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Abstract: The preventive effect of polysaccharide of Larimichthys crocea swimming 

bladder (PLCSB) and the increase of this effect by use of resistant starch (RS3) as the carrier 

for PLCSB on azoxymethane (AOM) and dextran sulfate sodium (DSS)-inducing colon 

carcinogenesis in C57BL/6 mice has been studied. RS3 microspheres carrying PLCSB  

(RS3 + PLCSB) were produced and evaluated as a potentially improved colon 

carcinogenesis therapy for this study. The body weight, colon length, and colon weight of 

mice were determined, and colonic tissues were histologically observed. The serum levels of 

proinflammatory cytokines and the inflammation and apoptosis-related genes in colonic 

tissue were also tested. The PLCSB or RS3 + PLCSB significantly suppressed AOM and 

DSS-induced body weight loss, colon length shortening and decreased the colon weight to 

length ratio. PLCSB or RS3 + PLCSB reduced the levels of the serum pro-inflammatory 

cytokines IL-6, IL-12, TNF-α, and IFN-γ to a greater extent compared with the control mice, 

and the levels of RS3 + PLCSB were more close to the normal mice than PLCSB treated 
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mice. Histopathological examination of sections of colon tissues showed that the  

RS3 + PLCSB group recovered well from colon carcinogenesis; however, the tissue sections 

of the stachyose + starch could reduce the necrosis degree. PLCSB significantly induced 

apoptosis in tissues of mice (p < 0.05) by up-regulating Bax, caspase-3, and caspase-9, and 

down-regulating Bcl-2. The expression of genes associated with inflammation-related 

NF-κB, iNOS, and COX-2 genes, was significantly down-regulated, and IκB-α was 

up-regulated (p < 0.05). These results suggest that PLCSB is a potent preventive against  

in vivo colon carcinogenesis and that PLCSB with an RS3 carrier could increase the 

preventative effect in mice. 
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1. Introduction 

As one of the main commercial fishes in the coastal waters of China, Larimichthys crocea swimming 

bladder contains rich protein, microelements and vitamins. Traditional medicine considers that it has 

good curative effect against diseases including amnesia, insomnia, dizziness, anepithymia and 

postpartum weakness [1]. Modern scientific research also suggests that Larimichthys crocea swimming 

bladder serves to remove free radicals and ward against cancers [2]. Swimming bladders are important 

balancing organs and the amount of polysaccharide in it constitutes as much as 10% of its weight. 

Polysaccharide is an important type of functional material. It has been proven that polysaccharide in 

swimming bladders can accelerate the healing of cuts and prevent infection as well as thrombus [3].  

In vitro and in vivo experiments have proved that polysaccharide in lentinus edodes, lucid ganoderma 

and spirulina seaweed serves to prevent and cure colon cancer [4,5]. 

Resistant starch (RS) is the sum of starch and starch degradation products that are not absorbed in the 

small intestine since it is resistant to enzymatic digestion [6]. RS3 is a retrograded starch, formed on cooling 

in processed foods, including cooled cooked potato, bread and cornflakes [7]. RS appears to have a 

number of physiological effects, including weight control, prevention of diabetes, lipid reduction and 

promotion of inorganic salt absorption [8]. Functional polysaccharides would take effect in the infected 

part of colon cancer after being absorbed by the human body and some polysaccharides would be lost in 

the digestion process. Resistant starch would not be digested and absorbed in the stomach;  

it would be decomposed after entering the intestinal tract and utilized to wrap up functional material to 

decrease the loss of functional components in the digestion process, thus allowing more functional 

material to take effect after entering the intestinal tract. Therefore, the healthcare and cure effect of 

functional materials would be improved [9]. 

