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Abstract: Bmi1 is a member of the polycomb group family of proteins, and it drives the 

carcinogenesis of various cancers and governs the self-renewal of multiple types of  

stem cells. Our previous studies have revealed that Bmi1 acts as an oncogene in hepatic 

carcinogenesis in an INK4a/ARF locus independent manner. However, whether Bmi1 can 

be used as a potential target for hepatocellular carcinoma treatment has not been fully 

confirmed yet. Here, we show that perturbation of Bmi1 expression by using short hairpin 

RNA can inhibit the tumorigenicity and tumor growth of hepatocellular carcinoma cells 

both in vitro and in vivo. Importantly, Bmi1 knockdown can block the tumor growth, both 

in the initiating stages and the fast growing stages. Cellular biology analysis revealed that 

Bmi1 knockdown induces cell cycle arrest and apoptosis. Our findings verify Bmi1 as a 

qualified treatment target for hepatocellular carcinoma (HCC) and support Bmi1 targeting 

treatment with chemotherapeutic agents. 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 20005 

 

 

Keywords: Bmi1; HCC; knockdown; proliferation; treatment 

 

1. Introduction 

Hepatocellular carcinoma (HCC) is the third leading cause of death from cancers and the fifth most 

common malignancy worldwide [1]. HCC is often diagnosed at an advanced stage when it is no longer 

amenable to curative therapies [2]. Because of the lack of therapeutics, mining the potential therapeutic 

targets is one of the pivotal missions of fundamental research of liver cancers. 

In the past few decades, epidemiologic data have confirmed that chronic viral infections and 

hepatotoxic agents serve as the major risk factors [3,4], but the molecular pathogenesis of HCC is still 

largely unknown. It is presumed that the initiation and progression of HCC result from cumulative 

genetic and epigenetic events, similar to those observed in other solid tumors. The most frequently 

involved tumor suppressor proteins driving hepatic carcinogenesis are pRb, p53, the M6P/IGF2 

receptor and E-cadherin [5]. Activation of oncogenes, such as c-Myc, Met and CTNND1, has also been 

detected in multiple subsets of HCC [6]. Alongside these oncogene alterations, the major pathways 

implicated in HCC are intensively investigated. These pathways include the RAF/mitogen-activated 
protein kinase/extracellular signal-regulated kinase (RAF/MEK/ERK) pathway, PI3 kinase/AKT/ 

mammalian target of rapamycin (PI3K/AKT/mTOR) pathway, canonical WNT/β-catenin pathway, 

insulin-like growth factor pathway, hepatocyte growth factor/c-MET pathway and growth factor-regulated 

angiogenic signaling pathway [7]. Treatment studies targeting these signaling cascades related to cell 

survival and proliferation are widely conducted in preclinical and early clinical studies [8]. 

Besides the oncogenes stated above, Bmi1 is another critical oncogene that mediates hepatic 

carcinogenesis [9]. Bmi1 is a member of the mammalian polycomb group of multimeric transcriptional 

repressors and is involved in the regulation of development, stem cell self-renewal, cell cycle and 

senescence [10–13]. Bmi1 was first identified as an oncogene, because it can cooperate with c-Myc to 

induce murine B-cell lymphoma [14]. Since then, overexpression of Bmi1 has been reported in 

multiple tumor types, including breast cancer [15], colon carcinoma [16], non-small cell lung  

cancer [17,18], glioblastoma [19], ovarian cancer [20], bladder cancer [21] and nasopharyngeal 

carcinoma [22]. Similar to many types of solid tumors and leukemia [23], aberrant expression of Bmi1 

is also found in human HCC [24,25]. Chiba and colleagues found that Bmi1 gene is overexpressed in 

many HCC cell lines, and knockdown of Bmi1 can reduce the side population in HCC cells [26].  

Our previous study also showed that Bmi1 is overexpressed in almost 1/3 of HCC patients, and Bmi1 

can cooperate with Ras to induce HCC formation in mice [25]. All of these data support that Bmi1 

functions as an oncogene in HCC. 

As a major member of the PcG family of proteins, Bmi1 plays important roles during the multiple 

types of tumorigenesis by epigenetic gene regulation [27]. The molecular mechanisms underlining the 

functions of Bmi1 in carcinogenesis have been extensively explored. Several studies have revealed that 

Bmi1 mainly promotes tumor development by repressing INK4a/ARF locus, which can induce cell 

senescence and inhibit the proliferation of cancer cells [11,13,18]. In HCC, however, Bmi1 was shown 

to drive HCC pathogenesis independent of repressing INK4a/ARF [24,25]. In addition, the cellular 
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mechanism of how Bmi1 induces HCC and maintains HCC growth is not fully understood. In our past 

study, no senescence was observed upon Bmi1 repression in HCC [25]. Hence, the exact mechanisms 

of Bmi1 in HCC carcinogenesis are still elusive. 

