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Abstract: Zea mays is an economically important crop, but its molecular mechanism of 

flowering remains largely uncharacterized. The gene, SUPPRESSOR OF OVEREXPRESSION 

OF CONSTANS 1 (SOC1), integrates multiple flowering signals to regulate floral transition 

in Arabidopsis. In this study, ZmSOC1 was isolated from Zea mays. Sequence alignment 

and phylogenetic analysis demonstrated that the ZmSOC1 protein contained a highly 

conserved MADS domain and a typical SOC1 motif. ZmSOC1 protein was localized in the 

nucleus in protoplasts and showed no transcriptional activation activity in yeast cells. 

ZmSOC1 was highly expressed in maize reproductive organs, including filaments, ear and 

endosperm, but expression was very low in embryos; on the other hand, the abiotic stresses 

could repress ZmSOC1 expression. Overexpression of ZmSOC1 resulted in early flowering 

in Arabidopsis through increasing the expression of AtLFY and AtAP1. Overall, these 

results suggest that ZmSOC1 is a flowering promoter in Arabidopsis. 
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1. Introduction 

Flowering is regulated by both environmental and endogenous factors [1]. In Arabidopsis thaliana, 

six genetically defined pathways that control flowering have been identified: vernalization, photoperiod, 

ambient temperature, gibberellin, autonomous and age pathways [2]. Various signals in these pathways 

regulate flowering, but eventually converge to several integration factors, including FLOWERING 

LOCUS C (FLC), FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CO1 

(SOC1) and LEAFY (LFY) [3–7]. 

The MADS-box family of transcription factors in plants is known for its role in developmental 

processes [8]. Most of the members of this family are involved in flowering regulation, vegetative 

development, meristem identity regulation, floral organ development and the formation of fruit and 

seed [9–13]. The MADS-box family contains a DNA binding domain of about 58 amino acids that 

binds DNA sequences known as the CArG box (CC(A/T)6GG) [14,15]. 

Models for the integration of genetic networks for flowering have been proposed in model plants, 

and SOC1, FT and LFY act as flowering pathway integrators [16–18]. SOC1 encodes a MADS-box 

protein and contains a highly conserved DNA-binding domain. Studies have shown that SOC1 

integrates the GA pathway [19]. Furthermore, CO acts as a major positive factor underlying long day 

conditions, whereas the GA pathway acts as a positive factor underlying short day conditions [20–22]. 

SOC1 interacts with multiple MADS box proteins, including AGAMOUS-LIKE24 (AGL24), 

FRUITFUL (FUL) and AP1, and regulates the expression of several flowering genes, such as  

SVP, AGL15, AGL18 and SEP3, by binding directly to regulatory sequences [20,23–26]. SOC1 had  

been isolated from Arabidopsis [7,19,25], Oryza sativa [27–29], Petunia hybrida [9], Citrus  

sinensis [30], Trillium camtschatcense [31] and Triticum aestivum L. [32] and promoted flowering in 

transgenic Arabidopsis. 

Maize is an economically important crop, and a comprehensive understanding of flowering behaviors 

is required to increase production and improve seed quality. However, the molecular mechanisms  

of flowering control in maize remain poorly understood. The ZmMADS1/ZMM5, which is a 

SOC1/TM3-like gene in Zea mays, is expressed in vegetative organs at a low level, increased in 

reproductive tissues and parallels the expression pattern in the development of OsSOC1 and  

AtSOC1 [7,28,33–36]. ZmMADS1/ZMM5 not only contains the typical Mikc domain, but also has a 

highly conserved SOC1 motif at the C-terminal, which uniquely exists in the SOC1/TM3-like  

gene [36,37]. Based on the similarity between ZmMADS1/ZMM5 and SOC1, we renamed 

ZmMADS1/ZMM5 as ZmSOC1 [38]. 

