Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Int. J. Mol. Sci. 2014, 15(1), 484-503; doi:10.3390/ijms15010484
Article

The Inhibitory Effect of Quercetin on Asymmetric Dimethylarginine-Induced Apoptosis Is Mediated by the Endoplasmic Reticulum Stress Pathway in Glomerular Endothelial Cells

,
,
,
,
,
,
,
 and *
Received: 10 October 2013; in revised form: 12 December 2013 / Accepted: 16 December 2013 / Published: 2 January 2014
(This article belongs to the collection Programmed Cell Death and Apoptosis)
View Full-Text   |   Download PDF [3103 KB, uploaded 19 June 2014]   |   Browse Figures
Abstract: Asymmetric dimethylarginine (ADMA) is considered an independent mortality and cardiovascular risk factor in chronic kidney disease (CKD) patients, and contributes to the development of renal fibrosis. Quercetin (QC), a natural component of foods, protects against renal injury. Here, we explored the possible mechanisms that are responsible for ADMA-induced renal fibrosis and the protective effect of QC. We found that ADMA treatment activated the endoplasmic reticulum (ER) stress sensor proteins phosphorylated protein kinase RNA-activated-like ER kinase (PERK) and inositol requiring-1α (IRE1), which correspondingly induced C/EBP homologous protein (CHOP) expression and phosphorylated c-Jun N-terminal kinase (JNK) phosphorylation in glomerular endothelial cells (GEnCs). Following this, ADMA promoted ER stress-induced apoptosis and resulted in transforming growth factor β (TGF-β) expression in GEnCs. SP600125, an inhibitor of JNK, and CHOP siRNA protected against ADMA-induced cell apoptosis and TGF-β expression. QC prevented ADMA-induced PERK and IRE1 apoptotic ER stress pathway activation. Also, ADMA-induced GEnCs apoptosis and TGF-β expression was reduced by QC. Overexpression of CHOP blocked QC-mediated protection from apoptosis in ER stressed cells. Overall, these observations indicate that ADMA may induce GEnCs apoptosis and TGF-β expression by targeting the PERK-CHOP and IRE1-JNK pathway. In addition, drugs such as QC targeting ER stress may hold great promise for the development of novel therapies against ADMA-induced renal fibrosis.
Keywords: ER stress; apoptosis; ADMA; TGF-β; quercetin ER stress; apoptosis; ADMA; TGF-β; quercetin
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Guo, W.; Ding, J.; Zhang, A.; Dai, W.; Liu, S.; Diao, Z.; Wang, L.; Han, X.; Liu, W. The Inhibitory Effect of Quercetin on Asymmetric Dimethylarginine-Induced Apoptosis Is Mediated by the Endoplasmic Reticulum Stress Pathway in Glomerular Endothelial Cells. Int. J. Mol. Sci. 2014, 15, 484-503.

AMA Style

Guo W, Ding J, Zhang A, Dai W, Liu S, Diao Z, Wang L, Han X, Liu W. The Inhibitory Effect of Quercetin on Asymmetric Dimethylarginine-Induced Apoptosis Is Mediated by the Endoplasmic Reticulum Stress Pathway in Glomerular Endothelial Cells. International Journal of Molecular Sciences. 2014; 15(1):484-503.

Chicago/Turabian Style

Guo, Weikang; Ding, Jiaxiang; Zhang, Aihua; Dai, Wendi; Liu, Sha; Diao, Zongli; Wang, Liyan; Han, Xue; Liu, Wenhu. 2014. "The Inhibitory Effect of Quercetin on Asymmetric Dimethylarginine-Induced Apoptosis Is Mediated by the Endoplasmic Reticulum Stress Pathway in Glomerular Endothelial Cells." Int. J. Mol. Sci. 15, no. 1: 484-503.



Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert