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Abstract: As the first crucial barrier in the midgut of insects, the peritrophic membrane
(PM) plays an important role in preventing external invasion. PM proteins, as the major
components of the PM, determine the structure and function of this membrane. A new
PM protein, named LstiCBP, from the PM of Loxostege sticticalis larvae was identified
using cDNA library screening. The full cDNA of LstiCBP is 2606 bp in length and contains
a 2403 bp ORF that encodes an 808-amino acid preprotein with a 15-amino acid as
signal peptide. The deduced protein sequence of the cDNA contains 8 cysteine-rich
chitin-binding domains (CBDs). Recombinant LstiCBP was successfully expressed in BL21
cells using recombinant plasmid DNA and showed high chitin-binding activity. LstiCBP
expression was detected in the midgut at both the transcriptional and translational levels;
however, the biochemical and physiological functions of LstiCBP in L. sticticalis require

further investigation.
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1. Introduction

The peritrophic membrane, a structure in the gut of insects that is unique to invertebrates, is believed
to be their initial protection from invasion by viruses, bacteria, protozoa, and helminthes, and it prevents
damage to midgut cells by abrasive food particles [1-3]. In the course of the co-evolution of
microorganisms and insects, some microorganisms formed several mechanisms to destroy the PM.
Meanwhile, many factors, for example, Pseudaletia unipuncta GV (PuGV) enhancin, chitinase,
calcoflour and lectin, can disrupt the formation of the PM and enhance pathogen infection in insects [4].
Therefore, as a natural barrier to pathogenic microorganisms, the PM has become a potential target for
insect control [5].

The insect PM is mainly composed of proteins and chitin, with chitin-binding activities as their typical
characteristics. The identification and characterization of PM proteins from a wide variety of insects will
help to develop pest management targets as well as provide a better understanding of the function and
development of the PM. Currently, significant progress toward understanding the molecular structure
and formation mechanism for the PM has been made, and more than 30 PM proteins or putative PM
proteins have been identified from several insects [6—27]. Four classes of PM proteins have been
suggested based on the solubility of the proteins under different extraction conditions [2]. Class 1 PM
proteins are those that can be removed by washing with physiological buffers, Class 2 represents the
PM proteins that are extractable by mild detergents, Class 3 PM proteins include those that are
only extractable by strong denaturants, and Class 4 PM proteins are not extractable, even by strong
denaturants. Class 3 proteins are the most abundant proteins that are extracted from PMs.
These proteins usually have chitin-binding domains, or peritrophin domains. Structural characterization
of PM proteins has mainly focused on the following classes: peritrophins, invertebrate intestinal mucins,
and proteins with chitin deacetylase domains [2,28]. The peritrophins contain 60—75 amino acid residues
and are characterized by a conserved register of cysteine residues and a number of aromatic amino acid
residues [2]. The conserved cysteine residues are suggested to form intradomain disulfide bonds that
contribute to protein stability in the protease-rich gut environment [2,8—10]. Insect Intestinal Mucin
(IIM) is a highly glycosylated, mucin-like protein that binds very strongly to the type 1PMs identified
in Trichoplusiani larvae [10,29], and it contains peritrophin-A domains. Chitin deacetylase (CDA;
EC 3.5.1.41) is a hydrolytic enzyme that catalyzes the hydrolysis of the acetamido group in the
N-acetylglucosamine units of chitin and chitosan, thus generating glucosamine units and acetic acid [30].
The CDAs were recently found as a new component of the insect PM [18,26].

The beet webworm, Loxostege sticticalis L. (Lepidoptera: Pyralidae), is a polyphagous pest, which
can feed on 35 families and 200 species plants and crops, such as corn, bean, potato, sugar beet, sunflower
and so on. It has caused severe economic damage almost every year and became one of the worst pests
in Asia, Europe, and North America and [31]. In this study, we identified a new PM protein from
Loxostege sticticalis larvae by cDNA library screening, which was named as LstiCBP. The new
PM protein exhibits a strong chitin-binding activity, which allows the protein to perform its role in
PM formation.
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2. Results and Discussion
2.1. Cloning of the CBP cDNA of Loxostege sticticalis

