
Int. J. Mol. Sci. 2013, 14, 17238-17255; doi:10.3390/ijms140917238 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Differential Proinflammatory and Oxidative Stress Response 
and Vulnerability to Metabolic Syndrome in Habitual  
High-Fat Young Male Consumers Putatively Predisposed  
by Their Genetic Background 

Pedro González-Muniesa 1,2,†, María Pilar Marrades 1,†, José Alfredo Martínez 1,2  

and María Jesús Moreno-Aliaga 1,2,* 

1 Department of Nutrition, Food Sciences and Physiology, University of Navarra,  

31008 Pamplona, Spain; E-Mails: pgonmun@unav.es (P.G.-M.);  

pmarrades@unav.es (M.P.M.); jalfmtz@unav.es (J.A.M.) 
2 CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, 

29029 Madrid, Spain 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: mjmoreno@unav.es;  

Tel.: +34-948-425-600 (ext. 806558); Fax: +34-948-425-740. 

Received: 3 June 2013; in revised form: 12 August 2013 / Accepted: 13 August 2013 /  

Published: 22 August 2013 

 

Abstract: The current nutritional habits and lifestyles of modern societies favor  

energy overloads and a diminished physical activity, which may produce serious clinical 

disturbances and excessive weight gain. In order to investigate the mechanisms by  

which the environmental factors interact with molecular mechanisms in obesity, a  

pathway analysis was performed to identify genes differentially expressed in subcutaneous 

abdominal adipose tissue (SCAAT) from obese compared to lean male (21–35 year-old) 

subjects living in similar obesogenic conditions: habitual high fat dietary intake and 

moderate physical activity. Genes involved in inflammation (ALCAM, CTSB, C1S,  

YKL-40, MIF, SAA2), extracellular matrix remodeling (MMP9, PALLD), angiogenesis 

(EGFL6, leptin) and oxidative stress (AKR1C3, UCHL1, HSPB7 and NQO1) were 

upregulated; whereas apoptosis, signal transcription (CITED 2 and NR3C1), cell control 

and cell cycle-related genes were downregulated. Interestingly, the expression of some of 

these genes (C1S, SAA2, ALCAM, CTSB, YKL-40 and tenomodulin) was found to be 

associated with some relevant metabolic syndrome features. The obese group showed a 
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general upregulation in the expression of inflammatory, oxidative stress, extracellular 

remodeling and angiogenic genes compared to lean subjects, suggesting that a given 

genetic background in an obesogenic environment could underlie the resistance to gaining 

weight and obesity-associated manifestations. 

Keywords: metabolic syndrome; microarray; inflammation; oxidative stress;  

subcutaneous adipose tissue 

 

1. Introduction 

Inflammation is nowadays considered as a key feature associated to fat accumulation and obesity 

related conditions [1]. This pro-inflammatory status seems to be initially located in white adipose 

tissue, being currently suggested to be largely related to a dysregulation in adipokine secretion, which 

leads to different pathological conditions associated with obesity and metabolic syndrome features 

such as type 2 diabetes and cardiovascular disease [2–4]. Three reasons have been proposed by 

different groups to explain this inflammatory process occurring within adipose tissue: (a) local  

hypoxia [5,6]; (b) endoplasmic reticulum stress [7–9]; and (c) oxidative stress [10–12]. 

The prevalence of obesity is rising worldwide, which is likely to be a consequence of changes in 

modern societies, where easy and cheap availability of high-calorie yielding foods is combined with a 

sedentary lifestyle [13,14]. In this context, it has been suggested that the inflammatory state associated 

with obesity appears to be predominantly triggered by excessive nutrient intake [15] and/or unhealthy 

dietary patterns [16]. Further to this, a human study with almost 3000 people has shown that subjects 

with higher concentrations of inflammatory markers in their blood are more prone to gaining weight [17]. 

However, in this condition of chronic disturbance of metabolic homeostasis, some subjects seem to be 

more resistant to gaining weight and to showing metabolic syndrome manifestations [18,19]. Thus, 

there are consistent evidences from different human studies about the importance of the individual 

genetic background in the fat deposition and in the success of weight loss programs [14,20,21]. 

Indeed, a study carried out in mice revealed that the inflammatory state associated with obesity 

appears to be partly triggered by high fat diet and excessive weight [22]. Furthermore, the composition 

and quantity of the fat content of a meal seems to be directly related to the magnitude of the 

postprandial inflammatory response [23]. In this context, adipose tissue is one of the organs 

responsible for nutrient clearance from blood [24]. Therefore, it is reasonable to suggest a main role of 

inflammation in the vulnerability to obesity and the metabolic syndrome [25,26]. 

Thus, a genetic background favoring a pro-inflammatory status, in the presence of increased food 

availability could underlie the predisposition to develop obesity [27]. In order to clarify differences  

in the functional capacity of the adipose tissue, a pathway analysis was performed to identify 

inflammatory and metabolic genes differentially expressed in obese vs. lean subjects living in similar 

obesogenic conditions that could underlie in the vulnerability to obesity and metabolic syndrome 

development. Indeed, the interest of this trial was the fact that some subjects consuming the same 

amount of fat/energy and showing similar physical activity patterns produced different body weight 
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phenotypes since some of them were obese and others were lean, which could be, at least in part, 

related to differences in the gene expression profile in white adipose tissue. 

