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Abstract: The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for 

several neurodegenerative diseases, including Parkinson’s disease (PD). Ninety percent of 

α-SYN deposited in Lewy Bodies, a pathological hallmark of PD, is phosphorylated on 

serine129. α-SYN can also be phosphorylated on tyrosine125, which is believed to regulate 

the membrane binding capacity and thus possibly its normal function. A better 

understanding of the effect of phosphorylation on the aggregation of α-SYN might shed 

light on its role in the pathogenesis of PD. In this study we compare the aggregation 

properties of WT α-SYN with the phospho-dead and phospho-mimic mutants S129A, 

S129D, Y125F and Y125E and in vitro phosphorylated α-SYN using turbidity, thioflavin T 

and circular dichroism measurements as well as transmission electron microscopy. We 

show that the mutants S129A and S129D behave similarly compared to wild type (WT)  
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α-SYN, while the mutants Y125F and Y125E fibrillate significantly slower, although all 

mutants form fibrillar structures similar to the WT protein. In contrast, in vitro 

phosphorylation of α-SYN on either S129 or Y125 does not significantly affect  

the fibrillization kinetics. Moreover, FK506 binding proteins (FKBPs), enzymes with  

peptidyl-prolyl cis-trans isomerase activity, still accelerate the aggregation of 

phosphorylated α-SYN in vitro, as was shown previously for WT α-SYN. In conclusion, 

our results illustrate that phosphorylation mutants can display different aggregation properties 

compared to the more biologically relevant phosphorylated form of α-SYN. 

Keywords: alpha-synuclein; phosphorylation; parkinson’s disease; phosphorylation mutants; 

FKBP; in vitro fibrillization 

 

1. Introduction 

The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for several neurodegenerative 

diseases, including Parkinson’s disease (PD) [1]. These fibrils are deposited into Lewy bodies (LB) 

and Lewy neurites, the pathological hallmarks of PD [2]. α-SYN is a 140 amino acids long intrinsically 

disordered protein with almost no secondary structural elements and only limited tertiary intramolecular 

contacts under physiological conditions in vitro [3,4]. Although the exact function of α-SYN remains 

elusive, it might play a role in regulating dopamine neurotransmission [5,6], vesicular trafficking [7,8] 

and modulating synaptic function and plasticity [9–11]. The majority (~90%) of the α-SYN protein in 

LBs is phosphorylated at S129, compared to only about 4% in normal brain extracts [12–14]. However, 

it remains unresolved whether phosphorylation occurs before or after aggregation. It is also still 

unclear whether this modification promotes or inhibits aggregation and what effect it has on the 

neurotoxicity in vivo. It was shown that the tertiary intramolecular long-range interactions are disrupted 

in in vitro phosphorylated α-SYN, which might cause the inhibition of aggregation observed by 

Paleologou et al. [15]. Contradictory results were obtained by Fujiwara et al. where in vitro 

phosphorylated α-SYN was more prone to aggregate [13]. 

Previous studies have used the phosphorylation mutants, S129A and S129D, to mimic absence of 

phosphorylation or constitutive phosphorylation respectively, in order to investigate this effect in cells 

and in vivo. While the phosphorylation mimicking mutant (S129D) promoted cell death in a 

Drosophila model [16] as well as in neuroblastoma cell lines [11,17], this was not the case in viral 

vector-mediated rat models. Whereas two studies report accelerated dopaminergic neuronal loss with 

the S129A mutant and a moderate to significant protective effect of the S129D mutant compared to  

wild-type α-SYN [18,19], McFarland and colleagues found no significant differences between both 

phosphorylation mutants and wild-type α-SYN in nigrostriatal toxicity or aggregation [20]. 

Several kinases have been shown to phosphorylate α-SYN in vitro on S129, such as casein kinase I 

(CKI), CKII [13,21,22], G-protein coupled receptor kinases (GRK) [23,24] and members of the  

polo-like kinase family (PLK2) [25,26]. CKI and CKII phosphorylate on S87 as well, albeit to a lesser 

extent [15,21]. Two recent studies showed that PLK2, also known as serum-inducible kinase (SNK),  
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is a major contributor of pS129-α-SYN in primary neuronal cultures and in transgenic mice [25,26]. 

Moreover, PLK2 levels are elevated in brains of Alzheimer disease and dementia with LB patients [26]. 

In vitro phosphorylation on tyrosines of α-SYN has been described for several kinases such as  

Syk kinase [27], SRC kinases [28] and Fyn kinase, the latter specifically phosphorylating Y125 of  

α-SYN [29]. The phosphorylation on Y125 is thought to regulate α-SYN membrane binding and the 

inhibition of phospholipase D2 by α-SYN [30]. Phosphorylation on all three tyrosines in the  

C-terminal part by SYK kinase was reported to prevent aggregation in vitro [27]. Recently it was 

shown that tyrosine phosphorylation of α-SYN might protect against neurotoxicity in a Drosophila 

model of PD [31]. Overexpression of the Drosophila homologue of SYK kinase even rescued the 

toxicity of the phospho-mimicking mutant S129D. 

In this study we performed a systematic comparison of the biochemical properties of normal α-SYN 

WT with α-SYN phosphorylation mutants (S129A/D and Y125F/E) and in vitro phosphorylated  

α-SYN. Our group previously showed that the enzyme FKBP12 (FK506 binding protein 12)  

(EC. 5.2.1.8.), which is a cis-trans proline isomerase from the family of FK506 binding proteins, 

accelerates the aggregation of WT α-SYN [32–34]. Since α-SYN’s five proline residues, as well as the 

major phosphorylation sites, are all located in the C-terminus, we investigated the influence of α-SYN 

phosphorylation at either S129 or Y125 on this acceleration. 

Our results show that phosphorylation mutants of α-SYN do not fully reproduce the behaviour of  

α-SYN phosphorylated with physiologically relevant kinases. They also suggest that phosphorylation 

does not necessarily promote aggregation. Furthermore, the ability of FKBP12 to accelerate α-SYN 

aggregation is comparable between phosphorylated and WT α-SYN. 