In the present study, we isolated the ZmSOC1 gene from Zea mays (B73). The protein sequence 

information, subcellular localization, transcriptional activation activity and expression pattern of 

ZmSOC1 in maize were investigated. Our results show that ZmSOC1 promotes flowering in 

Arabidopsis and suggest that the gene may play a similar role in maize. 
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2. Results and Discussion 

2.1. Isolation and Characterization of ZmSOC1 

The ORF of the ZmSOC1 gene was 696 base pairs (bp) in length and identical to ZmMADS1 

(GenBank ID: NM_001111682.1), encoding a protein of 232 amino acids with an estimated molecular 

mass of 26.4 kDa. A BLAST search of GenBank revealed that the ZmSOC1 protein was similar to 

SbSOC1 (87.50% identity), OsSOC1 (75.11% identity), AtSOC1 (53.99% identity), HvSOC1 (65.09% 

identity), VvSOC1 (54.17% identity), PtSOC1 (52.05% identity) and VuSOC1 (50.48% identity), 

respectively (Figure 1A). Multiple sequence alignment indicated that ZmSOC1 contained a well-conserved 

MADS domain and a less-conserved K domain (Figure 1A). However, there are significant variations 

appearing in their C-terminals. In addition, a nuclear localization signal was predicted (Figure 1A).  

To investigate the relationship between ZmSOC1 and other SOC1-like genes, a phylogenetic tree  

was constructed based on the amino acid sequences in their MADS-box domain (Figure 1B).  

The phylogenetic tree showed that all members could be divided into dicot and monocot clades,  

and the ZmSOC1 protein belonged to the monocot clade together with other SOC1 homologs from the 

Gramineae (Figure 1B). 

2.2. Expression Profiles of ZmSOC1 in Maize 

To explore whether ZmSOC1 expression was regulated by abiotic stresses, maize seedlings were 

treated with NaCl, PEG6000, Abscisic Acid (ABA), Salicylic acid (SA), low temperature (4 °C) and 

water without nutrients. At 4 °C, ZmSOC1 was slightly downregulated after 6 h; for NaCl treatment, 

ZmSOC1 was significantly repressed after 3 h; for PEG6000 treatment, ZmSOC1 was repressed 

quickly; for ABA treatment, ZmSOC1 increased within 3 h and subsequently decreased after 6 h;  

for SA treatment, ZmSOC1 expression decreased (but not significantly before 6 h), with a 40% 

reduction after 12 h, but the expression level of ZmSOC1 was lightly changed in the water without 

nutrients (Figure 2A). Taken together, these results indicate that ZmSOC1 expression was downregulated 

by the abiotic stresses. 

To profile expression of ZmSOC1 in different plant tissues and different developmental stages, we 

analyzed its expression using a GeneChip. ZmSOC1 maintained expression at a moderate level with 

relatively stable expression in roots, stems, leaves and the shoot apex (Figure 2B). The expression 

level increased two- to three-fold in the filaments and ears, demonstrating that ZmSOC1 plays an 

important role in maize floral organ development. Interestingly, its expression remained high for  

10–25 days in endosperms, but in the embryos, the expression levels decreased to almost undetectable 

levels, indicating that ZmSOC1 may be an essential factor for endosperm development (Figure 2B). 

MADS-box gene-specific effects are closely related to internal and external environmental factors. 

Zhang and Forde [39] found NO3
− as a signaling molecule stimulating lateral root elongation in 

Arabidopsis and is dependent of the expression of the MADS-box gene, ANR1. Wang [40] found  

that the RM1 (MADS-box) gene in rice callus tissue regulates plant cell dedifferentiation and 

re-differentiation processes and acts on target genes. After the target genes are activated, the cells 

transform into a distinct morphology. Overall, ZmSOC1 as a MADS-box gene may play an important 

role in plant growth and developmental processes. 
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Figure 1. Bioinformatical analysis of ZmSOC1. (A) Amino acid sequence alignment of 

ZmSOC1 and its homologs from other plant species. The proteins were initially aligned 

using DNAMAN software. Identical and similar amino acids are shown in black and red 

shading, respectively. The MADS domain, K domain and SOC1 motif are marked with a 

solid line, dotted line and brackets, respectively. The locations of potential nuclear 

localization signals are marked with asterisks within the ZmSOC1 amino acid sequence;  

(B) Phylogenetic analysis of ZmSOC1 protein and its homologs from various plant species. 

The DNAMAN software was used for phylogenetic analysis. ZmSOC1 protein could be 

divided into dicot and monocot clades. The accession numbers of the SOC1-like genes are as 

follows: Arabidopsis thaliana SOC1: AtSOC1 (NP_182090.1); Hordeum vulgare SOC1: 

HvSOC1 (BAJ99551.1); Lycopersicon esculentum SOC1: LeSOC1 (NP_001276829.1); 

Nicotiana tabacum SOC1: NtSOC1 (CAA53782.1); Oryza sativa SOC1: OsSOC1 

(NP_001048801.1); Populus tremuloides SOC1: PtSOC1 (AAP46287.1); Ricinus communis 

SOC1: RcSOC1 (XP_002510866.1); Sorghum bicolor SOC1: SbSOC1 (XP_002465961.1); 

Vitis vinifera SOC1: VvSOC1 (NP_001267909.1); Fragaria vesca SOC1: FvSOC1 

(NP_001266966.1); Vigna unguiculata SOC1: VuSOC1 (BAJ22387.1); Gossypium hirsutum 

SOC1: GhSOC1 (AEA29618.1); and Triticum aestivum SOC1: TaSOC1 (ABF57922.1). 
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Figure 1. Cont. 
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Figure 2. Expression profiles of ZmSOC1. (A) ZmSOC1 expression under stress conditions. 

ZmSOC1 expression was analyzed using qRT-PCR in Z31 leaves under different stress 

treatments (i.e., NaCl (250 mM), PEG6000 (20%), Abscisic Acid (ABA, 100 µM), 

Salicylic acid (SA, 100 µM), 4 °C, and H2O without nutrients) for different period of time 

(0, 0.5, 1, 3, 6, 12 and 24 h); (B) ZmSOC1 expression levels in maize tissues.  

The standardized data from the GeneChip of maize were used for the expression analysis; 

the data of eight tissues were extracted from root, stem, leaf, shoot apex, filament, ear, 

embryo and the endosperm compartment. 
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2.3. Subcellular Localization and Yeast Transcriptional Activation of ZmSOC1 

ZmSOC1 amino acid sequence analysis revealed a nuclear localization signal in the MADS-box 

domain (Figure 1A). To validate the subcellular localization of ZmSOC1 protein, ZmSOC1:GFP was 



Int. J. Mol. Sci. 2014, 15 19993 

 

 

transformed into Arabidopsis mesophyll protoplasts. The fluorescence of ZmSOC1:GFP was localized 

in the nucleus as a blue spot according to Hoechst staining (Figure 3A). These data demonstrate that 

ZmSOC1 entered the nucleus as a transcription factor and was involved in transcriptional regulation. 

Figure 3. Subcellular localization and yeast transcriptional activation analysis of ZmSOC1. 

(A) Subcellular localization of the ZmSOC1:GFP fusion protein. The Arabidopsis protoplasts 

were transformed with the plasmid ZmSOC1:GFP. After the transfected protoplasts were 

incubated for 12–16 h at 22 °C in darkness, they were stained with 5 mg/mL Hoechst 

33342 (CalBiochem) for 0.5–2.0 h to visualize the locations of the nucleus; (B) Analysis of 

ZmSOC1 transcriptional activation activity in yeast. The empty plasmids, pAS2-1, 

pAS2-1:ZmSOC1 and pGBK-GAL4-SV40-T53 (positive), were transferred into yeast 

strain AH109. Yeast were diluted in four gradient solutions. 