To validate the feasibility of using Bmi1 as a potential target for HCC treatment, here, we report 

that knockdown of Bmi1 gene inhibits HCC cell proliferation in vitro and in vivo, both in the onset 

periods and the fast growing periods of the neoplasm. The cellular mechanism study revealed that 

Bmi1 knockdown inhibits HCC cell growth by inducing both cell cycle arrest and apoptosis. 

2. Results and Discussion 

2.1. Bmi1 Knockdown Inhibits the Growth of Hep3B Cells by Inducing Cell Cycle Arrest 

To explore the effects of Bmi1 repression on HCC growth, we first checked the impact of Bmi1 

knockdown (KO) on HCC cells in vitro. Hep3B cells transfected with Bmi1 shRNA lentivirus or 

control vector lentivirus were selected by 1 μg/mL of puromycin. Then, the Bmi1 expression and the 

proliferation of Hep3B cells were examined. Western blotting showed that the expression of Bmi1 was 

significantly inhibited in Bmi1 KO Hep3B cells (Figure 1A). Quantitative RT-PCR also showed that 

the Bmi1 mRNA level decreased to 0.12-fold in Bmi1 KO Hep3B cells (Figure 1B). The phenotypic 

observation that plenty of Bmi1 KO cells were detached from the culture dish indicated obvious 

apoptosis or cell death (Figure 1C). Growth curve analysis showed that the growth of Hep3B cells was 

significantly impaired upon Bmi1 knockdown (Figure 1C). Reduced BrdU staining in Bmi1 KO 

Hep3B cells confirmed the inhibited proliferation of Bmi1 KO Hep3B cells (Figure 1D). These results 

clearly indicated that the Bmi1 KO significantly inhibited the growth of HCC cells. 

Figure 1. Knocking down Bmi1 inhibits the proliferation of Hep3B cells in vitro. Western 

blotting, proliferation and BrdU incorporation assays were done by using the Hep3B cells 

after lentivirus infection and puromycin selection for three days. (A) Western blotting 

detection of Bmi1 expression. Tubulin was used as a loading control; (B) Real-time  

qRT-PCR detection of mRNA level of Bmi1 (n = 3); (C) Cellular morphology of Bmi1 

knockdown Hep3B cells. Cells were plated in six-well plates for 1 × 105 cells per well and 

observed at three time points. Cells were counted after trypan blue staining by using a 

blood counting chamber (n = 3 wells); and (D) Proliferation detection of cells by the BrdU 

incorporation assay. The nucleus was stained blue by DAPI (4',6-diamidino-2-phenylindole), 

and BrdU stained red. The percentage of BrdU-positive cells was determined by counting 

BrdU-positive cells and total cells in the same fields (n = 3). Data are expressed as the 

mean ± SD (standard deviation). * p < 0.05, and ** p < 0.01. 

BA
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Figure 1. Cont. 

(C) 

(D) 

We further explored the cellular mechanism of Hep3B cell growth inhibition by Bmi1 knockout. 

We first performed the TdT-mediated dUTP nick end labeling (TUNEL) assay and found  

no significantly increased apoptosis in Bmi1 KO Hep3B cells (Figure 2A). Then, we conducted  

cell cycle analysis through both immunostaining and fluorescence-activated cell sorting (FACS). 

Immunofluorescence staining showed that the cyclin D1 expression was blocked in some Bmi1 KO 

Hep3B cells (Figure 2B). Cell cycle analysis by FACS showed that Bmi1 KO Hep3B cells were 

accumulated in the G1 phase, suggesting a G1 phase arrest in Bmi1 KO cells (Figure 2C). These data 

collectively suggest that the Bmi1 KO inhibits HCC cell growth mainly by inducing cell cycle arrest. 

Western blot results showed that expression of cell cycle protein cyclin D1 and cyclin E were 

downregulated, whereas the expression of apoptosis-associated proteins Bcl-2, Bax and caspase-3 

showed no significant changes (Figure 2D). These results suggest that Bmi1 KO in Hep3B cells 

induced cell cycle arrest in the G1 phase, but did not induce apoptosis in vitro. 
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Figure 2. Bmi1 downregulation inhibits Hep3B cell growth by inducing cell cycle arrest. 

Hep3B cells were infected with Bmi1 shRNA lentivirus and were selected by puromycin. 