In the present study, the anticancer effect of polysaccharide of Larimichthys crocea swimming 

bladder (PLCSB) was tested. RS3 was used as a carrier for PLCSB and its preventative effect on colitis 

was further examined. The levels of inflammatory cytokines were used to determine the preventative 

effects on azoxymethane (AOM) and dextran sulfate sodium (DSS)-induced colon carcinogenesis in mice. 
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Colon tissue histology was also used to determine the preventative effects in vivo. The mRNA and protein 

expression levels were determined for clarifying the preventative effects of PLCSB and RS3 + PLCSB. 

2. Results and Discussion  

2.1. Body Weight and Colon Observations 

Body weight is an important marker for colon cancer in mice; the body weight of AOM and 

DSS-induced colon cancer mice were lower than normal mice [10]. The normal mice had  

a normal diet and their body weight increased during the nine weeks of experiments. The body weights 

of the control mice with AOM and DSS-induced colon cancer were significantly decreased after six 

weeks. As shown in Figure 1, following the initiation of AOM and DSS-induced colon cancer, the body 

weights of the mice in the PLCSB and RS3 + PLCSB groups were significantly lower compared with 

those of the normal mice after four weeks, but higher than AOM and DSS-induced colon cancer control 

mice. RS3 + PLCSB treated mice could alleviate the weight loss compare to the PLCSB treated mice. 

The total colonic length was significantly shorter in the AOM and DSS-treated mice (control group 

and sample treated group) compared with the normal mice as shown in Table 1 (p < 0.05). The normal 

mice had the longest colon length at 80.33 ± 3.86 mm and the colon length of control mice was the 

shortest (72.14 ± 5.21 mm). The total colonic length was longer in the RS3 + PLCSB-treated mice 

(77.31 ± 2.58 mm) than in the PLCSB-treated mice (75.47 ± 3.21 mm). AOM and DSS-induced colon 

carcinogenesis mice model is a staple research model for colon cancer. The increase in the ratio of colon 

weight to colon length was a consequence of apparent mucosal thickening and the formation of 

neoplasia [11]. The significant shortening of the colonic length in AOM and DSS-treated mice indicates 

that AOM and DSS contributed to the process of cancer changes in the colon. In particular, the colon 

weight and weight/length ratio were reduced slightly in the sample treatment groups compared to the 

control mice. 

Figure 1. Changes in the body weight of AOM and DSS-induced colon cancer mice during 

the experiment. 
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Table 1. Effects of PLCSB and RS3 + PLCSB treatment on colon lengths and colon weights 

of AOM and DSS-induced colon cancer mice. 

Group Colon length (mm) Colon weight (g) Colon weight/length (mg/cm)

Normal 80.33 ± 3.86 a 0.23 ± 0.03 d 28.63 ± 7.77 d 
Control 72.14 ± 5.21 d 0.47 ± 0.08 a 65.15 ± 15.36 a 
PLCSB 75.47 ± 3.21 c 0.35 ± 0.02 b 46.38 ± 6.23 b 

RS3 + PLCSB 77.31 ± 2.58 b 0.30 ± 0.03 c 38.80 ± 11.63 c 

PLCSB, polysaccharide of Larimichthys crocea swimming bladder; RS3, resistant starch 3; a–d Mean values 

with different letters in the same column are significantly different (p < 0.05) according to Duncan’s 

multiple-range test. 

2.2. Effect of PLCSB and RS3 + PLCSB on Serum Levels of IL-6, IL-12, TNF-α and IFN-γ 

The IL-6 level of normal mice was 46.2 ± 8.9 pg/mL; however, in control mice the IL-6 level was 

significantly increased to 243.1 ± 18.6 pg/mL. The levels of IL-6 in mice fed with PLCSB and  

RS3 + PLCSB were 167.8 ± 17.5 and 112.6 ± 12.3 pg/mL, respectively (Figure 2). Control mice showed 

the highest IL-12 level in 741.3 ± 71.3 pg/mL, PLCSB and RS3 + PLCSB reduced the levels in  

608.7 ± 55.2 and 474.3 ± 61.4 pg/mL, and the level of normal mice was lowest (324.7 ± 45.8 pg/mL). 