2. Results and Discussion 

2.1. Construction and Production of the α-SYN Phosphorylation Mutants S129A/D and Y125F/E 

We wanted to generate phosphorylation mimicking mutants S129D and Y125E as well as their 

respective negative control mutants, S129A and Y125F in order to characterize their in vitro aggregation 

properties. By replacing Ser or Tyr with an acidic amino acid (Asp or Glu) one can mimic the electrostatic 

features of a phosphorylated residue, although it should be noted that the phosphate group on Ser or 

Tyr is fully deprotonated at pH 7.4 which results in a net charge of −2 instead of −1 with Asp/Glu. The 

structural similarities between Ser and Asp make this replacement a reasonable phospho-mimicking 

mutation, although it should be noted that the distance between the alpha carbon and the negative 

charge is longer in the phosphoserine compared to Asp. The structures of Tyr and Glu are much less 

alike, but since no aromatic acidic amino acid is available the choices are limited. Using far UV-CD 

measurements we could confirm that the spectra of all mutants were comparable to that of the WT 

protein and represented a predominantly random coil structure (Figure 1A), corresponding well with 

the values of monomeric WT α-SYN reported in literature [35]. 
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Figure 1. Far UV-CD spectra of WT α-SYN and its phosphorylation mutants and fibrillization 

of WT α-SYN compared to the phosphorylation mutants. (A) Far UV-CD spectra of α-SYN 

and phosphorylation mutants were taken at the start point of further measurements to 

account for possible secondary structure differences due to the mutations. All spectra have 

a minimum near 200 nm, typical for a random coil structure. The phosphorylation mutants 

(Y125F (cyan), Y125E (dark cyan), S129A (pink), S129D (purple)) show spectra similar to 

that of the WT protein (black), and our obtained values of approximately −20,000 MRE 

(mean residue ellipticity) correspond well to values of monomeric WT α-SYN found in 

literature. The kinetics of the fibrillization process of α-SYN WT and phospho-mutants 

were followed by a Thioflavin T assay under continuous shaking (270 rpm) at 37 °C.  

A concentration of 50 µM α-SYN was used in each experiment; (B) Mean values of the 

halftimes; The halftimes of fibrillization are expressed as percentages of WT, which was 

set to 100%; (C) Representative figure showing an inhibitory effect with both tyrosine 

mutants (Y125F (white squares) and Y125E (gray squares)). The kinetics of both serine 

mutants, however, are similar to that of the WT protein (S129A (white triangles), S129D 

(gray triangles) and WT (white circles)); (D) Mean end phase fluorescence intensities;  

(B) and (D) are calculated from 5 independent measurements (n = 5) each done  

in quadruplicate, with the standard error of mean (SEM) shown on each bar.  

* and *** indicate a statistical significant difference when compared to WT with a  

p-value < 0.05 and < 0.001 respectively; TEM images were taken and are represented in (E), 

from left to right: S129A, S129D, WT, Y125E, Y125F. The scale bars are set to 200 nm. 
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Figure 1. Cont. 

 

2.2. In Vitro Aggregation Properties of the Phosphorylation Mutants 

First, we assessed fibril formation by a thioflavin T (ThioT) assay (Figure 1B–D). The curves were 

fitted with a sigmoid model to obtain the half-time of aggregation (t1/2(aggregation)) as well as the end 

phase amplitude, which correlates to the amount of fibrils formed (Figure 1B,D). The fibrillization of 

both tyrosine mutants Y125E and Y125F was significantly slower with a half time approximately 

twice as long as for WT α-SYN (Figure 1B). Moreover, the plateau was reached at lower fluorescence 

intensities (Figure 1D). None of the serine mutants showed a significant difference when compared to 

WT α-SYN, although the S129A mutant tended to aggregate faster than the wild-type protein  

(Figure 1B,C). When the stationary phase was reached, electron microscopy analysis was used to 

examine the morphology of the aggregates formed (Figure 1E). Fibrils were present in all samples and 

their morphology was similar to that of WT α-SYN, confirming that differences in aggregation kinetics 

between α-SYN variants are due to true kinetic differences, rather than to hypothetical differences in 

aggregation pathways. Turbidity experiments were also performed to investigate the general 

aggregation properties (Supplementary Figure S1). Overall, the turbidity measurements of the 

phosphorylation mutants followed the same trends as the ThioT measurements. Due to a higher variation 

between independent measurements, the only significant difference in t1/2(aggregation) was obtained 

between WT and the Y125F mutant (Supplementary Figure S1B), while the Y125E phosphorylation 

mimic mutant reached a significantly lower end phase amplitude (Supplementary Figure S1C). 

2.3. In Vitro Phosphorylation of α-SYN on Different Residues 

The reported specificity of Casein Kinase II (CKII) for phosphorylating α-SYN on S129 and to a 

lesser extent S87 [13,21,22] was first confirmed by in vitro phosphorylation of WT and S129A α-SYN 

using a radioactive assay. The phosphate incorporation was measured by autoradiography. Phosphorylation 

was indeed mainly on S129, since only after longer incubation times a band became visible with the 

S129A mutant (Figure 2A,B). PLK2 however, was even more specific in phosphorylating α-SYN on 

S129, including after 24 h incubation (Figure 2C,D) as reported before [26]. Using a scintillation 

counting based quantification of phosphate incorporation, we determined that PLK2 phosphorylates  

α-SYN very efficiently (0.72 phosphates per α-SYN molecule) unlike CKII phosphorylation where  
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the yield was only about 2%. Therefore, we used PLK2 to phosphorylate α-SYN on S129 for all 

further experiments. 

In view of reported differential effects of phosphorylation on Y125 compared to phosphorylation on 

S129 on cell death and α-SYN aggregation in a Drosophila model [31], we determined the influence  

of Y125 phosphorylation on the aggregation of α-SYN in vitro. We tested two kinases: SRC and  

Fyn kinase. SRC kinase did not phosphorylate specifically on Y125, as was shown by autoradiography 

(Figure 2E,F). Phosphorylation with Fyn kinase showed higher specificity for Y125 at early time 

points, although background signal in the Y125E control could be observed at longer incubation  

times indicating that a small proportion of other tyrosine sites are phosphorylated (Figure 2G,H). By 

calculation of the molar ratios of incorporated phosphates per α-SYN molecule, we determined that 

1.49 phosphates per α-SYN molecule are incorporated for SRC phosphorylation and 1.18 for  

Fyn phosphorylation. Taking into account that the incorporation of a radioactive phosphoryl group in 

the Y125E mutants was 0.69 and 0.42 respectively, both kinases show a similar efficiency of Y125 

phosphorylation (0.79 and 0.76 respectively). Since phosphorylation with Fyn kinase was more 

specific we decided to further use only this kinase. 

2.4. Structural Properties of in Vitro Phosphorylated α-SYN 

CD measurements were performed after the α-SYN phosphorylation (overnight phosphorylation,  

as described in materials and methods) to see if the incorporation of a phosphoryl group affects  

the native structure of the protein. All spectra correlated to an unfolded structure similar to the  

WT protein (Figure 2I). 

For the control, unphosphorylated WT α-SYN, all manipulations of the phosphorylation protocol 

with the exception of ATP/kinase addition were carried out for all further experiments, to rule out any 

influence this assay might have on the aggregation properties of the protein. This control (indicated as 

“WT ctrl”) is also represented by an unfolded CD spectrum (Figure 2I). 