Using rapid amplification of cDNA ends (RACE)-PCR, a full-length, 2606 bp cDNA encoding CBP
was cloned from L. sticticalis (Figure 1) (GenBankFJ408730). The open reading frame (ORF) of the
LstiCBP ¢cDNA consists of 2403 nucleotides and encodes a predicted precursor protein containing 801
amino acids. The ORF is terminated by a TAA stop codon that is followed by an AT-rich untranslated
region and a putative polyadenylation signal (TATATAA) located at 69 bp upstream of the polyA tail
(Figure 1). The deduced protein sequence revealed a 15-amino acid signal peptide, as predicted by the
SignalP software. The calculated molecular weight and the isoelectricpoint of the mature LstiCBP were
84.7 kDa and 4.14, respectively. The hydrophilic nature of LstiCBP, which is similar to that of other
insect CBPs [19,32], was calculated and plotted for each residue in the sequence, which revealed that
eight residue regions were hydrophobic. The LstiCBP protein was analyzed to determine if it is
glycosylated similar to that of IIM, and NetNGlyc 1.0 analysis showed that LstiCBP only has three
N-glycosylations. Trypsin and chymotrypsin cleavage sites were also identified using online sequence
analysis [33] which identified 55 trypsin cleavage sites and 128 chymotrypsin cleavage sites in the
LstiCBP sequence.

Figure 1. Nucleotide sequence of the cDNA for L. sticalitis CBP and its deduced amino acid
sequence. Signal peptide domains (grey background), cysteine (red background)-rich
regions (CBD1-8, underlined), the initiation and translation stop codon (in box) are
indicated. The potential polyadenylation signal sequence is double lined. Eight chitin
binding domains are underlined from N- to C-terminus of the protein.
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Proteins are the primary components of the PM, and the binding of these proteins to chitin fibrils has
been suggested to be important in the formation of the PM [2,8—10]. In this study, we identified a new
PM chitin-binding protein, CBP, from L. sticticalis and found that cDNA clones for this protein were
abundant in the non-normalized midgut cDNA expression library, which was in agreement with the
previous observation that the majority of PM proteins are chitin-binding proteins. Different from
invertebrate intestinal mucin (IIM), which is thought to be the most important protein of the known
PM proteins, LstiCBP is not glycosylated. In Lepidopteran larvae, trypsins and chymotrypsins are the
predominant digestive proteinases in the midgut. Surprisingly, the LstiCBP sequence abounds with
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potential trypsin and chymotrypsin cleavage sites, but the protein is highly resistant to trypsin
degradation. Analysis of the trypsin and chymotrypsin cleavage sites in the sequence showed that most
sites were in the chitin-binding domains. This observation is consistent with early reports showing that
most trypsin and chymotrypsin cleavage sites are protected against midgut digestive proteinases by being
buried in the chitin-binding domains, which is critically important because PM proteins must function
in an environment that is rich in proteinases [32].

2.2. Characterization of LstiCBP Chitin-Binding Domains

The amino acid sequence alignment of LstiCBP with the known insect CBPs, TniCBP1, TniCBP2,
SexiCBP, and SlitCBP is shown in Figure 2. Similar to most identified PM proteins, which contain
multiple chitin-binding domains and are characterized by a conserved register of cysteine residues as
well as by a number of aromatic amino acid residues [2], 8 cysteine-rich regions have been identified in
LstiCBP, each of which possess a register of 6 spatially conserved cysteine residues that form a putative
CBD (Figure 3). The CBDs of LstiCBP have a conserved sequence motifs, CX14-15CXsCXoCX12CX7C,
which is similar to the predicted chitin binding sequences of CBPs of 7. ni and other PM
proteins [2,8—10,20,21,32,34] and belong to the peritrophin-A domain family [2].