Then, 1 × 105 Hep3B cells were seeded in six-well plates with a cover slip. After 48 h,  

the cells were processed for western blot, immunofluorescence staining and FACS assays. 

(A) Apoptotic detection by TUNEL assay (100×). The nucleus was stained with blue 

DAPI, and TUNEL is shown as green; (B) The immunofluorescence staining of cell cycle 

protein cyclin D1 (400×). The nucleus was stained with blue DAPI, and cyline D1 was 

stained red. Quantitative analyses were conducted by counting staining positive cells and 

total cells in the same fields (n = 3 fields); (C) Cell cycle analysis by FACS. For FACS 

detection, 2 × 105 cells were seeded in six-well plates and cultured for 24 h. A total of  

5 × 104 cells were detected for each sample; and (D) Western blotting detection of apoptosis 

and cell cycle-associated proteins. Data are expressed as the mean ± SD. * p < 0.05. 

A

 

B

 

C D
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2.2. Bmi1 Knockdown Impairs the Tumor Formation Ability of HCC Cells in Nude Mice 

To determine the effects of Bmi1 KO on HCC growth in vivo, we first checked the impact of Bmi1 

KO on the tumorigenicity of Hep3B. The colony formation assay showed that Bmi1 KO impaired the 

colony formation ability of Hep3B cells significantly. Both the colony numbers and sizes of Bmi1 KO 

Hep3B cells were significantly lower than those of WT (wild type) Hep3B cells (Figure 3A). To assay 

the tumorigenicity of Bmi1 KO Hep3B cells in mice, both Bmi1 WT and KO Hep3B cells were 

inoculated into the BALB/c nude mice with three different cell numbers, 2 × 106, 4 × 106 and 6 × 106 

cells (n = 10). We found that when 6 × 106 cells were injected, both the WT and Bmi1 KO Hep3B cells 

could form tumors in the nude mice. When the cell number reduced to 4 × 106, most of the WT  

cell-injected mice (9/10) formed tumors, whereas less than half of the Bmi1 KO cell-injected mice 

(4/10) formed tumors. When the cell numbers reduced to 2 × 106, Bmi1 KO Hep3B cells failed to 

initiate subcutaneous tumors in any recipient mice. However, WT Hep3B cells still formed tumors  

in three of 10 injected mice (Figure 3B). For the tumors derived from 6 × 106 cell injection, growth 

curve showed that the tumor formation from the Bmi1 KO cells was significantly delayed compared to 

the WT cells, and Bmi1 KO significantly repressed tumor growth (Figure 3C). In addition, the sizes of 

Bmi1 KO tumors were much smaller than those of WT tumors (Figure 3D). The Bmi1 expression  

in the Bmi1 KO tumors was confirmed by western blotting and showed that the Bmi1 shRNA 

lentivirus can constantly inhibit the expression of Bmi1 for at least 20 days (Figure 3E). These  

results collectively illustrate that the tumor-initiating capacity of Hep3B cells is profoundly impaired 

by Bmi1 knockdown. 

Figure 3. Bmi1 knockdown impairs the tumor formation ability of Hep3B cells in nude 

mice. (A) Colony formation assay of Bmi1 knockdown Hep3B cells. One thousand Hep3B 

cells were seeded in six-well plates and cultured for three days. For the quantitative 

analysis, three wells of colonies were counted; (B) The tumor-initiating ability of Hep3B 

cells in nude mice. The tumor formation was observed for two weeks after inoculation  

(n = 10 mice/group); (C) Growth curves of the tumors formed by Bmi1 WT and KO 

Hep3B cell injection. Bmi1 WT or KO Hep3B cells (6 × 106) were injected into nude mice 

subcutaneously, and the tumor volumes were measured every other day; (D) The tumors 

formed in recipient mice by injecting 6 × 106 Bmi1 KO or WT Hep3B cells. The red 

arrows in each image are used to indicate the tumors; and (E) Bmi1 expression detection 

by western blotting in the formed tumors. Data are expressed as the mean ± SD. * p < 0.05, 

and ** p < 0.01. 

A

 



Int. J. Mol. Sci. 2014, 15 20010 

 

 

Figure 3. Cont. 
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2.3. Conditional Knockdown of Bmi1 by Doxycycline Inhibits the HCC Cell Growth in Vitro 

Although knockdown of Bmi1 significantly impaired the tumorigenicity of HCC cells in vitro  

and in nude mice, the effect of Bmi1 knockout on HCC growth in vivo was still unclear. Clinically,  

treatments only happen after cancer diagnosis, rather than ahead of the tumor formation.  

Thus, we further asked whether knockdown of Bmi1 can block the growth of HCC in the fast growing 

stages, at which most cancer patients are diagnosed. To address this question, we cloned the Bmi1 shRNA 

to an inducible lentivirus expression vector, pLKO-Tet-On plasmid, and prepared the Bmi1/pLKO-Tet-On 

lentivirus. In these infected cells, doxycycline can trigger the Bmi1 shRNA expression and then silence 

the Bmi1 expression. The results showed that treatment with 0.1 μg/mL of doxycycline for 24 h 

significantly inhibited Bmi1 expression in Hep3B and Huh7 cells transfected with Bmi1/pLKO-Tet-On 

lentivirus (Figure 4A). Quantitative RT-PCR showed that Bmi1 expression was reduced to 30% and 

20%, respectively, in Huh7 and Hep3B cells by doxycycline treatment (Figure 4B). Growth curve 

analysis showed that the proliferation of Huh7 and Hep3B cells was significantly inhibited upon  

Bmi1 knockdown (Figure 4C). The dose escalation efficacy assay by treating the cells with various 

concentration of doxycycline showed that doxycycline treatment inhibits the growth of Hep3B and 

Huh7 cells in a dose-dependent manner. A higher concentration (0.01 vs. 0.1 μg/mL) of doxycycline 

resulted in stronger blocking effects 60% inhibition vs. 40% inhibition), and treatments for a longer 

time enhanced the effects, as well (Figure 4D). These results suggest that Bmi1 KO by doxycycline 

inhibits the cell growth in a dose-dependent manner in vitro. 
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Figure 4. Conditional knockdown of Bmi1 by the tet-on system inhibits the HCC cell 

growth in vitro. Hep3B and Huh7 cells were infected with lentivirus carrying inducible 

Bmi1 shRNA. After 48 h of puromycin selection, 0.1 μg/mL of doxycycline was added in 

the culture medium to activate the Bmi1 shRNA expression. After 48 h of doxycycline 

treatment, the cells were processed for western blot, qRT-PCR and proliferation assays. 

(A) Western blotting of Bmi1 in the Hep3B and Huh7 cells transfected with Bmi1 shRNA 

lentivirus. Hep3B and Huh7 cells were infected with lentivirus carrying inducible Bmi1 

shRNA, and 0.1 μg/mL of doxycycline were added in the culture medium to activate the 

Bmi1 shRNA expression; (B) qRT-PCR results of the Bmi1 mRNA level in Huh7 and 

Hep3B cells transfected with Bmi1 shRNA by pLKO-Tet-On lentivirus; (C) The growth 

curves of Huh7 and Hep3B cells when the Bmi1 gene was knocked down. Cells were 

cultured in medium with 0.1 μg/mL of doxycycline after infecting with lentivirus, and cell 

numbers were counted at different time points after trypsin digestion; and (D) Cell growth 

of Huh7 and Hep3B cells treated with different concentrations of doxycycline. The 

morphology of Hep3B cells treated with doxycycline is shown on the left. The Huh7 and 

Hep3B cell numbers were counted after 1 × 105 cells were cultured in six-well plates for  

48 h. Data are expressed as the mean ± SD. * p < 0.05, and ** p < 0.01. 

(μg/mL)

(μg/mL)

100 μm 100 μm 100 μm

100 μm 100 μm 100 μm

100 μm 100 μm 100 μm

 

2.4. Shutdown of Bmi1 Represses the Tumor Growth in the Fast Growing Period in Nude Mice 

To determine whether the knockdown of Bmi1 can inhibit the tumor growth in fast growing periods 

in vivo, Hep3B cells transfected with Bmi1/pLKO-Tet-On were implanted in nude mice to generate  

the tumor bearing mice. When the tumors grew to ~100 mm3, autoclaved water with 1.5 mg/mL of 
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doxycycline was given to the treatment group mice and regular autoclaved water was continued for 

control group mice. Ten days after doxycycline treatment, the tumors of treated mice were markedly 

smaller in comparison with the control group mice (Figure 5A,B). When the tumors of control mice 

grew to ~200 mm3, the tumors of treated mice were only ~100 mm3 (Figure 5A,B). The growth curves 

also showed that Bmi1 KO Hep3B tumors maintained their sizes during the treatments for 10 days, 

while tumors of the untreated mice kept growing quickly (Figure 5A). Correspondingly, the doxycycline 

treatment also promoted the survival of tumor-bearing mice. The median survival time of the treated 

mice was 24 days after tumor formation (100 mm3), while for the untreated mice, it was 16 days  

(Figure 5C). Western blotting of the tumor samples showed that the expression of cyclin D1 and E was 

decreased, whereas the expression of Bax and caspase-3 was increased (Figure 5D). This clearly indicated 

that Bmi1 knockdown resulted in cell cycle arrest and apoptosis. Taken together, these data showed 

that knockdown of Bmi1 expression can inhibit the growth of HCC in fast growing periods in vivo. 