Early oligomerisation events of α-SYN can be followed by FCS by the addition of trace amounts 

of A140C-α-SYN labeled with Alexa 488 [36]. With this technique a distribution of diffusion 

coefficients (D) is obtained, which correlates to the size of the diffusing particles. At the starting point 

of each experiment we observed a homogeneous distribution and the obtained D corresponds to the 

monomeric form of the protein [36]. This was also the case for α-SYN phosphorylated on S129 

(pS129-α-SYN) as well as on Y125 (pY125-α-SYN) (Supplementary Figure S2). The mean diffusion 

coefficient of 4 independent measurements was calculated, which was similar for pS129-α-SYN  

(92.0 +/− 6.57 µm2/s), pY125-α-SYN (92.3 +/− 3.84 µm2/s) and their control (unphosphorylated WT 

α-SYN (WT ctl: 86.4 +/− 4.95 µm2/s)) (Supplementary Figure S2A). From the diffusion coefficients 

the hydrodynamic radius can be calculated, assuming a spherical particle, which ranged from  

23.9 (+/− 1.4) Å for pY125-α-SYN, 24.3 (+/− 1.7) Å for pS129-α-SYN to 25.8 (+/− 2.9) Å for WT ctl 

(Supplementary Figure S2B). These values were not significantly different and correspond to the 

previously reported hydrodynamic radius for monomeric WT α-SYN of 26.6 Å [37] or 28.2 Å [15,38]. 

It should be noted that alternative techniques, such as NMR based techniques have yielded higher 

hydrodynamic radii for phosphorylated α-SYN (35.3 Å for S129 phosphorylated α-SYN) [15], perhaps 

because these techniques do not require assumptions on particle shape. 
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Figure 2. Phosphate incorporation using autoradiography and far UV-CD spectra of 

(phosphorylated)-α-SYN. Phosphate incorporation was monitored by a radioactivity assay, 

where ATP-P32 was incubated in the presence of different kinases and WT α-SYN or the 

S129A/ Y125E mutant. The reaction was stopped at different time points (15 min, 30 min, 

1 h, 2 h, 3 h as well as 24 h for PLK2 and Fyn) with SDS-loading dye and boiling for  

5 min. Radioactive phosphate incorporation was visualised by autoradiography, after which 

western blotting was performed to detect relative protein levels. For each time point WT 

and a respective mutant were used. WT: WT α-SYN, A: S129A α-SYN, E: Y125E α-SYN, 

-ctl: negative control (kinase boiled for five min prior to test). Cas: casein kinase, used as a 

positive control for serine phosphorylation. Kinases and the kinase concentrations used in 

the in vitro phosphorylation assays are given between the blot panels (please refer to the 

Materials and Methods section for full details on the kinases and phosphorylation procedure) 

(A) radio-activity blot of CKII phosphorylation; (B) western blot of (A); (C) radioactivity 

blot of PLK2 phosphorylation; (D) western blot of (C); (E) radioactivity blot of SRC 

phosphorylation; (F) western blot of (E); (G) radioactivity blot of Fyn phosphorylation; 

(H) western blot of (G); (I) Far UV-CD spectra of proteins after overnight phosphorylation. 

All spectra show a minimum near 200 nm comparable to that of WT α-SYN (black line), 

typical for a random coil structure. The manipulations necessary for phosphorylation and 

removal of ATP afterwards do not disturb the secondary structure (compare spectrum of 

WT control (black line) to that of the WT protein (gray line)). pY125-α-SYN: WT α-SYN 

phosphorylated by Fyn kinase (blue line) and pS129-α-SYN: WT α-SYN phosphorylated 

by PLK2 kinase (yellow line); and (J) Far UV–CD spectra of pS129-α-SYN (yellow line), 

pY125-α-SYN (cyan) and their control (WT ctl (black line)), prepared as in (I), after 8 h of 

continuous agitation. All samples show predominantly a β-sheet structure. 
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Figure 2. Cont. 

 

2.5. The Influence of pS129- and pY125-α-SYN on Its in Vitro Fibril Formation 

Next, we used the ThioT assay to assess fibril formation upon in vitro phosphorylation of α-SYN on 

either pS129 or Y125. A slightly longer t1/2(aggregation) was observed compared to the unphosphorylated 

control (WT ctl), although this difference was not significant (Figure 3A,B). Moreover, no significant 

difference was observed in end phase amplitude (Figure 3A,C). These ThioT measurements show that 

in vitro phosphorylation of α-SYN does not significantly influence the fibrillization kinetics of  

α-SYN under the conditions tested. TEM images taken after the ThioT assay showed that both  

pS129- and pY125-α-SYN formed fibrils comparable to WT Ctl (Figure 3D), confirming that the 

phosphorylation also did not induce alternate forms of aggregation. 

Please note that since we observed that the presence of ATP influences the aggregation of α-SYN 

(Supplementary Figure S3), ATP was removed by buffer exchange before the aggregation properties 

were determined. 
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Part of the samples used for the ThioT measurements was subjected to mass spectrometry to verify 

the phosphorylation state of the protein. With PLK2 only S129 was phosphorylated, and the extent of 

phosphorylation was determined to be 46% by MALDI-TOF/TOF analysis and 35% by LC-ESI-MS/MS 

analysis (See Supplementary Figure S4A). FYN kinase phosphorylated Y125, although Y133 or  

Y136 were also phosphorylated.The percentage of tyrosine phosphorylated alpha-synuclein was  

determined by MALDI-TOF/TOF analysis to be 71% and by LC-ESI-MS/MS analysis to be 52%  

(See Supplementary Figure S4B). 

Figure 3. Fibrillization of (phosphorylated)-α-SYN. The kinetics of fibrillization of 

phosphorylated α-SYN (30 µM) monitored by ThioT fluorescence. Before the ThioT assay 

all samples were incubated overnight at 30 °C with ATP and the respective kinases. The 

next day ATP was removed by buffer exchange as described in Materials and Methods. 

The control was subjected to the same incubations/buffer exchange without the addition  

of ATP/kinase. (A) Representative measurement showing comparable kinetics of  

pY125-α-SYN (black squares), pS129-α-SYN (gray triangles) and WT ctl (white circles); 

(B) Mean halftimes and (C) mean end phase amplitudes, obtained from five independent 

measurements (n = 5) each done in quadruplicate, SEM is shown on each bar. The values 

of pS129-α-SYN and pY125-α-SYN are expressed as percent of their control (WT Ctl);  

and (D) TEM images were taken at the end of the measurements to confirm fibril 

formation. From left to right: WT ctl, pS129: pS129-α-SYN, pY125: pY125-α-SYN.  

Scale bars are set to 200 nm. 
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Next, CD measurements were carried out to follow the formation of β-sheet structure. pS129-α-SYN 

first started to form β-sheets after five h under continuous agitation. After eight h all samples showed  

mostly a β-sheet structure (Figure 2J). This correlates with the fibrillization kinetics seen in the  

ThioT measurements. 

2.6. Does FKBP12 Still Accelerate the Fibrillization of Phosphorylated α-SYN? 

It was previously shown in our lab that the enzyme FKBP12, which is a peptidyl–prolyl isomerase, 

accelerates the fibrillization of α-SYN [32–34,39]. Because in α-SYN all the proline residues are 

situated in the C-terminus (P108, P117, P120, P128, P138) [40], where also the phosphorylation events 

take place, we wondered whether phosphorylating the C-terminal part would affect this acceleration.  

It appears from the ThioT measurements that FKBP12 can still accelerate the fibrillization process of 

α-SYN phosphorylated on either residue (S129 or Y125). In our assay the acceleration of WT α-SYN 

due to FKBP12 was significant from a concentration of 1 µM FKBP12 onwards, as can be seen by a 

reduction in halftime of about 50% at 1 µM FKBP12 which increased to 74% at 10 µM FKBP12 

(Figure 4A). No clear effect of FKBP12 on the mean end phase amplitude was observed (data not shown).  

In the case of pS129-α-SYN the enhanced acceleration in the presence of FKBP12, was similar to 

that of WT α-SYN, with a reduction in halftime of 44% at 1 µM FKBP12 which increased to 69% in 

the 10 µM FKBP12 condition. Here, a tendency towards reduced halftimes was also seen at lower 

concentrations of FKBP12 (100 pM) (Figure 4B). Due to a high variation between different measurements 

no significant differences were observed in the mean end phase amplitudes. 

The acceleration due to FKBP12 on pY125-α-SYN was comparable to the acceleration on WT  

α-SYN, although at the concentration of 100 pM FKBP12 a significantly reduced halftime of about 

34% was reached, which increased to 44% in the condition with 1 µM FKBP12 (Figure 4C). As was 

the case for WT and pS129 α-SYN, here again, no clear effect of FKBP12 on the end phase amplitude 

was observed (data not shown). 

2.7. Discussion 

The fact that 90% of the fibrillar α-SYN in LBs is phosphorylated on S129 [12–14] raises questions 

on the role of this phosphorylation event in PD. Since 2005, when the results from Chen and Feany 

showed a clear correlation between phosphorylation and toxicity in a Drosophila model of PD, increasing 

research efforts have focused on the phosphorylation events of α-SYN and disease propagation [16]. 

Phospho-mimicking mutants and the corresponding non-phosphorylatable mutants are now widely 

used as respectively positive and negative controls for phosphorylated α-SYN both in vivo and in cell 

culture models [16–19,31,41,42]. In the present work, we performed an extensive in vitro study of the 

following phosphorylation mutants for the two most important phosphorylation sites in α-SYN: 

S129D/A and Y125E/F and compared their behaviour with in vitro phosphorylated α-SYN. 
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Figure 4. The influence of FKBP12 on the fibrillization of (phosphorylated)-α-SYN. The 

influence of FKBP12 on the fibrillization kinetics of WT α-SYN (A); pS129-α-SYN (B) 

and pY125-α-SYN (C) (all 30 µM). For FKBP12 a concentration range was used: no 

FKBP12, 1 pM FKBP12, 100 pM FKBP12, 10 nM FKBP12, 1 µM FKBP12 and 10 µM 

FKBP12. Mean halftimes are shown and were obtained from four independent measurements 

(n = 4) each done in quadruplicate, SEM is shown on the bars. The conditions  

with FKBP12 present are expressed as percentages of the respective control: α-SYN  

(WT, pS129 or pY125) without FKBP12, *, ** and *** indicate a statistical  

significant difference when compared to WT with a p-value < 0.05, a p-value < 0.01 or a  

p-value < 0.001 respectively; and (D) Values of aggregation half-times from Figure 4 are 

plotted in an x–y plot and a dose response curve is fitted using GraphPad Prism  

(least squares method, fit equation is Y = Bottom + (Top − Bottom)/(1 + 10(X – log EC50)).  

The EC50 values of FKBP12 in reducing the aggregation half-time of the different α-SYN 

variants are comparable for all experimental groups, ranging from 0.6 to 1 µM. WT, normal 

α-SYN; pS129, α-SYN phosphorylated at S129 by PLK2; pY125, α-SYN phosphorylated 

at Y125 by Fyn kinase.  
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2.7.1. The Y125 Phosphorylation Mutants Display Different Aggregation Properties Compared to  

in Vitro Phosphorylated α-SYN 

We demonstrate here that the S129D and the S129A mutation do not significantly influence the 

aggregation properties of α-SYN (although there is a tendency towards faster aggregation for the 

S129A variant). In contrast, both the Y125E and the Y125F mutations induced a twofold deceleration 

in the aggregation kinetics compared to wild type. These findings show that phosphorylation mutants 

at Y125 influence the aggregation process of α-SYN; however the lack of effect in the Y125 

phosphorylated form of α-SYN argues against the use of Y125E and Y125F as positive and negative 

controls in phosphorylation studies since especially the negative control (Y125F) follows different 

aggregation kinetics than WT α-SYN. These position-related effects raise the question whether the 

phospho-mimicking mutants reproduce the properties of phosphorylated α-SYN. Paleologou and 

colleagues performed a similar study on the phosphorylation mutants of S129. They saw a significantly 

accelerated fibrillization of the S129A mutant compared to WT, while the phospho-mimicking mutant 

S129D slowed down this process [15]. We observed a similar trend in our assay; however differences 

did not reach statistical significance. The effects observed for phospho-dead mutants (S129A and 

Y125F) on aggregation kinetics of α-SYN suggest that structural effects as opposed to charge effects 

on the α-SYN protein at these positions are contributing to changes in aggregation properties of α-SYN. 

Our data stress the importance of single amino acid changes in the aggregation kinetics of α-SYN. 

This conclusion is in accordance with previous studies reporting that monomeric α-SYN is stabilized 

by long-range intramolecular interactions between the C-terminal portion (res 120–140) and the central 

NAC domain [3,4,43]. This study proposed that if these interactions are mainly hydrophobic, then the 

three tyrosines (Tyr) in the C-terminal part would be important (Y125, Y133, Y136). Indeed, mutation 

of these three tyrosine residues to alanines completely inhibited the fibrillization of α-SYN. For the 

single Y125F mutant only a mild inhibitory effect was observed, which is in agreement with our 

results. However, contradictory results have also been observed since disruption of the long-range 

interactions by increasing the temperature caused accelerated aggregation [3]. The explanation might 

be that in some cases residual interactions are present, which can form off-pathway oligomers, or 

decrease intermolecular interactions that lead to fibrils by adopting an auto-inhibitory conformation. In 

favour of the off-pathway oligomer mechanism of action, it has been shown that Tyr nitration 

stabilizes specific oligomers, which also inhibits fibrillization [44,45]. 