2. Results and Discussion 

2.1. Baseline Characteristics of Lean and Obese Subjects 

Descriptive characteristics at baseline of lean and obese subjects with similar habitual dietary intake 

of fat (>40%) and moderate physical activity are reported in Table 1. As expected, waist circumference 

was significantly higher in the obese than in lean subjects. Insulin sensitivity revealed by  

Quantitative Insulin-Sensitivity Check Index (QUICKI) was significantly lower in obese compared to 

lean subjects. The fasting lipid profile including Total Cholesterol and Total Cholesterol/HDL  

(High-Density Lipoprotein)-Cholesterol ratio was significantly higher (p < 0.01) in the obese 

compared to lean persons. The systolic and diastolic blood pressure values were significantly elevated 

(p < 0.01) in the obesity condition. Despite that high fat diet is associated with the occurrence of 

metabolic syndrome manifestations, lean volunteers showed no features of metabolic syndrome. Five 

of the obese volunteers were considered as obese with metabolic syndrome (WHO), based on the 

presence of three or more of the following characteristics according to the National Cholesterol 

Education Program: waist circumference greater than 102 cm; blood pressure of at least 130/85 mmHg; 

serum glucose level of at least 110 mg/dL; serum triacylglycerol level of at least 150 mg/dL; and 

HDL-cholesterol level of less than 40 mg/dL. 

Table 1. Anthropometrical and clinical parameters of volunteers. 

Baseline descriptive characteristics 
Lean (n = 9) Obese (n = 9) 

p value 
Mean SE Mean SE 

Energy (Kcal) 2,766.7 258.7 2799.1 171.4 0.918 
Fat intake (%E) 44.6 2.2 42.5 1.8 0.573 

Physical activity (METs h/week) 17.5 5.1 18.0 4.4 0.945 
Watching TV (METs h/week) 12.2 2.5 10.2 3.2 0.621 

BMI (kg/m2) 23.1 0.4 34.7 1.2 0.000 
Waist circumference (cm) 78.7 1.2 105.7 2.6 0.000 

QUICKI 0.40 0.00 0.35 0.01 0.004 
Triglycerides (mg/dL) 85.0 6.7 142.2 10.6 0.001 

Total Cholesterol (mg/dL) 167.4 17.7 188.5 6.3 0.008 
HDL-Cholesterol (mg/dL) 43.3 1.7 40.0 2.4 0.059 
Total Cholesterol/HDL-C 3.5 0.2 5.0 0.3 0.003 

Systolic BP (mmHg) 122.5 3.6 139.1 2.8 0.002 
Diastolic BP (mmHg) 74.0 2.2 82.8 3.0 0.002 

Abbreviations: BMI: Body mass index; QUICKI, Quantitative Insulin-Sensitivity Check Index;  

HDL, High-Density Lipoprotein; BP, Blood Pressure; MET, Metabolic Equivalent of Task; SE, Standard Error. 

Independent Student’s t-test or Mann-Whitney U-test were performed, as appropriate, depending on the 

results of Kolmogorov-Smirnoff and Shapiro-Wilk normality tests. 

One group of lean subjects that despite showing a high fat intake and moderate physical activity 

remained lean and resistant to weight gain and with no features of metabolic syndrome was identified, 
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which should be attributed to different genetic make-up [18]. The failure of the adipose tissue to buffer 

postprandial lipids due to a metabolic inefficacy, has been suggested as a mechanism triggering 

inflammatory response in adipose tissue [28]. Thus, several studies have recently shown a cross-talk 

between metabolic and immune system and how important this link could be to the development of 

obesity and/or its co-morbidities [29–31]. Mitochondrial dysfunction in adipocytes due to an excessive 

free fatty acid release and local hypoxia, common features in the adipose tissue from obese patients, 

seems to induce insulin resistance and lipotoxicity [32,33]. In fact, the mitochondrion gene ontology (GO) 

category (cellular component) was downregulated in obese compared to lean (p < 0.001). 

2.2. Over-Represented GO Biological Process Categories 

2.2.1. Genes Involved in Inflammation 

Pathway analysis revealed that the most notable class of genes upregulated in subcutaneous 

abdominal adipose tissue (SCAAT) of obese compared to lean subjects concerned the immune 

response (12 genes p < 0.001, Table S1). This category included genes encoding members for the 

Complement system, as C1S, CD163 and CD59; Antigen processing: HLA-DQA1, HLA-DRB4 and 

CTSB; Genes involved in T cell response including: SPP1, DEFA1, SAA1, SAA2 and ALCAM.  