The TNF-α levels in the normal, control, PLCSB and RS3 + PLCSB treated mice were 43.7 ± 5.3,  

81.2 ± 7.1, 67.2 ± 6.5 and 55.4 ± 5.7 pg/mL, respectively. The serum IFN-γ level in the mice in the  

RS3 + PLCSB treated group (51.4 ± 2.8 pg/mL) was significantly lower compared with those in the 

control (71.3 ± 5.5 pg/mL) and PLCSB treated group (58.7 ± 4.3 pg/mL), the level of normal mice was 

34.7 ± 3.7 pg/mL. Inflammation is a critical component of tumor progression; cancers arise  

from infection and inflammation [12]. Cytokines are recognized to perform a major role in the 

immunopathogenesis of inflammatory bowel disease and the promotion of neoplastic transformation [11].  

It is well known that the increased pro-inflammatory cytokines (IL-6, IL-12, TNF-α, and IFN-γ) amplify 

the inflammatory cascade and result in intestinal tissue damage in patients, as well as in animal  

models [13,14]. Cytokine receptors and the inflammatory cytokines IL-6, IL-12, IFN-γ and TNF-α play 

pathogenic roles in colon disease, lower levels of these cytokines were indicative of improved anticancer 

effects [15,16]. IL-6 is regarded as an important tumor-promoting factor in various types of human 

cancer; an increased expression of IL-6 is found in patients with colon cancer, where IL-6 levels are 

elevated in the serum of patients and in tumor tissue [17]. IL-6 expression is regulated through the 

activation of several transcription factors such as NF-κB, C/EBPβ or AP-1. The regulation of IL-6 

expression through these transcription factors enables a rather unspecific up-regulation of this cytokine 

during nearly every type of inflammation-related cancer [18]. IL-12 through IFN-ã-dependent induction 

of the antiangiogenic factors interferon-inducible protein (IP) 10 and monokine induced by gamma 

interferon (MIG) contributes to tumor eradication [19]. Observations by Popivanova et al. [20] have 

revealed the crucial involvement of TNF-α in the initiation of chronic inflammation-mediated colon 

carcinogenesis; blocking of TNF-α reversed carcinoma progression, even after colon carcinoma was 

established. Drugs targeting TNF-α may be useful for the treatment of cancers, particularly those arising 

from chronic inflammation. In this study, we observed that the colonic levels of IL-6, IL-12, TNF-α, and 

IFN-γ in the AOM and DSS-induced colon cancer mice were markedly decreased by PLCSB and  
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RS3 + PLCSB treatment. Based on this study, PLCSB showed a strong colon carcinogenesis preventive 

effect, and the PLCSB carried by RS3 could increase the anticancer effect. 

Figure 2. Serum IL-6, IL-12, TNF-α, and IFN-γ levels of mice with AOM and DSS-induced 

colon cancer treated with PLCSB and RS3 + PLCSB. PLCSB, polysaccharide of 

Larimichthys crocea swimming bladder; RS3, resistant starch 3; a–d Mean values with 

different letters over the bars are significantly different (p < 0.05) according to Duncan's 

multiple range test. 

 

2.3. Effects of PLCSB and RS3 + PLCSB on Histological Changes 

The H&E staining assay was used to evaluate the therapeutic effects of PLCSB and RS3 + PLCSB in 

AOM and DSS-induced colon cancer in mice (Figure 3). Normal mice did not show evidence of colonic 

inflammation, injury, or neoplasms. Nodular or polypoid colonic tumors were observed macroscopically 

in the colons of control group mice treated with AOM and DSS. The colonic tissues of mice  

receiving AOM and DSS evidenced mild to severe inflammation, characterized by crypt damage and 

inflammatory cell infiltration. The aforementioned mucosal thickening in the mice receiving AOM and 

DSS, as mentioned above, appeared to be attributable to the burden of colonic neoplasms. These 

phenomena did not distinctly differ between the PLCSB and RS3 + PLCSB fed groups. However, tissue 

sections from RS3 + PLCSB-treated AOM and DSS-induced colon cancer mice had more intact surface 

epithelium, normal colon cells and less inflammatory and neoplastic reactions than those in the PLCSB 

treated mice. Histopathological analysis is an important clinical standard used to diagnose colon  

cancer [21]. In addition, the histopathological examination of mouse colon sections is reported as an 

effective method to check the hepatoprotective activity against AOM and DSS-induced colon cancer in 

the mouse model [10]. From the sections examined in the present study, PLCSB and RS3 + PLCSB were 
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observed to exert a preventive effect against AOM and DSS-induced colon cancer, and RS3 + PLCSB 

showed better anticancer effect than PLCSB treatment alone. 

Figure 3. Microscopic observations of the effects of PLCSB and RS3 + PLCSB on 

histological damage in the colon tissues of mice with AOM and DSS-induced colon cancer 

(magnification, 40×). PLCSB, polysaccharide of Larimichthys crocea swimming bladder; 

RS3, resistant starch 3. 

 

2.4. Effects of PLCSB and RS3 + PLCSB on Apoptosis-Related Gene Expression of Bax, Bcl-2  

and Caspases 

To elucidate the mechanisms underlying the colon carcinogenesis preventive effect by PLCSB and 

RS3 + PLCSB, expression of Bax, Bcl-2, and caspase-3 and caspase-9 in colon, tissues were measured 

by RT-PCR and Western blot analysis. As shown in Figure 4, expression of pro-apoptotic Bax and 

anti-apoptotic Bcl-2 showed significant changes in the presence of PLCSB and RS3 + PLCSB.  

These results suggest that the PLCSB and RS3 + PLCSB induced apoptosis in the colon tissues via  

a Bax and Bcl-2 dependent pathway. The mRNA expression levels of caspase-3 and caspase-9 were 

very low in untreated control mice, but significantly increased after the mice were fed with PLCSB and 

RS3 + PLCSB; mRNA and protein expressions of caspase-3 and caspase-9 was gradually elevated with 

RS3 + PLCSB. More specifically, apoptosis induction by RS3 + PLCSB was related to up-regulation of 

Bax, caspase-9, and caspase-3, and down-regulation of Bcl-2 in terms of mRNA and protein expression. 

The effects of RS3 + PLCSB were greater compared with those of the PLCSB. 

Apoptosis is a fundamental cellular event, and understanding its mechanisms of action will help 

harness this process for use in tumor diagnosis and therapy [22]. In a healthy cell, the anti-apoptotic 

protein Bcl-2 is expressed on the outer mitochondrial membrane surface [23]. Because the Bax and Bcl-2 

genes are mainly expressed during apoptosis, we determined that these genes regulate apoptotic activity. 

Apoptosis results from activation of caspase family members that act as aspartate-specific proteases [24]. 

Caspases form a proteolytic network within the cell whereby upstream initiator caspases are activated early 

in the apoptotic process (caspase-9) and in turn activate other downstream caspases (caspase-3). 

Cytochrome c and procaspase-9 processing is highly dependent on caspase-3, placing this caspase in a 

central position as a regulator of essential apoptotic pathways in cancer cells [25]. Caspase-3 was also 

reported to play a role as an amplifier of apoptotic signals (i.e., by cleaving Bcl-2) [26]. 
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Figure 4. Effects of PLCSB and RS3 + PLCSB on mRNA and protein expression of Bax, 

Bcl-2, caspase-3 and caspase-9 in AOM and DSS-induced colon cancer mice. PLCSB, 

polysaccharide of Larimichthys crocea swimming bladder; RS3, resistant starch 3. 