Figure 5. Shutdown of Bmi1 represses the growth of the fast growing tumor in nude mice. 

(A) The growth of tumors in mice with or without doxycycline for 10 days. For the 

xenograft tumor model, 6 × 106 Hep3B cells transfected with pLK-Tet-on-Bmi1 lentivirus 

were injected per nude mouse. The tumor volume was measured every other day. The 

treatment group was supplied with 1.5 mg/mL of doxycycline in the drinking water from the 

sixth day, when the tumors grew to ~100 mm3, whereas the control group was supplied still 

with regular autoclaved water. The pink arrow indicates that the treatment group begun to 

be supplied with doxycycline (DOX) in the drinking water; (B) The doxycycline-treated 

mice had smaller-sized tumors compared with control group mice. The pictures were taken 

on the sixth day after doxycycline treatment. The red arrows in each image are used to 

indicate the tumors; (C) The survival curve of tumor-bearing mice. The survival of mice was 

recorded since the mice were treated with doxycycline. Moribund mice or mice with a tumor  

˃1000 mm3 were recorded as dead; and (D) Western blotting of Bmi1, apoptosis and cell  

cycle-associated proteins in the tumor tissues. After the mice were sacrificed, the tumors 

were collected for western blotting. Data are expressed as the mean ± SD. * p < 0.05. 

(A) (B) 
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Figure 5. Cont. 

(C) (D) 

To further ensure that the tumor growth arrest resulted from the Bmi1 knockdown, three moribund 

mice of each group were sacrificed for immunoblotting and immunohistochemistry after 10 days  

of doxycycline or regular water treatment. Histologic examination showed that the untreated  

tumors consisted of frequent trabecular disorganization and exhibited clearly the nuclear expression  

of Bmi1 (Figure 6A). The Bmi1 staining showed significantly abrogated Bmi1 expression in the 

doxycycline-treated mice (Figure 6A). Ki67 staining revealed a high level proliferation for WT Hep3B 

tumors and a relatively low level proliferation of Bmi1 KO tumors (Figure 6A). The TUNEL assay 

showed that Bmi1 knockdown by doxycycline generated increased apoptotic signals in the treated 

Hep3B tumor samples (Figure 6B). Combined with the in vitro study, these results suggest that the 

Bmi1 knockdown can inhibit the HCC growth in mice, and the mechanism is mainly due to the 

induction of cell cycle arrest, while increased apoptosis was observed in tumor tissues. 

Figure 6. Characterization and apoptosis detection of tumor tissues. (A) Immunohistology of 

tumor tissues in nude mice. Tumor tissues were collected from the moribund mice at the 

end of the experiment; and (B) TUNEL assay in the tumors treated with doxycycline. The 

percentage of TUNEL-positive cells was determined by counting TUNEL-positive cells 

and total cells in the same fields (n = 3). Data are expressed as the mean ± SD. * p < 0.05. 

A
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2.5. Discussion 

Human HCC is one of the most frequent solid tumors, ranking fifth in incidence and third in 

mortality worldwide. Screening and validation of the potential therapeutic targets for HCC have long 

been the mission of fundamental studies. The Bmi1 gene has been recognized as an oncogene in HCC 

and many other types of tumors [18,28–30]. Using Bmi1 transgenic or knockout mice, several research 

groups have showed that Bmi1 expression is required for the tumorigenesis of HCC [25,31]. Although 

some studies showed that repression of Bmi1 can inhibit the growth of HCC cells in vitro, more in vivo 

evidence was needed to validate Bmi1 as a therapeutic target for HCC treatment, especially in the late 

stages. In our present study, we showed that Bmi1 knockdown can inhibit HCC cell growth in vivo, 

both in the initiating stages and progressing stages. Especially, our data indicated that even in the fast 

growing stages of HCC, repression of Bmi1 can still block the growth of HCC. Our study therefore 

provides pivotal evidence to support Bmi1 as a target for HCC treatment. 

Such kinds of studies have been done by other groups. Similarly, all of the results support Bmi1 as a 

potential therapeutic target. Ruan et al. showed that Bmi1 downregulation inhibits HCC cell growth 

and tumorsphere formation in vitro, blocks cell cycle transition from the G0/G1 to the S phase of HCC 

cell lines, inhibits tumorigenicity in vivo and enhances HCC sensitivity to sorafenib [32]. The results of 

Zhang et al. indicate that the downregulation of the Bmi1 gene by RNAi can inhibit the proliferation 

and invasiveness of HCC cells and increases their sensitivity to 5-FU treatment [33]. Wu and colleagues 

reported that repression of Bmi1 can enhance the sensitivity of osteosarcoma to cisplatin [34].  