Figure 2. Alignment of the amino acid similarity of LstiCBP from known insects.
Trichoplusia ni CBP1: AAR06265.1; Trichoplusia ni CBP2: AAR06266.1; Spodoptera exigua
CBP: ABW98673.1; Spodoptera litura CBP: ADV03161.1.
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Early research has shown that most PM proteins have a large number of chitin-binding domains,
which allows their partially degraded protein fragments to retain multiple chitin-binding domains and
thus, allows their function to cross-link chitin fibrils during PM formation in the extremely six-cysteine
motifs that belong to the peritrophin-A domain family (Figure 3). Like CBP1 and proteinase-rich
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environment [32]. In this study, LstiCBP was found to have 8 tandem, conserved, CBP2 of 7. ni. [32],
the presence of 8 chitin-binding domains in the proteins could allow for the partially degraded protein
fragments to retain multiple chitin-binding domains and thus retain their functions in PM formation.
On the other hand, the observations that (1) the trypsin and chymotrypsin cleavage sites in CBP are
mostly located within the chitin-binding domains and (2) the proteins are composed of numerous
chitin-binding domains, indicated a mechanism for these non-mucin PM proteins to adapt and function in
the proteinase-rich gut environment.

Figure 3. Alignment of chitin-binding domains (CBDs) from Loxostege sticticalis LstiCBP
protein. The conserved amino acids are shaded. The consensus sequence is shown at the bottom.

LstiCBP-CBD1 SVEQLL X 58
LstiCBP-CBD2 eDSVIV X 58
LstiCBP-CBD3 eDSVLV { 58
LstiCBP-CBD4 eDSVIV X 53
LstiCBP-CBD5 eDSVIV X 58
LstiCBP-CBD6 SDNVLV X 58
LstiCBP-CBD7 SDNVLV X 58
LstiCBP-CBD8 SDGVEV X 58
Consensus P S k W

2.3. Expression of Recombinant LstiCBP in E. Coliand Chitin-Binding Analysis

The LstiCBP ORF was amplified using primers CBP-MFP and CBP-MRP (Table 1) and inserted into
the pET30 vector. The recombinant plasmid DNA was transformed into the E. coli BL21 strain,
and its expression was induced. The cells were then frozen, thawed and disrupted by sonication. The cell
lysates were electrophoresed on SDS-PAGE gels, and the lysates from the induced cells showed strong
expression of the expected band (approximately 105 kD) (Figure 4), which implied that the recombinant
LstiCBP was successfully expressed. To confirm that the expressed product was the expected
recombinant protein, Western blot was performed using the anti-6 x His antibody. The induction of the
transformed recombinant plasmid also resulted in a 105-kD band (Figure 4).

Most chitin-binding proteins contain one or more peritrophin domains, which are thought to be an
important indication that the protein can bind to chitin. In this study, LstiCBP was successfully expressed
in E. coli, and the recombinant protein exhibited obviously chitin-binding activity. Chitin-bound
LstiCBP could only be released from the chitin by the competitive chitin-binding reagent Calcofluor
(Sigma, St. Louis, MO, USA) or by the denaturing reagent urea (6 M). Treatments of the LstiCBP/chitin
complex with PBS, 0.5 M NaCl, 2% SDS, 20 mM acetic acid or 0.1 M sodium carbonate buffer
(pH 10.5) did not result in detectable dissociation of LstiCBP from chitin (Figure 5). In vitro
chitin-binding analysis showed that the recombinant LstiCBP bound strongly to chitin, whereas only
a strong denaturing reagent could release the recombinant proteins from chitin (Figure 5). Therefore,
we conclude that LstiCBP is a Class 3 PM protein. The negative control didn’t show chitin-binding
activity (result was not show).



Int. J. Mol. Sci. 2014, 15 19154

Figure 4. SDS-PAGE and Western blot analysis of expressed recombine LstiCBP. Mw.
Molecular weight marker; 1. 1.0 mmol/L IPTG induced E. coli pET/LstiCBP; 2. 2.0 mmol/L
IPTG induced E. coli pET/LstiCBP; 3. IPTG non-induced E.coli pET/LstiCBP; 4. Western blot.
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Figure 5. Analysis of chitin-binding activity of recombinant LstiCBP. LstiCBP treated with
1% Calcoflour, 2% Calcoflour, PBS, 6 M Urea, 0.5 M NaCl, 20 mM acetic acid, 2% SDS,
Sodium carbonate buffer.
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2.4. Expression Profiles and Localization of LstiCBP

First, the expression of LstiCBP was studied using quantitative PCR. The midgut, head, hemolymph,
ecdysis, fecal pellets, fat body and integument were dissected from larvae on day three of the fifth instar
to use in this study. The desired product was largely amplified from cDNA templates that had been
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reverse-transcribed from total RNA from the midgut, with only a few products derived from other
tissues, suggesting that LstiCBP is expressed specifically in the midgut (Figure 6). Then, LstiCBP was
detected by Western blot using an antibody specific to LstiCBP. The result was consistent with the
results from reverse transcription-PCR: the expected band was most strongly expressed in the midgut
and PM, and the weaker band was detected in fecal pellets. No positive band was found in the ecdysis,
fat body, hemolymph or integument (Figure 7), which suggests that the LstiCBP protein is synthesized
in the midgut and transferred to the PM, where it is involved in maintaining the PM structure. LstiCBP
is therefore a PM protein.