 

2.5. Effects of PLCSB and RS3 + PLCSB on Inflammation-Related Gene Expression of NF-κB, IκB-α, 

iNOS and COX-2 

The next experiments investigated whether the anticancer actions of PLCSB and RS3 + PLCSB were 

associated with inhibited expression of the inflammation-related genes NF-κB, IκB-α, iNOS, and COX-2. 

As shown in Figure 5, mRNA and protein expressions of NF-κB and IκB-α was reduced in colon tissues 

fed with PLCSB and RS3 + PLCSB. PLCSB and RS3 + PLCSB significantly modulated the expression 

of genes associated with inflammation. mRNA and protein expressions of NF-κB was decreased while 

IκB-α mRNA and protein levels were increased. Additionally, mRNA and protein expression of COX-2 

and iNOS were gradually decreased in the presence of the PLCSB dependent on use of RS3 as the carrier 

for PLCSB. Our findings indicate that PLCSB may help prevent cancer in the early stages by increasing 

anti-inflammatory activities. Overall, the results of this experiment showed that RS3 + PLCSB had a 

stronger anti-inflammatory effect on colon cancer than PLCSB. 

Additionally, anticancer mechanisms underlying the effect of PLCSB and RS3 + PLCSB on AOM 

and DSS-induced colon cancer involve the induction of apoptosis by increasing the number of apoptotic 

bodies, regulating mRNA and protein expression of Bax and Bcl-2, and promoting anti-inflammatory 

effects by down-regulating iNOS and COX-2 gene expression. COX-2 has been suggested to play an 

important role in colon carcinogenesis, and NOS, along with iNOS, may be a good target for the 

chemoprevention of colon cancer [27]. Researchers have revealed the crucial involvement of the IκB 

kinase β/NF-κB (IKKβ/NF-κB) in colon carcinogenesis induced by combined treatment with AOM and 

DSS [20]. NF-κB is one of the most ubiquitous transcription factors, and regulates the expression of 

genes required for cellular proliferation, inflammatory responses, and cell adhesion [28]. NF-κB is 

present in the cytosol where it is bound to the inhibitory protein IκB-α. Following its induction by a 

variety of agents, NF-κB is released from IκB-α and translocates to the nucleus where it binds to the IκB 

binding sites in the promoter regions of target genes [29]. These mechanisms could be involved in the 
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anticancer effects of PLCSB and RS3 + PLCSB in colon cancer, and RS3 + PLCSB could increase the 

anticancer effects in AOM and DSS-induced colon cancer. 

Figure 5. Effects of PLCSB and RS3 + PLCSB on mRNA and protein expression of NF-κB, 

IκB-α, iNOS and COX-2 in AOM and DSS-induced colon cancer mice. PLCSB, 

polysaccharide of Larimichthys crocea swimming bladder; RS3, resistant starch 3. 

 

3. Experimental Section 

3.1. Polysaccharide Larimichthys crocea Swimming Bladder (PLCSB) Preparation 

Wild Yellow Sea Larimichthys crocea were purchased from Shandong Province in China. Swimming 

bladder of Larimichthys crocea (1 kg) was dried by freeze-drying, and the dried samples were crushed. 

Three liters petroleum ether was added into swimming bladder of Larimichthys crocea and then reflux 

extraction was performed twice (1 h each time) at 60 °C to remove the protein; the residuals were 

gathered after filtration. Three liters absolute ethyl alcohol was then added and reflux extraction was 

performed for 3 h; the residuals without protein were filtrated and gathered. Finally, three liters water 

was added and the residuals were extracted at 60 °C for 2 h; filter liquid was collected. The crude 

polysaccharide of Larimichthys crocea swimming bladder was gained after evaporating [30]. 