2.7.2. In Vitro Phosphorylation of α-SYN on S129 or Y125 Does not Affect the Fibrillization Process 

Extensive in vitro studies have focused on the effect of pS129 on the aggregation properties of α-SYN 

in order to solve the question at what point this phosphorylation event takes place in LB pathogenesis. 

As was stated above, promotion as well as inhibition of fibril formation [13,15,22,38] has been observed. 

Our data show that pS129-α-SYN displays comparable fibrillization kinetics to the WT protein  

in vitro. Of course, it is interesting to look into the differences in experimental setup between these 

studies to identify important factors that determine the aggregation kinetics. A first discrepancy between 

the reported data is the phosphorylation degree of the α-SYN protein used in the fibrillization assays. 

A second difference is the identity and specificity of the kinase used e.g., CKI (partial phosphorylation, 
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rather aspecific), CKII (partial phosphorylation, rather specific) and PLK2 (strong phosphorylation, 

specific [26] and our results). For instance, inhibition of α-SYN aggregation has been reported for CKI 

phosphorylated α-SYN [15], however, this study uses an S87A α-SYN variant (rather than WT) to 

avoid CKI phosphorylation of S87. Another study examining the role of the S87 site shows that this 

site can regulate α-SYN fibrillization [38], suggesting that effects of phosphorylation of S129 are 

different for WT compared to S87A α-SYN, and providing a reconciling explanation for the apparent 

discrepancy with the present study. Since we only obtained a phosphorylation degree of 44% with 

PLK2, we cannot rule out the possibility that fully phosphorylated α-SYN aggregates differently. 

However, in a cellular environment a pool of 100% phosphorylated α-SYN is unlikely. From our data 

it can be concluded that phosphorylation of α-SYN is not necessary and does not appear to promote the 

aggregation. This suggests also that phosphorylation of α-SYN affects its interaction with cellular 

components such as other proteins or metals, as previously has been reported [46]. 

We could not observe an effect of α-SYN phosphorylation at Y125 on fibrillization kinetics, in 

contrast with the phospho-mimic mutant Y125E. This strongly suggests that the latter cannot be considered 

as a positive control for phosphorylation. The phosphorylation degree at Y125 of these samples used in 

ThioT experiments was determined to be 71%, although Y133 or Y136 were also partially phosphorylated. 

We cannot fully exclude that our observations may be secondary to effects of phosphorylation at these 

sites, however the Y125 remains the primary phosphorylated tyrosine in our tests. Our observations are 

in contrast with previously reported results, where phosphorylation by SYK kinase on all three tyrosines 

in the C-terminus inhibited eosin-induced oligomerisation [27]. This discrepancy might be due to 

different assays used. Negro et al. [27] used a very short incubation period and focused on early oligomer 

formation while we looked at fibril formation. Moreover, the construct used was a His-tagged form of  

α-SYN. We have recently shown that the His-tag affects the aggregation behaviour of α-SYN [40].  

In contrast, a more recent study using a semi-synthetic α-SYN protein phosphorylated at Y125 shows 

that aggregation of pY125 α-SYN is comparable to WT α-SYN after 24 and 48 h of aggregation [47]. 

Crucially, we show in detailed aggregation kinetics experiments that both WT and pY125 α-SYN 

aggregate at comparable speeds and that half-times of aggregation are less than 24 h, showing that 

measures at short time points (24 h or less) are required to observe differences using a ThioT readout.  

Research on Y125 phosphorylation has been primarily focused on the identification of possible 

kinases and implications for the normal function of α-SYN. pY125-α-SYN has only recently  

been linked with the pathogenesis of PD. Chen and Feany showed that increased phosphorylation  

on Y125 decreased neurotoxicity in a Drosophila model of PD [16]. Interestingly this correlated with 

less oligomer formation. pY125-α-SYN could even rescue the toxicity caused by overexpression of the 

‘phospho-mimicking’ S129D mutant [31]. Moreover, a triple tyrosine mutant Y(125,133,136)A caused 

accelerated neurotoxicity and enhanced oligomer formation, whereas it completely inhibited fibrillization 

in vitro, possibly by formation of stable off-pathway oligomers as mentioned before [48].  

In humans as well as in transgenic Drosophila, phosphorylation on Y125 decreases with age.  

In patients with Dementia with Lewy Bodies no Y125 phosphorylation could be detected in contrast to 

the controls [31]. This might mean that one of the first necessary steps in the pathogenesis of PD is 

loss of this protective pY125-α-SYN. Our own data show that pY125-α-SYN still has the capacity to 

form fibrils at rates comparable to WT, but in a cellular environment this might be prevented through 

interactions with other proteins. 
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2.7.3. FKBP12 Mediated Acceleration of Fibrillization Is Unaltered for Phosphorylated α-SYN 

FKBP12 is a FK506 binding protein belonging to the family of immunophilins. These enzymes all 

have cis-trans peptidyl prolyl isomerase (PPIAse) activity [49]. It has been shown that FK506, an 

immunosuppressive drug, and related non-immunosuppressive analogs, exhibit neuroregenerative and 

neuroprotective properties [50–52]. Our group demonstrated an accelerating effect of FKBP12 on the 

aggregation of α-SYN in vitro [33,39], an effect that is attributed to FKBP12’s PPIase activity as an 

enzymatically inactive FKBP12 does not influence α-SYN fibril formation [33]. More recently 

involvement of FKBPs in a cell culture model of synucleinopathy was reported [34]. Moreover,  

in mouse brain FK506 also reduced α-SYN aggregation and neurodegeneration [34]. In this study we 

addressed the question whether phosphorylation on S129 and/or Y125 could affect the accelerating 

ability of FKBP12 on the aggregation of α-SYN in vitro. Indeed, both residues are in close proximity 

of proline residues (P108, P117, P120, P128, and P138) which are the likely targets of FKBP12  

action [40]. Our data show that FKBP12 can enhance the fibrillization of phosphorylated α-SYN 

comparable to the observed acceleration seen with WT α-SYN. However, we cannot exclude that 

phosphorylation might still play a regulatory role in a cellular environment. 

3. Experimental Section  

3.1. Purification of α-Synuclein (α-SYN) 

Wild type (WT) α-SYN (140 aa) and its mutants were expressed and purified as described before [53]. 

3.2. Construction of Phosphorylation Mutants of α-Synuclein (α-SYN) 

The following mutations were made using site-directed mutagenesis (QuikChange XL, Stratagene, 

La Jolla, CA, USA): S129A-α-SYN, S129D-α-SYN, Y125F-α-SYN and Y125E-α-SYN, according to 

the manufacturer’s protocol. For fluorescent labeling of α-SYN, the A140C mutant gene was kindly 

provided by Prof. V. Subramaniam (Biophysical Engineering Group, Unversity of Twente, Enschede, 

The Netherlands). The purification protocol used for the phosphorylation mutants was identical to that 

of WT protein. 

