace 

was raised from room temperature to 800 °C at a rate of 4 °C/min, under nitrogen gas flow at 50 PSIG 

for 150 min. After 120 min hexane was introduced, and the temperature was maintained for a 

subsequent 30 min before the whole system was turned off. The furnace was then left to cool to room 

temperature. The resulting synthesized CNTs were kept in sample bottles pending further use and 

characterisation. For calculation of percentage carbon yield, the following equation was used; 

Carbon yield (%) = mass of carbon deposited onto the catalyst × 100 

initial mass of mixed oxide 

3.3. Characterisation 

Powder X-ray diffraction (PXRD) patterns of the samples were collected using an ITAL Structure 

APD 2000 instrument. The CuKα used was at the wavelength λ = 0.1540562 nm and scanning rate  

was set at 2 degrees·min−1. Infrared absorption spectras of each sample were analyzed in a FTIR 

spectrophotometer in the form of KBr pellets, using a Perkin-Elmer model 1725X, in the wavelength 

range of 400–4000 cm−1. The N2 adsorption-desorption isotherm, the specific surface area and pore 

size distribution was carried out by using a BELSORP-mini. Before the analysis, the samples were 

degassed at 105 °C under vacuum environment. CARL ZEISS SUPRA 40VP operated at 5 kV was 

used for field emission scanning electron microanalyses (FESEM) of the samples. Transmission 

electron microscopy (TEM) images were taken using Hitachi H-7100 operated at 40 kV. 
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4. Conclusions 

Carbon nanotubes were grown on a series of catalysts derived from CoNiAl-LDH, FeCoNiAl-LDH 

and FeNiAl-LDH materials. The catalytically active Co, Ni and Fe species for MWNTs growth were 

successfully formed by calcination of LDHs at 800 °C. Different mixed oxides catalyst precursors 

were found to produce different carbon yields of CNTs, as well as different sizes and structure of  

the formed MWNTs. CoNiAl mixed oxide was found to give the highest yield of CNTs with less 

amorphous carbons on their wall surfaces, indicating high quality CNTs were produced. 
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