Figure 6. qPCR analysis of LstiCBP expressed in different tissues of L. sticticalis larvae.
cDNAs were amplified with specific primers from midgut, hemolymph, ecdysis, fecal pellets,
fat body and integument.
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Figure 7. Identification of LstiCBP from L. sticticalis larval midgut proteins by Western
blot analysis with antibodies specific to LstiCBP. Proteins were from the midgut, PM,
hemolymph, ecdysis, fecal pellets, fat body and integument.
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3. Experimental Section
3.1. Insect Larvae

A laboratory colony of L. sticticalis was established from larvae collected from the field in
Zhangjiakou City (113°49'E, 42°28'N) of Inner Mongolia, China in 2009. The larvae were maintained
at 22 £ 1 °C and 70%—-80% RH and under a L:D 16:8 photoperiod until pupation and adult emergence.
Adults were provided a 5% glucose solution (w/v) as supplemental food daily, and the larvae were
reared in 500 mL beakers and fed daily with fresh leaves of Chenopodium album L. until they stopped
feeding. The body parts to be used for analysis were isolated from 5th instar larvae and were stored at
—70 °C until use.

3.2. Cloning and Sequencing of LstiCBP

A cDNA expression library of the L. sticticalis peritrophic midgut was screened by subtractive
immunoscreening with antibodies against a collection of PM proteins according to the descriptions by
Wang et al. [32] and Guo et al. [18]. Positive cDNA clones were sequenced using the dideoxynucleotide
chain termination method (Takara Co., Dalian, China), and the sequences from 282 clones were
submitted to BLAST analysis in GenBank. The sequence of clone 4952 was similar to a portion of
known CBP genes but lacked the 5' end. Then, the complete cDNA sequence of the clones of interest
were obtained by 5' RACE using the 5'-Full RACE Kit Core Set Ver.2.0 (TAKARA) according to the
manufacturer’s protocol. The 5' gene-specific primers were designed from the partial coding sequences
of LstiCBP. The sequences of the primers are shown in Table 1.

Table 1. Oligonucleotide primers used in cDNA fragment cloning and RACE reactions for LstiCBP.

Primer Name Primer Sequence (5'-3") Position
CBP-R1 CATCGGGACAGGCTTTCCGTGGTT 687-710
CBP-R2 TCCTCGGTACTGGTATTCCGTGATTACAAA 991-1020
CBP-R3 CGGACCACTCACATCGGTTTGCTTC 198-222
CBP-R4 CATCGGGACAGGCTTTCCGTGGTT 687-710
5'RACE Outer Primer: CATGGCTACATGCTGACAGCCTA -

5'RACE Inner Primer: CGCGGATCCACAGCCTACTGATGATCAGTCGATG -

3.3. Expression Pattern of LstiCBP

The fifth instar larvae midguts, hemolymphs, ecdysis, fecal pellets, fat bodies and integuments were
collected, immediately frozen in liquid nitrogen, and then stored at —80 °C until use. Total RNA was
isolated from different tissues using Trizol reagent (Invitrogen, Carlsbad, CA, USA) in triplicate and
then treated with gDNA Eraser to remove residual genomic DNA. The quality and concentration of the
RNA was estimated by determining the A260/A280 ratios, and the samples were diluted to the same
concentration (0.1 pg/uL) using DEPC-treated water. For RT-PCR, ¢cDNA was synthesized using a
first-strand cDNA synthesis kit (TaKaRa Co., Dalian, China). Tagman primers and probes were designed
using Primer Express 3.0 (Applied Biosytems, Grand Island, NY, USA) and are listed in Table 2. The
Tagman probes were labeled at their 5' ends with the FAM reporter dye and at their 3' ends with the
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quencher dye TAMRA. 18S rRNA was used as an endogenous control to normalize the results of variable
target genes and to correct for sample-to-sample variation.