MergedBright
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The transcriptional activation activity of ZmSOC1 protein was analyzed using a yeast  

two-hybrid system. The recombinant plasmid pAS2-1:ZmSOC1, together with the positive control 

pGBK-GAL4-SV40-T53 and the negative control pAS2-1 plasmids, respectively, were transformed 

into the yeast strain AH109 containing the reporter gene HIS. All transformants grew well on the SD 

(Synthetic Dropout)/-Ade/-Trp media (Figure 3B), whereas on SD/-Ade/-Trp/-His media, only the 

positive control pGBK-GAL4-SV40-T53 transformants survived. These results demonstrate that 

ZmSOC1 could not activate the expression of HIS genes in yeast cells, suggesting that ZmSOC1 

protein may have no transcriptional activation activity in yeast. 

Transcription factors containing sequence-specific DNA-binding motifs are key molecular switches 

for nuclear localization, DNA binding and dimerization [24,25,41]. In the present study, a predicted 

nuclear localization signal was present in the MADS domain of ZmSOC1 (Figure 1). As expected,  
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the ZmSOC1 protein mainly localized to the Arabidopsis nucleus (Figure 3). However, MADS-box 

transcriptional activation has not been widely investigated. The C-terminus in some MADS-box 

proteins functions as a core transcriptional activation domain [37,42]. In the present study,  

we demonstrated that the ZmSOC1 protein had no transcriptional activation activity in yeast cells 

(Figure 3), similar to other MADS-box proteins, such as AGAMOUS (AG), APETALA3 (AP3)  

and PISTILLATA (PI) [43]. Because the C-terminal domain is the most divergent region among the 

MADS-box proteins, it is well established that some MADS-box proteins have transcriptional activity, 

while others do not [43,44]. 

2.4. Overexpression of ZmSOC1 Promotes Flowering in Arabidopsis 

To examine the role of ZmSOC1 at flowering time, transgenic ZmSOC1 Arabidopsis plants driven 

by the Ubi promoter were generated. The transgenic plants were analyzed by qRT-PCR to confirm the 

expression level of ZmSOC1, and the transgenic lines all showed high ZmSOC1 expression levels 

compared to wild-type (Figure 4A). Three independent T3 lines were selected for flowering time 

analysis under LD (Long-day) conditions. Compared to the wild-type, overexpression of ZmSCOC1 

significantly promoted flowering in Arabidopsis. The number of rosette leaves showing bolting ranged 

from 7.2 to 9.3 in ZmSOC1-overexpressing plants and was 14.5 for wild-type plants. In addition,  

the transgenic lines showed no morphological changes (excluding the leaves becoming slightly 

smaller). However, overexpression of another nine maize MADS-box genes was not observed to 

promote flowering in transgenic Arabidopsis. These results indicate that ZmSOC1 functions as a 

flowering activator in Arabidopsis. 

Figure 4. Overexpression of ZmSOC1 promotes flowering in Arabidopsis. (A) ZmSOC1 

expression in transgenic plants. The expression level of AtActin2 was used as an internal 

references. Values represent the means, and the error bars represent standard errors for 

three independent experiments; (B) The phenotype of ZmSOC1 transgenic lines under  

the LD (Long-day) condition (14/10 h light/dark, 22 °C) after 30 days (above) and 40 days 

(below); (C) The number of rosette leaves during flowering in transgenic plants and 

wild-type plants. 
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To examine the molecular mechanisms by which ZmSOC1 promotes flowering, the expression 

patterns of AtAGL24, AtSOC1, AtLFY and AtAP1 were analyzed using qRT-PCR in wild-type and 

transgenic seedlings under LD conditions. AtSOC1 expression levels in transgenic plants were  

similar to the wild-type. AtAGL24 expression levels increased slightly, demonstrating that ZmSOC1 

overexpression did not influence the SOC1 upstream gene in the flowering pathway. The downstream 

gene, AtLFY, was obviously upregulated in transgenic plants (Figure 5), suggesting that upregulation 

of AtLFY was the result of ZmSOC1. The expression of AP1 (downstream of AtLFY) was significantly 

upregulated in transgenic compared to wild-type plants (Figure 5). These results demonstrate that the 

high expression of AtLFY and AtAP1, which are upregulated by the overexpression of ZmSOC1, 

should be involved in the promotion of flowering time in transgenic plants. 

The overexpression of ZmSOC1 in Arabidopsis suggests that ZmSOC1 plays an evolutionarily 

conserved role in the promotion of flowering. First, it caused early flowering (Figure 4), in agreement 

with previous studies [45–47]. Second, it upregulated the expression of AtLFY and AtAP1 (Figure 5), 

which were directly or indirectly upregulated by SOC1 during the floral transition [7,25,34].  

Taken together, these results demonstrate that ZmSOC1 may be a flowering promoter in maize. 

Because heterodimerization of AtSOC1 and AtAGL24 is a key mechanism activating AtLFY 

expression, we predicted that the interaction between ZmSOC1 and AtAGL24 would result in early 

flowering in transgenic Arabidopsis by activating AtLFY expression [7,25,34,48,49]. 
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Figure 5. Expression patterns of AtAGL24, AtSOC1, AtLFY and AtAP1 using qRT-PCR in 

wild-type and transgenic seedlings. The expression level of AtActin2 was used as an 

internal reference. Values represent the means, and the error bars represent standard errors 

for three independent experiments. 
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3. Experimental Section 

3.1. Plant Material and Growth Conditions 

Arabidopsis thaliana Columbia plants were grown in a greenhouse with a 14/10 h light/dark cycle 

at 22 °C. Seeds were sterilized for 10 min in 75% ethanol with 0.1% Triton X-100, for 5 min in  

95% ethanol and finally washed with absolute ethanol on filter paper for drying. Seeds were germinated 

on half-strength Murashige and Skoog selective plates with 50 mg/L kanamycin. After 10 days of 

incubation in a growth chamber (14/10 h light/dark, 22 °C), resistant plants were transferred to soil. 

3.2. Gene Cloning and Vector Construction 

To clone the ZmSOC1 gene, the AtSOC1 protein (GenBank ID: NP_182090.1) was used for a 

BLAST search in the Maize Genetics and Genomics Database [50], and a protein (GRMZM2G171365) 

with high similarity to AtSOC1 was identified. Total RNA was isolated using TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA) from the ear of maize (B73). Total RNA was treated with DNase I 

(Promega, Madison, WI, USA), and first-strand cDNA synthesis was performed using a First Strand 

cDNA Synthesis Kit following the manufacturer’s instructions (Promega, Madison, WI, USA). 
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The ZmSOC1 CDS was cloned into the pGWCVP64B vector using the Gateway recombination 

method, which contains an Ubi promoter and Nos terminator at the C-terminus. Based on the 

ZmMADS1 sequence, the Building Gateway Enter Cloning System vector primers used were 

5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGTGCGGGGCAAGACGCA-3' (forward) 

and 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTTGCCTGACCTGACCGCCACTG-3' (reverse). 

The BP reaction mixture included attB-PCR product (100 ng), pDONR vector (100 ng) and BP 

Clonase™ Enzyme Mix (1 µL) (Invitrogen, Carlsbad, CA, USA). The LR reaction mixture included the 

Enter Cloning System Vector (100 ng), pGWVP64 vector (100 ng) and LR Clonase™ Enzyme Mix (1 µL) 

(Invitrogen, Carlsbad, CA, USA). 

3.3. RNA Preparation and Gene Expression Assays 

Total RNA was isolated from 3-week-old Arabidopsis and treated with DNase I. Quantitative 

real-time PCR (qRT-PCR) analysis was performed with an Applied Biosystems [51] Prism 7500 

instrument and GoTaq® qPCR Master Mix (Promega, Madison, WI, USA). For each genotype,  

three independent replicates consisting of five individual plants were used for analysis. The relative 

expression levels of target genes were calculated with the formula 2−ΔΔCt [52]. In Arabidopsis, we used 

qRT-PCR to investigate the genes expression levels, and the AtActin2 gene was used as an internal 

control. The gene-specific primers used were 5'-CCCTCGTCGTCTTCTCCC-3' (forward) and 

5'-CCATCCGCATCAGCTTTT-3' (reverse) for ZmSOC1; 5'-CCAACAGAGAGAAGATGACT-3' 

(forward) and 5'-ATGTCTCTTACAATTTCCCG-3' (reverse) for AtActin2; 5'-TCGAGTCAGCA 

CCAAACCG-3' (forward) and 5'-TTGAGCATGTTCCTATGCCTTC-3' (reverse) for AtSOC1; 

5'-ACTAGAGACGTTGGAAAGGG-3' (forward) and 5'-TCATTCCCAAGATGGAAGCCC-3' (reverse) 

for AtAGL24; 5'-AAGCCTAAAATGCGACACTACG-3' (forward) and 5'-GAGGATGAGCGTT 

AAAGACGG-3' (reverse) for AtLFY; and 5'-GGGATCAGCATAACCAAGGC-3' (forward) and 

5'-ACGGGTTCAAGAGTCAGTTCG-3' (reverse) for AtAP1. 

3.4. Bioinformatics Analysis 

Genes homologous to ZmSOC1 were identified using BLAST searches against GenBank [53],  

and potential sequence motifs were identified using SMART [54]. Protein sequence similarity ratio 

analysis was performed using DNAMAN software. Based on the e-value and identity, the orthologous 

of ZmSOC1 were selected for the construction of the phylogenetic tree using DNAMAN software. 

3.5. Subcellular Localization of ZmSOC1 

The open reading frame (ORF) of ZmSOC1 was amplified with the primer pair 5'-ATCTAGAAT 

GGTGCGGGGCAAGACGCA-3' (containing a XbaI site) and 5'-ACCATGGTGCCTGACCTGACC 

GCCACTG-3' (containing a NcoI site). The PCR product was cloned into the pCAMBIA1302 vector 

N-terminus to generate pZmSOC1:GFP. pZmSOC1:GFP was transiently transformed into Arabidopsis 

mesophyll cell protoplasts using 10 μg plasmid DNA. For protoplast transient expression assays, 

mesophyll protoplasts were isolated from 6 to 8 4-week-old Arabidopsis rosette leaves, and the leaves 

were cut into 0.5–1 mm thin strips, then dropped into enzymatic solution (1.5% Cellulase R10, 0.4% 
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macerozyme R10, 20 mM MES, 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 0.1% bovine serum 

albumin, pH 5.7) and digested for 3 h. Plasmid DNA was prepared using the EndoFree Plasmid Midi 

Kit (CWBIO, Beijing, China). Protoplast transformation steps were performed as described by Yoo 

and Luan [55,56]. We washed protoplasts with W5 solution (2 mM MES, 154 mM NaCl, 125 mM 

CaCl2, 5 mM KCl, pH 5.7) and centrifuged them for collection. After cold treatment, protoplasts were 

resuspended with MMg solution (15 mM MgCl2, 4 mM MES, 0.4 M mannitol, pH 5.6), then an equal 

volume of PEG solution was added (40% PEG3350, 0.2 M mannitol, 0.1 M CaCl2), as well as 10 μg of 

the plasmid. After incubating for 10–15 min, transformed protoplasts were washed with W5, incubated 

with WI solution (0.5 M mannitol, 20 mM KCl, 4 mM MES, pH 5.7) at room temperature for 12–16 h 

in the dark. Hoechst 33342 dye (CalBiochem, San Diego, CA, USA) was added for 30 min, and the 

nuclei of living cells were stained blue [56]. GFP and Hoechst 33342 fluorescence in the nucleus was 

detected using LSM700 (ZEISS, Oberkochen, Germany). 