3.3. SDS PAGE 

Ten microgram of WT α-SYN or its mutants was loaded on a 16% polyacrylamide Sodium Dodecyl 

Sulphate gel after addition of SDS loading dye, boiling for five min and a short centrifugation step of 

each sample. Gels were run at 35 mA for 1 h in an electrophoresis tray. 

3.4. Fluorescence Correlation Spectroscopy (FCS) 

In fluorescence correlation spectroscopy (FCS), the diffusion coefficient of a fluorescent molecule 

is calculated from the autocorrelation function of the fluctuating fluorescence signal, resulting from the 

diffusion of fluorescent molecules through the confocal volume. 

Measurements were performed on the LSM 510/ConfoCor II combination (Zeiss, Jena, Germany). 

Experiments were done with 5–6 nM labeled protein [A140C-Alexa 488-α-SYN, (Alexa 488–C5-maleimide 
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(Molecular Probes, Life Technologies, Carlsbad, CA, USA))] mixed with different concentrations of 

unlabeled protein (30–100 µM), to ensure that the number of fluorescent molecules in the confocal 

volume (0.312 fL) is limited to 1–10. For mathematical background and labeling procedure see 

Supporting Information. 

3.5. Circular Dichroism 

α-SYN WT and mutants were centrifuged for 30 min at 8500 g (Galaxy 14D centrifuge, Sorvall, 

VWR, Geel, Belgium) prior to the experiments to remove pre-existing aggregates. Samples were 

incubated at 37 °C while stirring (~200 rpm). Far-UV CD spectra were recorded on a Jasco-810 

spectrophotometer (Jasco, IJselstein, The Netherlands) in a 1 mm path length Quartz cuvette at room 

temperature. Spectra were recorded from 195 to 260 nm with a step size of 1 nm and a scanning speed 

of 20 nm/min. An average of 3 scans was recorded. All spectra were corrected by subtracting the 

background spectrum of the buffer. For every time point, aliquots were taken from the samples and diluted 

to 0.2 mg/mL in 20 mM Tris-HCl, pH 7.4, at 20 °C. 

3.6. Turbidity and Thioflavin T Measurements 

Prior to each experiment, the pre-existing aggregates were removed by centrifugation as described 

above. The samples were further diluted in 20 mM Tris-HCl pH 7.4 to the indicated concentrations and 

NaCl was added up to 100 mM, unless otherwise stated. For thioflavin T experiments 50 µM of ThioT 

(Sigma-Aldrich, St. Louis, MO, USA) was added. 

All samples were incubated in a flat-bottom transparent 96-well plate (Greiner, Bio-One, Hemmel, 

Belgium) at 37 °C with continuous shaking (~270 rpm) in a Safire2 plate reader (TECAN, Mechelen, 

Belgium). Every 1000 s, the turbidity of the samples was determined by measuring the absorbance at 

350 nm, ThioT fluorescence was measured at 482 nm (excitation at 446 nm). To reduce the number of 

data points and simplify the graphics, every fifth time point was visualized. The samples were made in 

triplicate and each experiment was repeated at least three times independently. Every graph is a 

representative example. 

3.7. Data Fitting and Statistical Analysis of ThioT and Turbidity Data 

All aggregation curves were fitted with SIGMAPLOT version 8 (Systat Software Inc., San Jose, 

CA, USA) to a three-parameter sigmoidal model to extract the relevant aggregation parameters  

(see Equation (1)). 

 bxxe

a
y

01 
  (1)

in which y is the turbidity or ThioT fluorescence signal, x is the time, a is the total increase in 

absorbance or fluorescence, x0 is the half-time of aggregation and 1/b describes the slope of the curve 

at its mid-point and is also the rate constant of aggregation at this point. For statistical analysis all 

groups were first compared to identify significant differences through an ANOVA one-way analysis of 

variance, followed by a Tukey’s post test to compare all pairs of columns. 
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3.8. Phosphorylation Assay 

Two microgram of α-SYN was incubated with the respective kinases, 6 µCi of ATP-γ-phosphate 

(PerkinElmer, Norwalk, CT, USA) and 10 µM of cold ATP in buffer A (20 mM Tris pH 7.4, 10 mM 

MgCl2, 5 mM β-glycerophosphate, 0.1 mM Na3VO4, 2 mM DTT) in a total volume of 10 µL for the 

indicated time points. The reaction was stopped by adding 1% SDS solution and boiling for 5 min. 

The following concentrations of the kinases were used: 7.9 nM/reaction of Casein Kinase II (CKII) 

(Specific activity = 2540 pmol/µg·min) (Biaffin, Kassel, Germany); 320 nM/reaction of Polo-like 

kinase 2 (PLK2) (Specific activity = 69 pmol/µg·min) (Proqinase, Freiburg, Germany); 164 nM/reaction of 

Sarcoma (SRC) kinase (Specific activity = 142 pmol/µg·min) (Biaffin); 103 nM/reaction of FYN 

kinase (Specific activity = 87 pmol/µg·min) (Proqinase). 

Samples were resolved on a NuPAGE 10% bis-Tris pre-casted gel (Invitrogen, Merelbeke, 

Belgium) in 1× MES buffer. The samples were transferred to a nitrocellulose membrane by semi-dry 

blotting according to the manufacturer’s protocol. Phosphate incorporation was measured by 

autoradiography where the membrane was exposed to a phosphorescence plate (GE healthcare, 

Sunnyvale, CA, USA). The densitometric quantification of the autoradiogram was done using AIDA 

image analyzer (Software Verise, Straubenhardt, Germany). Equal loading was confirmed by western 

blotting using an anti-α-SYN antibody (see below). 

The degree of phosphorylation of alpha-synuclein was also tested for these samples in a separate 

experiment, in which the radioactively phosphorylated α-SYN was separated via SDS-PAGE  

(as described above) and the gel stained using Coomassie Brilliant Blue according to the manufacturer’s 

instructions (Thermo Scientific, Pittsburgh, PA, USA). Gel bands were excised and submitted to 

scintillation counting and calculation of incorporated phosphates, as previously described [54]. 

In order to prepare in vitro phosphorylated α-SYN for further experiments (including far UV-CD 

measurements, mass spectrometry analysis as well as fibrillization experiments), the following 

protocol was used: 1 mg of recombinant α-SYN was phosphorylated with CKII, PLK2, SRC or  

Fyn kinase in 600 µL buffer A. Each reaction was incubated overnight at 30 °C in the presence of  

1 mM ATP. The concentration of kinase used was 61.7 µM for CKII, 17.22 µM for Fyn kinase,  

5.42 µM for PLK2 and 27.3 µM for SRC kinase; the concentration of α-SYN was 115 µM. After 

phosphorylation and prior to the aggregation assay pre-existing aggregates were removed by 

centrifugation at 8500 g for 30 min. Since ATP itself had an effect on the aggregation of α-SYN  

(see Supplementary Figure S3), it was removed by loading each sample on a PD-10 column.  