Table 2. Oligonucleotide primers used in qPCR.

Gene Name Primer Name Sequence (5'-3")
Forward GCCCATGAAATATGTACCAAGTTCTAT
CBP Reverse CAGTCGCACTCGTCTTTGGA
Probe FAM-ACGGCAAGCCTGTCGCCCTCA-TAMRA
Forward CAGGCTAGAGTCTCGTTCGTTACC
18S rRNA Reverse CAACACGGGAAATCTCACCAG
Probe FAM-CAAATCGCTCCACCAACTAAGAACGGC-TAMRA

Real-time qPCR was conducted using an ABI Prism 7500 Fast Detection System. Each amplification
reaction was performed using a 20 pL reaction mixture under the following conditions: denaturation
at 95 °C for 10 s followed by 40 cycles of 95 °C for 5 s, 60 °C for 34 s. Relative quantification was
performed using the comparative 2 24 method [35]. All data were normalized to endogenous18S rRNA
levels from the same tissue samples, and the relative fold change in different tissues was calculated using
the transcript level of the ecdysis as a calibrator. Thus, the relative fold change in different tissues was
assessed by comparing the expression level of CBP in the tissues to that in the ecdysis.

3.4. Expression of Recombinant LstiCBP in E. coli and Chitin-Binding Analysis

To construct pET30-LstiCBP, the ORF of LstiCBP was amplified by PCR using primers
CBP-MFP(5'-CGIGGATCCAAATCTGGGGATAGTGGTATAAAC-3") and CBP-MRP(5'-GIGAATT(]
AAACCCATCGCATAAAAGTG-3") (the boxed sequences indicate the BamH I and EcoR 1 restriction sites,
respectively). The PCR product was inserted into the BamH I and EcoR 1 sites of pET30, and transformed
into the E. coli BL21 strain. After 3 h preincubation, the recombinant LstiCBP was induced by adding
isopropyl-beta-D-thiogalactopyranoside (IPTG) at a final concentration of 2.0 mM for 4 h. The cells (1 L)
were harvested by centrifugation, and the pellets were homogenized in phosphate-buffered saline
(PBS, 0.04 M, pH 7.0). After centrifugation at 12,000x g for 20 min at 4 °C, the supernatants were dried
and stored at —70 °C until use. Before SDS-PAGE, the cells were thawed and disrupted in PBS by
sonication (5 s, 5 passes, 4 °C). The cell lysates from the cells before or after induction with IPTG were
mixed with SDS-PAGE sample buffer, boiled for 10 min, centrifugation at 12,000x g for 10 min and
supernatants were loaded onto an 8% SDS-PAGE gel. Western blot was performed following the
description of Wei et al. [36]. After SDS-PAGE, the proteins were blotted onto a PVDF membrane
(Hybond-P, Amersham, Zhengzhou, China), and the membrane was incubated with antibodies to 6 x His
for 2 h at 37 °C. After washing in PBST (PBS-Tween, Sigma-aldrich, Shanghai, China), the membrane
was incubated with secondary antibodies (HRP-conjugated goat anti-rabbit IgG, dilution 1/2000) for
2 hat 37 °C and then washed thoroughly with PBST. Antibody binding was detected using a DAB stock
stain kit (Sino-American Biotechnology Co., Luoyang, China).