3.6. Yeast Transcriptional Activation Assay 

The full-length coding sequence of ZmSOC1 was amplified with the primer pair 

5'-ACCATGGTGCGGGGCAAGACGCAG-3' (NdeI site) and 5'-AGGATCCGCCTGACCTGACCG 

CCACT-3' (BamHI site). The PCR product was cloned into the pAS2-1 vector. For interaction studies, 

the plasmid was transformed into yeast strain AH109. Yeast cells were made competent for 

transformation by incubation in lithium acetate solution. Then transformation was performed by 

incubating the cells with transforming DNA, carrier DNA and PEG3350. The Yeast Transformation Kit 

(SIGMA, St. Louis, MO, USA) used the lithium acetate method. The transformed strains were cultured 

on SD/-Ade/-Trp and SD/-Ade/-His/-Trp synthetic complete drop-out media (SC drop-out) with 

3-amino-1,2,4-triazole at 30 °C. 

3.7. Stress Treatments in Maize 

The maize inbred line Z31 was used in this study. Z31 seeds were washed with distilled water and 

set in a sprout machine at 28 °C for 4 days in the dark. Seeds with 2–3 cm germs were transferred to 

vermiculite to grow at 28 °C/22 °C in the 14/10 h light/dark cycle with nutrient solution irrigation.  

The nutrients in solution were (mmol·L−1): 0.75 K2SO4, 0.1 KCl, 0.25 KH2PO4, 0.65 MgSO4·7H2O 

and 0.2 EDTA-Fe; and (in µmol·L−1) 1.0 MnSO4·H2O, 1.0 ZnSO4·7H2O, 0.1 CuSO4·5H2O and  

0.005 (NH4)6Mo7O24·4H2O [57]. After 10 days, the maize contained two leaves and a core stop 

providing nutrient solution. Subsequently, maize seedlings were treated with NaCl (250 mM), 

PEG6000 (20%), ABA (100 μM), and SA (100 μM) at 4 °C, with H2O as a control, and sampled at 0, 

0.5, 1, 3, 6, 12 and 24 h. The samples were immediately frozen in liquid nitrogen, with three seedlings 

for each replicate. 

3.8. Material Collecting for Microarray 

Maize plants of inbred line B73 have been sequenced and have a mature GeneChip, so this was 

used to harvest these tissues. We harvested vegetative tissues at the big trumpet stage, including the 

roots, stems, leaves and the shoot apex, as well as reproductive tissues, including endosperms and 
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embryos at 10, 15, 20 and 25 days after pollination; filaments and ear were harvested before 

pollination [58]. The above material was divided in three to get total RNA, and we used the Affymetrix 

GeneChip of maize to analysis in triplicate. 

3.9. Statistics of Transgenic Arabidopsis in Phenotypes and Expression 

The T3 transgenic and wild-type Arabidopsis were directly planted in nutritive soil, and total RNA 

was extracted from leaves after four weeks. qRT-PCR was used to analyze ZmSOC1 expression levels 

in transgenic Arabidopsis. The number of rosette leaves was counted when these Arabidopsis began 

bolting, and 30 transgenic plants and wild-type Arabidopsis were counted, respectively. 

4. Conclusions 

ZmSOC1 was isolated from maize and characterized. It showed high identity to other SOC1 

homologs and contained the well-conserved MADS domain and SOC1 motif. The protein was 

localized to the Arabidopsis nucleus and showed no transcriptional activation activity in yeast cells. 

Overexpression of ZmSOC1 promoted flowering through increasing the expression of AtLFY and 

AtAP1 in transgenic Arabidopsis. ZmSOC1 has a high expression level in floral organs, suggesting that 

ZmSOC1 should be a flowering promoter in maize. These findings increase our understanding of the 

mechanism of flowering control in maize. 
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