Elution was done in 100 µL fractions with 20 mM Tris pH 7.4. For the aggregation assays 30 µM of 

phosphorylated α-SYN in buffer B (20 mM Tris-HCl pH 7.4, 100 mM NaCl) was used unless 

otherwise stated. The control was subjected to the same conditions without addition of ATP and kinase. 

Protein concentrations were re-determined after the PD-10 buffer exchange step prior to further testing. 

3.9. Mass Spectrometry 

Phosphorylated α-SYN (50 µg) was subjected to a TCA-acetone precipitation and digested for 3 h 

at 50 °C with 12 µg of thermolysin in the presence of 200 mM ammonium acetate and 20 mM CaCl2. 

For more information about the actual procedure see Supporting Information. 
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3.10. Western Blot Analysis 

After SDS-PAGE, proteins were blotted on a PVDF membrane (Bio-Rad Laboratories, Hercules, CA, 

USA), which was rehydrated in methanol (2 s) and PBS (2 × 5 min) before use. After blotting (30 V, 1 h), 

the membrane was blocked in PBS-0.1% Triton (PBST) with 5% milk (Régilait skim milk,  

Saint-Martin-Belle-Roche, France) to avoid unspecific binding of the antibodies used. This was 

followed by incubation with the monoclonal mouse anti-α-SYN primary antibody (Zymed, San Francisco, 

CA, USA, 1:500 dilution in PBST-5% milk, 1 h), by a wash step (4 × 10 min, PBST), a secondary 

antibody incubation (horse radish peroxidase (HRP)-labeled goat anti-mouse polyclonal antibody 

(DAKO, Glostrup, Denmark), 1:10,000 dilution in PBST, 30 min) and a final wash step (4 × 10 min, 

PBST). Protein bands were visualized with the ECL detection kit (GE healthcare) using a LAS-3000 

Mini imager (Fujifilm, Tokyo, Japan). Blots were analysed by the AIDA image analyzer software. 

3.11. Transmission Electron Microscopy (TEM) 

For the TEM measurements, 300-mesh carbon and formvar coated copper grids were used. After 

adsorption (for 2 min) of the α-SYN samples onto the grids, they were negatively stained with 1% 

uranyl acetate for 30 s. The samples were examined with a Zeiss EM 10C electron microscope JEOL 

JEM2100 LaB6 (Zeiss, Zaventem, Belgium) operating at 200 KeV. A magnification of 5000 was used 

to get an overview image. For more detailed pictures of the fibrils a magnification of 20,000 was used. 

3.12. Peptidyl Prolyl Cis-Trans Isomerase Activity of FKBP12 

For more information about the activity assay see Supporting Information. 

4. Conclusions  

In normal physiological conditions only about 4% of α-SYN is phosphorylated on S129 [14,17].  

In this study we show that phosphorylation on S129 is not necessary for, or does not appear to 

promote, the aggregation of α-SYN, since its fibrillization kinetics are comparable to that of the  

WT protein. Previous work however shows that an increase in pS129-α-SYN is observed under  

certain conditions such as proteasomal inhibition, oxidative stress, mitochondrial complex 1 

dysfunction and an increase in iron levels, which are all implicated in PD [17,55,56]. This elevated 

pS129 could be caused by upregulated kinase activity, as has been shown for CKII [22,56],  

by decreased phosphatase activity or a decrease in degradation of phosphorylated α-SYN. For these 

reasons, the reversal of upregulated pS129 by pharmacological inhibition of kinases phosphorylating 

S129 has been proposed as a therapeutic venue for PD [57]. Given our data that phosphorylation 

mutants behave so differently biochemically from phosphorylated α-SYN, it may be interesting to 

develop cellular and in vivo disease models based on the modulation of pS129 levels via manipulation 

of the kinases and phosphatases regulating that phospho-site. Our study also indicates that future 

research is warranted to study the influence of FKBPs on cellular aggregation of phosphorylated  

α-SYN as well as the study of other effectors of α-SYN aggregation and their effect on the aggregation 

kinetics of the phosphorylated protein. 
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Supporting Information 

Figure S1. General aggregation properties of WT α-SYN and phosphorylation mutants. 

The aggregation kinetics were monitored by turbidity measurements at 350 nm under 

continuous shaking (270 rpm) at 37 °C. The concentration of α-SYN was 50 µM.  

(A) Representative measurement showing the same trends as observed in ThioT experiments, 

both tyrosine phosphorylation mutants aggregate slower (Y125F (white squares) and 

Y125E (gray squares)) while both serine phosphorylation mutants (S129A (white triangles), 

S129D (gray triangles) aggregate as fast as WT α-SYN (white circles); (B) Mean halftimes 

of at least three independent measurements (each done in triplicate) with SEM shown on 

each bar; and (C) Mean end phase amplitude. * indicates a statistical significant difference 

when compared to WT with a p-value < 0.05.  

 

Figure S2. Size distribution of (phosphorylated)-α-SYN before aggregation using FCS. 

Measure of diffusion coefficients of phosphorylated α-SYN compared to the non-phosphorylated 

control using FCS. pS129-α-SYN (dark yellow): phosphorylated α-SYN on S129 using 

PLK2, pY125-α-SYN (dark blue): phosphorylated α-SYN using Fyn kinase. In order to 

perform FCS, trace amounts of A140C-α-SYN, labeled with Alexa 488 nm was added, as 

described in the Materials and Methods section (A) Mean D of at least four independent 

measurements, SEM shown on each bar. No significant difference was seen between the 

mean D (86.4 +/− 4.95 to 92.3 +/− 3.8 µm2/s), corresponding to the monomeric form of the 

protein; and (B) Mean hydrodynamic radius calculated from D assuming a spherical 

particle. No significant difference was observed between p129-, pY125- and WT ctl-SYN. 
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Figure S3. Effect of ATP on the aggregation kinetics of a-SYN. The kinetics of the 

fibrillization process of α-SYN WT in the presence and absence of ATP followed by a 

Thioflavin T assay under continuous shaking (270 rpm) at 37 °C. A concentration of  

50 µM α-SYN was used in each experiment. (A) Representative figure showing an 

inhibitory effect of ATP in α-syn fibrillization. The halftimes of fibrillization are expressed 

as percentages of WT, which was set to 100%; (B) Mean values of the halftimes;  

(C) Mean end phase fluorescence intensities; (B) and (C) are calculated from five 

independent measurements (n = 5) each done in quadruplicate, with the standard error of mean 

(SEM) shown on each bar; and (D) Laser scanning microscopy images at the slide surface 

during the course of the fluorescence correlation spectroscopy (FCS) experiments. Scale bar, 

50 µm (valid for all panels). In these experiments, alpha-synuclein is mixed with fluorescently 

labelled alpha-synuclein as described in materials and methods. Shown here is that the 

presence of ATP in the analysis mixture leads to rapid deposition of large amorphous 

aggregates, in contrast to the deposition of aggregates of fibrillar form in normal samples. 