Wang et al. reported that knockdown of Bmi1 also reduces the resistance of ovarian cancer cells  

to cisplatin [20]. All of these studies imply that the Bmi1 is a potential target for cancer treatments, 

including HCC. 

Although some of these studies used a mouse model to show the efficacy of Bmi1 knockdown on 

tumor growth inhibition, they failed to provide evidence that repression of Bmi1 in the fast growing 

stages will be effective. By using a conditional knockdown system, we, for the first time, showed that 

knockdown of Bmi1 in the fast growing stages, instead of from the onset of tumors, can still inhibit the 

growth of HCC in a mouse model. Though the xenograft mouse model has many deficiencies, it is still 

a well-accepted mouse model to evaluate the efficacy of anti-tumor drugs or treatments. However, we 

are currently evaluating the possibility of using a hydrodynamic injection tumor model for the further 

evaluation of oncogene targeting treatments. 
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Yonemitsu et al. reported that Bmi1 was overexpressed in 52 tumor tissues (60.5%) of 86 

hepatocellular carcinoma surgical specimens, and the cumulative recurrence rate was significantly 

higher in patients positive for Bmi1 (p = 0.039) than in their negative counterparts, as determined by 

Kaplan–Meier analysis [8]. These data indicate that Bmi1 is associated with the malignant progression 

of HCC. Our data showed that knockdown of Bmi1 can prolong the survival of tumor-bearing mice 

from 16 to 24 days, and it seems that eight days is not significant compared to the average life span of 

nude mice of about 120 days. However, the only approved drug on the market for HCC treatment, 

sorafenib, can only prolong the median survival time of HCC patients for an average of  

3.4 month [9]. Considering that the average life span of a human is about 70 years, an eight-day 

expansion of the life span for nude mice was a significant improvement, and this equals 56 months for 

humans. In addition, our other study has shown that co-delivery of Bmi1 siRNA and doxorubicin can 

significantly prolong the survival of tumor-bearing mice [10], which hints at its possible application 

together with chemotherapy. Considering the urgent demand for the effective treatment of HCC, the 

Bmi1 targeting treatment holds promise as one of the future therapeutic options. 

Several studies have revealed that Bmi1 maintains tumor growth by inhibiting apoptosis, and 

knockout of Bmi1 will result in the apoptosis of cancer cells [20,35]. In our study, we observed 

apoptosis in the xenograft tumors when Bmi1 was knocked down. However, we did not observe the 

increased apoptosis in the cultured Bmi1 KO Hep3B cells. This is possibly due to the different 

growing conditions for cultured HCC cells. In cell culture, apoptotic HCC cells will quickly be 

detached from the culture dish, which makes them difficult to detect. In tumor tissues, however, the 

tumor microenvironment will help maintain the survival of the apoptotic HCC cells, and thus, 

apoptotic HCC cells are easier to be detected by TUNEL staining. 

Bmi1 exerts its oncogenic function in many types of cancers by silencing the INK4a/ARF (Cdkn2a) 

tumor suppressor locus encoding the p16 (INK4a) and p14 (ARF) proteins. The p16 inhibits cell cycle 

progression by disrupting the cyclin D/CDK 4/6 complex, whereas p14 suppresses Mdm2 function and 

subsequently results in p53 stabilization and subsequent apoptosis. Thus, the tumor-promoting function 

of the Bmi1 gene has contributed to the inhibition of cell apoptosis [35]. However, emerging evidence 

indicates that Bmi1 also functions in an INK4a/ARF independent manner [19,24,25,36,37] or partially 

dependent manner [18,38] in the tumorigenic context. Our previous study revealed that knockdown of 

Bmi1 does not increase the mRNA and protein level of p14 and p16 in Huh7, Hep3B and SK-Hep1 

cell lines [25]. However, how the Bmi1 KO induced cell cycle arrest was still unresolved. Clearly, the 

next step in the characterization of molecular mechanisms of Bmi1 is to identify novel targets and/or 

pathways regulated by Bmi1 during HCC pathogenesis and maintenance. 

3. Experimental Section 

3.1. Cell Culture, Short Hairpin RNA Constructs, Lentivirus and Infection 

The Huh7 and Hep3B cell lines are from the American Type Culture Collection (ATCC, Manassas, 

VA, USA). Cells were cultured in Dulbecco’s Modified Eagle’s Medium (Hyclone, Logan, UT, USA) 

containing 10% fetal bovine serum (Gibco, Gaithersburg, MD, USA), 100 U/mL penicillin  

(Sigma-Aldrich, St. Louis, MO, USA) and 100 mg/mL streptomycin (Sigma-Aldrich) in 37 °C and 5% 
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CO2 incubators. M-plasmocin (Invivogen, San Diego, CA, USA) at a concentration of 2.5 μg/mL was 

used to prevent possible mycoplasma infection. 

ShRNA constructs Bmi1/pLKO.1 (TRCN0000020155, NM_005180.5-693s1c1) used to silence 

Bmi1 expression were obtained from OpenBiosystems (GE healthcare, New York, NY, USA). Control 

pLKO.1 (empty vector) or SC/PLKO.1 (with a scrambled sequence) plasmids were obtained from 

Addgene (Addgene, Madison, MD, USA). The doxycycline inducible Bmi1 shRNA vector was 

obtained by cloning the Bmi1 shRNA (5'-CCGGCCAGACCACTACTGAATATAACTCGAGTTAT 

ATTCAGTAGTGGTCTGGTTTTT-3' and 5'-AATTAAAAACCAGACCACTACTGAATATAACTC 

GAGTTATATTCAGTAGTGGTCTGG-3') into the AgeI/EcoRI sites of the pLKO-Tet-On vector 

downstream of the U6 promoter. Then, the vectors were packaged by lentivirus. Lentivirus generated 

by the biotechnology company (Neuron Biotech, Shanghai, China) was used to infect HCC cells by 

adding the thawed virus into the cell culture directly. Two days after infection, cells were expanded 

and selected with 1 μg/mL puromycin for 2 days and harvested for protein or RNA analysis. 

3.2. RNA Extraction and Real-Time qPCR 

Total RNA was extracted using the RNeasy Mini kit (Qiagen, Hilden, Germany). Total RNA of  

5 μg was used to synthesize the first strand of cDNA by using SuperScript II RT 200 U/mL 

(Invitrogen, Carlsbad, CA, USA). The Bmi1 mRNA level was evaluated by real-time PCR on an ABI 

Prism H7300 (Applied Biosystems, Foster City, CA, USA) with SYBR Green PCR core reagents.  

The rRNA was applied as the input reference. The primers used in this study are listed below: Bmi1:  

F, 5'-TGGACTGACAAATGCTGGAGA-3', R, 5'-GAAGATTGGTGGTGGTTACCGCTG-3'; rRNA: 

F, 5'-CGGCTACCACATCCAAGGAA-3', R, 5'-GCTGGAATTACCGCGGCT-3'. 

3.3. Protein Lysates and Western Blotting 

Protein extracts of cell lines or tissues were prepared by using M-PER mammalian protein 

extraction reagent (Thermo Fisher, Rockford, IL, USA) plus proteinase inhibitor cocktail (Roche, 

Indianapolis, IN, USA). Protein concentrations of the lysate were quantified using the BCA protein 

assay (Beyotime, Beijing, China). Western blotting was done as described elsewhere [39]. Antibodies 

were prepared as follows: Anti-Bmi1 1:1000 (Millipore, Bedford, MA, USA), anti-cyclin D1 1:1000 

(Milipore, Bedford, MA, USA), anti-cyclin E 1:1000 (Abcam, San Francisco, CA, USA), anti-Bcl2 

1:1000 (Abcam), anti-Bax 1:1000 (Abcam), anti-caspase 3 1:1000 (Abcam) and anti-α-tubulin 1:1000 

(Boster, Wuhan, China). 

3.4. Cell Proliferation and Cell Cycle Assays 

To assay the cell proliferation rate, an equal number of cells was seeded in 6-well plates.  

After growth, cells were digested by trypsin (Beyotime, Beijing, China) and stained by trypan blue 

(Beyotime, Beijing, China) at different time points. Then, the cells were counted by a blood counting 

chamber, and only viable cells were counted. For cell cycle analysis, cells were digested by trypsin and 

collected with the suspension cells together. After fixation by 70% ethanol, cells were incubated by  

0.5 mg/mL RNase and 0.025 mg/mL propidium iodide for 30 min. For each sample, 5 × 104 cells were 
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detected by flow cytometry (CytomicsTM FC 500, Beckman Coulter, CA, USA), and the results were 

analyzed by using software FlowJo 7.6 (FlowJo, Ashland, OR, USA). BrdU labeling was performed as 

described in the literature [40]. 