3.2. Animals 

Seven-week-old male C57BL/6 mice (n = 40) were purchased from the Experimental Animal Center of 

Chongqing Medical University (Chongqing, China). They were maintained in a temperature-controlled 

facility (temperature 23 ± 1 °C, relative humidity 50% ± 5%) with a 12 h light/dark cycle. The mice had 

unlimited access to a standard mouse chow diet and water. 

3.3. Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS)-Induced Colorectal Carcinogenesis Model 

The mice were divided into four groups (n =10 each). The normal group mice received no treatment 

during the experimental period. The control group mice received no treatment during the first four 

weeks. The PLCSB group mice were fed with a mouse diet containing 1% PLCSB for four weeks;  
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the RS3 + PLCSB group mice were fed with a mouse diet containing RS3 + PLCSB starch microspheres 

for four weeks, the mice diet also contained 1% PLCSB. Then the control, PLCSB and RS3 + PLCSB 

group mice were administered single intraperitoneal injections of 10 mg/kg bw azoxymethane (AOM, 

Sigma Co., St. Louis, MO, USA). After the injection for one week and four weeks, the mice received 

2.5% dextran sulfate sodium (DSS, Mw 30,000–50,000, MP Bio., Solon, OH, USA) in their drinking 

water for one week. In the period of colon carcinogenesis induction, the PLCSB and RS3 + PLCSB 

group mice were continually fed with the sample diet. The body weight was recorded daily, and the 

colon length and weight were measured after dissection [10]. 

3.4. Analysis of Inflammation-Related Cytokines in Serum by Enzyme-Linked Immunosorbent Assay (ELISA) 

For the serum cytokine assay, blood from the inferior vena cava was collected in a tube and 

centrifuged at 1100× g, 4 °C for 10 min. The serum was aspirated and assayed as described below. 

Concentrations of inflammatory-related cytokines IL-6, IL-12, TNF-α, and IFN-γ in serum were 

measured by ELISA according to the manufacturer’s instructions (Biolegend, San Diego, CA, USA). 

Briefly, biotinylated antibody reagent was added to 96-well plates, then supernatants of homogenized 

serum were added and the plates were incubated at 37 °C in CO2 for 2 h. After washing with PBS, 

streptavidin-horseradish peroxidase (HRP) solution was added and the plate was incubated for 30 min at 

room temperature. The absorbance was measured at 450 nm using a microplate reader (iMark; Bio-Rad, 

Hercules, CA, USA) [6]. 

3.5. Histological Analysis 

The distal colons from each animal were subjected to histological examination. The colon tissues 

were fixed in 10% neutral-buffered formalin, dehydrated in ethanol and embedded in paraffin.  

Colon tissue sections (4 μm) were then cut and stained with hematoxylin and eosin (H&E) [31]. 

3.6. RT-PCR Assay 

Total RNA from colon tissue cells was isolated using Trizol reagent (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s recommendations. The RNA was digested with RNase-free DNase 

(Roche, Basel, Switzerland) for 15 min at 37 °C and purified using an RNeasy kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s protocol. cDNA was synthesized from 2 μg of total RNA by 

incubation at 37 °C for l h with avian myeloblastosis virus reverse transcriptase (GE Healthcare, Little 

Chalfont, UK) with random hexanucleotides according to the manufacturer’s instruction. Sequences of 

primers used to specifically amplify the genes of interest were as follows: 5'-AAGCTGAGCGAGTGT 

CTCCGGCG-3' (forward) and 5'-CAGATGCCGGTTCAGGTACTCAGTC-3' (reverse) for Bax; 

5'-CTCGTCGCTACCGTCGTGACTTGG-3' (forward) and 5'-CAGATGCCGGTTCAGGTACTCAG 

TC-3' (reverse) for Bcl-2; 5'-CAAACTTTTTCAGAGGGGATCG-3' (forward) and 5'-GCATACTG 

TTTCAGCATGGCA-3' (reverse) for caspase-3; 5'-GGCCCTTCCTCGCTTCATCTC-3' (forward) and 