These experiments illustrate that the presence of ATP in the in vitro aggregation assays 

cause a time dependent non-fibrillar aggregation of alpha-synuclein, explaining the low 

end phase fluorescence intensity in the ThioT assay. For this reason, ATP is removed from 

all aggregation assays of this study, as described in Materials and Methods.  
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Figure S4. ESI-MS/MS spectra of phosphopeptides of thermolysin digested α-synuclein 

after (A) SNK phosphorylation and (B) FYN phosphorylation.  

 

 
(A) 

 
(B) 
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Fluorescent Labeling 

For fluorescent labeling of α-SYN the A140C mutant is used, which was purified as described 

above. The protein (200 μM) was labeled with a 20-fold molar excess of Alexa 488–C5-maleimide 

(Invitrogen, Carlsbad, CA, USA) in 20 mM Tris buffer pH 7.4. The protein was incubated for 2 h at 

room temperature while stirring (100 rpm). Labeled protein was separated from free dye by gel 

chromatography using a double PD-10 column (GE Healthcare). C-terminal Alexa labeled α-SYN was 

used for FCS measurements. The efficiency of labeling is approximately 42% and was calculated using 

the extinction coefficients ε(280 nm (α-SYN)) = 5800, ε(280 nm (Alexa Fluor 488 nm)) = 920 and ε(493 nm (Alexa Fluor 488 nm)) = 

72,000 cm−1 M−1 through use of the following equation: 

 =  (S1)

The aggregation rate of A140C is comparable to WT as measured by turbidity and thioflavin T 

(ThioT) fluorescence [58]. 

Fluorescence Correlation Spectroscopy (FCS) 

A small fraction (<10%) of free dye is present in all measured samples, probably due to the 

presence of non-specifically bound dye molecules that are not fully removed by the gel chromatography 

after labeling, and are released upon dilution to nanomolar concentrations. For each time point,  

16 measurements were done, each with a time lapse of 10 s, and every curve was fitted using the 

following two component model (Equations (S2–S4)): 

 (S2)

 (S3)

 (S4)

GT is the part of the autocorrelation curve at a fast timescale, representing the photodynamics; GD is 
the concentration-dependent part representing diffusion;  is the correlation time;  and  are the 

amplitude and the relaxation time of the photodynamic process; N is the average number of particles in 
the confocal volume; (F1) and (1 − F1) are respectively the diffusion time (fraction) of free  

Alexa dye and dye bound to α-SYN;  and are the radial and axial radii of the confocal volume, 

which are determined in the calibration with Alexa 488 (D = 435 μm2 s−1) [59] and are fixed 

throughout the measurements. 
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Mass Spectrometry 

Identification of phosphopeptides in thermolysin digested α-synuclein after SNK and FYN 

phosphorylation was executed both with MALDI-TOF/TOF and LC-ESI-MS/MS. In brief, one tenth 

of the sample of phosphorylated α-synuclein (note: the same sample which is used in the in vitro 

aggregation tests) was subjected to phospho-enrichment on PhosTrap beads (Perkin Elmer, Waltham, 

MA, USA) according to manufacturer’s instructions. The PhosTrap eluate was divided in two for 

MALDI and ESI analysis, respectively. These eluates were used to detect the nature of the 

phosphorylated species in the thermolysin digest. The identity of the peptides was confirmed by 

MS/MS in both ionization modes. In the next step, the non-phosphorylated counterparts of these 

phosphopeptides were quantified in non-phosphoenriched samples. MALDI analysis was executed on a 

4800 MALDI TOF/TOF instrument (ABSCIEX, Framingham, MA, USA) in the reflectron mode. ESI 

analysis was executed on a 4000 QTRAP instrument (ABSCIEX) coupled to a Dionex Ultimate capillary 

liquid chromatography system. Peptides were separated on a PepMap C18 column developed with a  

30 min linear gradient (0.1% formic acid-6% acetonitrile-water to 0.1% formic acid–40%  

acetonitrile–water). MRM (multiple reaction monitoring)-induced product (+) ion scanning was used 

to identify and quantify (MultiQuant 1.1, ABSCIEX, Framingham, MA, USA) peptides. 

Calculation of percentage phosphate incorporation, was executed based on the quantification of 

non-phosphorylated equivalents of the phosphopeptides in non-phosphorylated synuclein, SNK 

phosphorylated synuclein and FYN phosphorylated synuclein, adapted from a method described  

by Olsen and colleagues [60] (Olsen et al. 2010), which was originally developed to calculate  

peptide phosphorylation stoechimetries if MS data of phosphopeptides (P), of the corresponding  

non-phosphopeptides (NP), and of relative protein abundance (z) are available in two conditions  

(H and L) of a SILAC experiment. 

P H + NP H = z (P L + NP L) (S5)

P H/P L = x (S6)

NP H/NP L = y (S7)

A a result: P L/NP L = (z − y)/(x − z) (S8)

In the adapted calculation employed here, the H and L conditions are replaced with CTRL and SNK 

(or FYN), respectively. In this way, the following equations are obtained: 

NP CTRL/NP SNK = y (S9)

P SNK/NP SNK = (z − y)/(0 − z) (S10)

x = 0 because there is no phosphorylation in CTRL condition;  

y is known from relative abundancies of non-phosphopeptides in MS;  

z is known from initial protein concentration measurements. 
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Peptidyl prolyl Cis-Trans Isomerase Activity of FKBP12 

The isomerase activity of FKBP12 was determined following the protocol of Kullertz et al [61]  

(Kullertz et al. 1998). Four microliters of FKBP12 or 4 µL of buffer (35 mM Hepes pH = 7.4) was 

added to 40 µL chymotrypsin (1 g/L in 35 mM Hepes pH = 7.4). After addition of the substrate  

(400 µL of succinimidyl-Phe-Pro-Phe-4-nitroanilide (Bachem, Torrance, CA, USA)) the reaction was 

monitored at 390 nm. The obtained curves were fitted to the equation below (Equation (S11)) to obtain 

the first order rate constant of the reaction. 

Y =  (S11)

The specific enzymatic activity was determined using Equation (S12): 

 (S12)

 = concentration of hFKBP12 used, k0 = the observed rate constant of the uncatalyzed reaction 

and kobs = the observed rate constant in the presence of FKBP12. KM is the Michaelis-Menten constant 

and kcat = the catalytic rate constant. 
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