3.5. Analysis of Clonogenicity in Vitro 

For colony formation analysis, Hep3B cells were infected by lentivirus for 48 h and then selected  

by 1 µg/mL puromycin for 48 h. Then, 1000 viable Hep3B cells were plated in 6-well plates and 

maintained in complete DMEM medium for 1 week. Colonies were fixed with methanol and stained 

with 0.1% crystal violet in 20% methanol. Triplicate wells were prepared for each transfectant, and the 

experiment was repeated twice. 

3.6. Mice and Xenograft Mouse Model 

Female BALB/c nude mice (6–8 weeks of age, 16–18 g) were obtained from Huafukang Technology 

Corporation (Beijing, China), kept in filter-topped cages with standard rodent chow and had water 

available ad libitum and a 12 h light/dark cycle. The experiments were performed according to national 

regulations and approved by the Animal Experiments Ethical Committee of Huazhong University of 

Science and Technology. Hep3B cells infected with lentivirus were selected by puromycin and then 

expanded. For the subcutaneous implantation, 2 × 106, 4 × 106 or 6 × 106 Hep3B cells were injected per 

nude mouse. After the implantation, tumor growth was observed every other day, and tumor volumes 

were calculated as V = 0.52 × a × b2, with “a” representing the long diameter and “b” the short diameter. 

For the survival record, moribund mice or mice with tumors ˃1000 mm3 upon the examination were 

recorded as dead and sacrificed for histological examination or western blotting. 

3.7. Histology, Immunohistochemistry and Immunofluorescence 

The tumors were collected from the mice after sacrifice and rinsed in 4% cold paraformaldehyde. 

Fixed tissue samples were embedded in paraffin, and slides were made for Hematoxylin and eosin 

(H&E) staining and other immunohistochemistry or immunofluorescence. For immunohistochemistry 

staining, tumor tissue was divided and fixed in 4% paraformaldehyde overnight at 4 °C, then ethanol 

overnight at 4 °C and processed to be embedded in paraffin blocks. Paraffin slides were dewaxed by 

xylene, followed by rehydrating through a series of washes with incrementally decreasing percentages 

of ethanol. Antigen retrieval was performed in 10 mM sodium citrate buffer (pH 6.0) by a placement 

microwave on high for 10 min, followed by a 20-min cool down at room temperature. After a blocking 

step with the 5% goat serum and avidin-biotin blocking kit (Vector Laboratories, Burlingame, CA, 

USA), the slides were incubated with antibodies: anti-Ki67 (Labvision, Fremont, CA, USA) at a 1:150 

dilution overnight at 4 °C; anti-Bmi1 (Bethyl) was at a 1:100 dilution overnight at room temperature. 

Slides were then subjected to 3% hydrogen peroxide for 10 min to quench endogenous peroxidase and, 

subsequently, the biotin-conjugated secondary antibody 1:400 dilution for 30 min at room temperature. 

Detection was performed with the ABC-Elite peroxidase kit (Vector Laboratories, Burlingame, CA, 

USA) by using the DAB substrate kit (DakoCytomation, Carpinteria, CA, USA). For cellular 

immunofluorescence, cells grown in the cover slip were fixed by 4% cold paraformaldehyde and 
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penetrated by 0.1% Triton X-100 (Thermo, Rockford, IL, USA). Then, cells were incubated with 

primary antibody and fluorescence conjugated secondary antibody (Alexa Fluor, Invitrogen, Carlsbad, 

CA, USA). Antibodies and dilutions were used as follows: anti-BrdU 1:1000 (Millipore, Bedford, MA, 

USA), anti-Cyclin D1 1:1000 (Millipore). 

3.8. Microscopy 

Microscopic examination of cells or tissue section slides was performed with an Olympus SZX12 

fluorescence microscope equipped with a digital camera and connected to a PC running MagnaFire 2.0 

camera software (Optronics, Goleta, CA, USA). Pictures were taken at equal exposure times for  

each sample. 

3.9. Statistical Analysis 

All statistical analyses were performed using SPSS13.0 software (SPSS Inc., Chicago, IL, USA). 

The differences between groups were compared using the Student’s t-test, and data were expressed as 

the mean ± SD. Values of p < 0.05 were considered to be significant. 

4. Conclusions 

In the present study, we found that knockdown of the Bmi1 gene inhibits HCC tumorigenicity and 

proliferation in vivo, both in the onset period and the fast growing period of the neoplasm. We also 

found that Bmi1 knockdown inhibits the tumor growth by inducing cell cycle arrest and apoptosis.  

In summary, our results demonstrated that Bmi1 can be used as a potential treatment target for HCC. 
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