5'-GGTCCTTGGGCCTTCCTGGTAT-3' (reverse) for caspase-9; 5'-CACTTATGGACAACTATGAG 

GTCTCTGG-3' (forward) and 5'-CTGTCTTGTGGACAACGCAGTGGAATTTTAGG-3' (reverse)  

for NF-κB; 5'-GCTGAAGAAGGAGCGGCTACT-3' (forward) and 5'-TCGTACTCCTCGTCTTTCA 
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TGGA-3' (reverse) for IκB-α; 5'-AGAGAGATCGGGTTCACA-3' (forward) and 5'-CACAGAACTGAGG 

GTACA-3' (reverse) for iNOS; 5'-TTAAAATGAGATTGTCCGAA-3' (forward) and 5'-AGATCACCT 

CTGCCTGAGTA-3' (reverse) for COX-2. GAPDH was amplified as an internal control gene with the 

following primers: 5'-CGGAGTCAACGGATTTGGTC-3' (forward) and 5'-AGCCTTCTCCATGGTC 

GTGA-3' (reverse). Amplification was performed in a thermal cycler (Eppendorf, Hamburg, Germany). 

The polymerase chain reaction (PCR) products were separated in 1.0% agarose gels and visualized with 

ethidium bromide staining [32]. 

3.7. Western Blot Analysis 

Total colon tissue protein was obtained with RIPA buffer as described [33]. Protein concentrations 

were determined with a Bio-Rad protein assay kit (Bio-Rad Laboratories Inc., Hercules, CA, USA). For 

the western blot analysis, aliquots of the lysate containing 30–50 μg protein were separated by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then electrotransferred onto a 

nitrocellulose membrane (Schleicher and Schuell, Keene, NH, USA). The membranes were subjected to 

immunoblot analysis and the proteins were visualized by an enhanced chemiluminescence (ECL) 

method (GE Healthcare). The cell lysates were separated by 12% SDS-PAGE, transferred onto  

a polyvinylidene fluoride membrane (GE Healthcare), blocked with 5% skimmed milk and hybridized 

with primary antibodies (diluted 1:1000). The antibodies against Bax, Bcl-2, caspase-3, caspase-9, 

NF-κB, IκB-α, iNOS and COX-2 were obtained from Santa Cruz Biotechnology Inc. (Santa Cruz, CA, 

USA), then incubated with the horseradish peroxidase-conjugated secondary antibody (Santa Cruz 

Biotechnology Inc. (Santa Cruz, CA, USA) for 1 h at room temperature. The blots were washed three 

times with PBS-T and then developed by enhanced chemiluminescence (Amersham Life Science, 

Arlington Heights, IL, USA). 

3.8. Statistical Analysis 

Data are presented as the mean ± SD. Differences between the mean values for individual groups 

were assessed with a one-way ANOVA with Duncan’s multiple range test. Differences were  

considered significant when p < 0.05. SAS version 9.1 (SAS Institute Inc., Cary, NC, USA) was used for  

statistical analyses. 

4. Conclusions 

In summary, the colon carcinogenesis preventive effect of PLCSB and RS3 + PLCSB were evaluated 

by various in vivo experimental methods, including basic observations in mice (body weight, colon weight 

and colon length), serum cytokine assay, tissue RT-PCR, and Western blot assays. Mice consumed a 

mouse diet that included PLCSB or RS3 + PLCSB. PLCSB is partially decomposed by digestion prior to 

entering the colon; therefore, PLCSB is only partly absorbed in the colon, which reduces its efficacy. By 

contrast, PLCSB combined with RS3 is not absorbed in the stomach. After it enters into the colon, RS3 

is broken down by intestinal bacteria, and PLCSB is released. As indicated by the experimental results, 

combining RS3 with PLCSB enables the full efficacy of PLCSB to be utilized. Compared with the direct 

use of PLCSB, this method produces better preventative effects against colon cancer. 
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