The chitin-binding activity of LstiCBP was analyzed using the chitin-binding assay described by
Wang et al. [32]. First, regenerated chitin for the chitin-binding assay was prepared from chitosan
(Sigma Corporation, St. Louis, MO, USA) by the method of Molano et al. [37]. One gram of chitosan
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is ground in a mortar while adding slowly and in small portions 20 mL of 10% acetic acid, and is allowed
to stand overnight at room temperature. The next day, 90 mL of methanol are added slowly with mixing
and the cloudy solution is filtered. The filtrate is placed in a beaker on a magnetic stirrer and 1.5 mL of
acetic anhydride were added. After about 1 min, the mixture gels. The gel is allowed to stand for about
30 min and then is cut up into small pieces with a spatula. After covering with methanol the suspension
is homogenized for 1 min at maximum speed. The finely dispersed chitin is filtered with a medium
porosity sintered-glass funnel and is washed with water to neutrality. The chitin is resuspended in 0.02%
sodium azide to a concentration of about 15 mg/mL. Then, recombinant LstiCBP was isolated by incubating
I mL LstiCBP-containing cell culture medium with 40 mg (wet weight) of regenerated chitin to allow
the LstiCBP protein to bind to chitin at 41 °C in suspension for 1 h in the presence of a protease inhibitor
cocktail (0.5 mg/mL leupeptin, 1 mg/mL pepstatin, | mM EDTA and 1 mM phenylmethylsulfonyl fluoride).
The regenerated chitin bound to LstiCBP was washed thoroughly with PBS followed by centrifugation.
Aliquots of the resulting chitin-LstiCBP complexes were incubated with different solubilising conditions,
PBS, 2% SDS, 6 M Urea, 1% Calcofluor, 2% Calcofluor, 0.5 M NaCl, 0.1 M NaHCOs3-Na2COs buffer
(pH 10.5) or 20 mM acetic acid. After 15 min incubation at room temperature, the supernatants
containing the LstiCBP protein released from the chitin were collected by centrifugation and analyzed
by SDS-PAGE analysis. IPTG induced E. coli BL21 strain with pET30 was taken as the negative control
protein that treated as above.

3.5. Preparation of Antibodies that React to LstiCBP

An antibody specific for LstiCBP was prepared from an antiserum made against a collection of all
L. sticticalis midgut PM proteins. The recombinant LstiCBP protein was immobilized onto a piece of
supported nitrocellulose membrane (Optitran BA-S85, Schleicher & Schuell, Keene, NH, USA) by
incubating the membrane with the recombinant protein at room temperature for 1 h, followed by
extensive washing (5 times) with phosphate-buffered saline (PBS) and incubation in 3% bovine serum
albumin (BSA) for 3 h. The nitrocellulose membrane was then incubated with a 100-fold dilution of the
S. exigua PM protein polyclonal antiserum in PBS with 3% BSA at room temperature for 3 h or at 4 °C
overnight to allow the antibodies in the antiserum to bind to the blotted membrane. Then, the membrane
was thoroughly washed five times with PBS, and the antibodies specifically bound to Lsti99 were eluted
from the membrane by incubation in 5 mL of 0.1 M glycine buffer (pH 2.5) at room temperature for 10 min,
followed by addition of 0.5 mL of 1 M Tris-HCI buffer (pH 8.0) to neutralize the pH of the antibody
preparation [38].

3.6. Western Blot Analysis

The proteins used in Western blot were extracted from tissues by homogenization in PBS and
centrifugation at 12,000x g for 20 min at 4 °C. The supernatants were then dried and stored at =70 °C.
The protein extracts were mixed with SDS-PAGE sample buffer and then boiled for 10 min and
immediately loaded onto a 12% SDS-PAGE gel. After SDS-PAGE, the proteins were blotted onto
a PVDF membrane (Hybond-P, Amersham, Zhengzhou, China), and the membrane was incubated with
LstiCBP antibodies for 2 h at 37 °C. After washing in PBST (PBS-Tween, Sigma-aldrich, Shanghai,
China), the membrane was incubated with secondary antibodies (HRP-conjugated goat anti-rabbit IgG,
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dilution 1/2000) for 2 h at 37 °C and thoroughly washed in PBST. Antibody binding was detected using
a DAB stock stain kit (Sino-American Biotechnology Co., Luoyang, China) [36].

4. Conclusions

A novel midgut peritrophic membrane (PM) protein, LstiCBP, from Loxostege sticticalis was
identified. The results from this study show that LstiCBP contains 8 peritrophin-A domains and
has chitin-binding activity, which is similar to the currently known peritrophin-type PM proteins.
Furthermore, LstiCBP is strongly associated with the PM and is mainly expressed in the midgut. Until
recently, the molecular structure, function and mechanism of the PM have been unclear. Our description
of LstiCBP expands the knowledge of the insect PM. However, as a new protein that was first found in
L. sticticalis, the biochemical and physiological functions of this protein must be studied further.
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