In addition, MIF a chemotactic factor for monocytes/macrophages and YKL-40, a human glycoprotein, 

were also upregulated. In order to validate the results of the microarray, the gene expression 

upregulation of ALCAM, CTSB, C1S, YKL-40, MIF and SAA2 was verified by Real Time-Polymerase 

Chain Reaction (RT-PCR, Table 2). 

Moreover, a downregulation of some similar genes involved in inflammation has been reported 

after weight loss [34], which clearly ameliorates the cardiovascular risk and metabolic syndrome 

features. Furthermore, MIF has been reported to be upregulated in adipocytes exposed to 1% O2 [35]. 

We reported for the first time the upregulation of activated leukocyte-cell adhesion molecule 

(ALCAM), a broadly expressed adhesion molecule of the Ig superfamily, which shows high sequence 

homology with one candidate HDL receptor, HB2-high-density lipoprotein-binding protein 2, one of a 

pair of liver HDL binding proteins [36]. Additionally, we also found that YKL-40 gene expression 

appeared overexpressed. YKL-40 has been identified as a biomarker of inflammation, as it is elevated 

in patients with type 2 diabetes and related to insulin resistance [37] and extracellular matrix (ECM) 

remodeling [38], and is also elevated in cardiovascular disease [39]. Moreover, YKL-40 was described 

as being secreted by adipose tissue [40]. In accordance to our data, Hempen et al. [41] also observed 

that YKL-40 is elevated in morbidly obese patients, and declines after weight loss. However,  

Nielsen et al. [42] found that YKL-40 is an obesity-independent marker of type 2 diabetes. 

Interestingly, the most upregulated gene in the array, HLA-DRB4, has neither been previously 

reported to be expressed in the adipose tissue, nor related with obesity. Due to its role in the immune 

system [43] it can be hypothesized that its different expression might be explained by the infiltration of 

macrophages occurring in obese subjects, although this needs to be clarified in future experiments. 
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Table 2. Differentially expressed genes in subcutaneous abdominal adipose tissue (SCAAT) of obese vs. lean subjects with similar dietary and 

lifestyle habits. 

Gene name Gene symbol 
SLR (Microarray) Lean Obese 

RT-PCR p value 
Mean SD Mean SD Mean SD 

Upregulated 
Activated leukocyte cell adhesion molecule ALCAM 0.73 0.33 1.0 0.2 4.9 3.9 0.048 

Cathepsin B CTSB 0.65 0.45 1.0 0.2 1.8 0.4 0.026 
Complement component 1, S subcomponent C1S 0.58 0.25 1.0 0.2 2.3 0.4 0.003 

Chitinase 3-like 1 (CHI3L1) or human cartilage glycoprotein-39 YKL-40 1.28 0.53 1.0 0.2 1.9 0.4 0.026 
EGF-like-domain, multiple 6 EGFL6 3.13 0.79 1.0 0.2 2.0 0.4 0.015 

Macrophage migration inhibitory factor MIF 0.58 0.10 1.0 0.4 2.8 1.0 0.031 
Palladin PALLD 1.10 0.22 1.0 0.3 2.5 1.7 0.037 

Serum amyloid A2 SAA2 0.93 0.91 1.0 1.8 6.8 4.6 0.020 
Tenomodulin TNMD 1.53 0.56 1.0 0.2 5.0 0.3 0.003 

Downregulated 
Cbp/p300-interacting transactivator CITED2 −1.05 0.26 1.0 0.4 0.3 0.1 0.019 

v-Fos FBJ murine osteosarcoma viral oncogene FOS −2.75 2.10 1.0 0.2 0.9 0.4 0.998 
Nuclear receptor subfamily 3, group C, member 1 NR3C1 −0.90 0.18 1.0 0.2 0.2 0.1 0.028 

The alteration ratios of the gene expression are represented as means of signal log ratio (SLR) of the four quotients (see experimental Section 3.4). Quotients were 

calculated from the gene expression for the obese subjects divided by that of the lean subjects. Differential gene expression was further confirmed by RT-PCR of a subset 

of genes. SD, Standard Deviation; n = 9 in each group. Differences between the lean and obese groups were analysed by the unpaired Student’s t or  

U Mann Whytney’s test after testing the normality with the Kolmogorov-Smirnoff and Shapiro-Wilk tests. 
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It is well known that the expanding adipose tissue during high fat feeding makes a substantial 

contribution to the development of obesity-linked inflammation via dysregulated production of  

pro-inflammatory cytokines (such as TNF-alpha and Interleukin-6) [44], chemokines and adipokines 

and the reduction of anti-inflammatory adipokines (like adiponectin). In this context, we found a 

significant upregulation of IL-6 mRNA (1.00 ± 0.12 vs. 2.82 ± 0.55, p < 0.05) and a downregulation of 

adiponectin [45] in SCAAT of our obese volunteers. This state of chronic low-grade inflammation 

could be powerfully augmented through the infiltration of macrophages into white adipose tissue, 

which perpetuate a proinflammatory vicious cycle [46]. Taking all present data together, it can be 

hypothesized that adipose tissue itself is involved in the chronic activation of relatively nonspecific 

defence system, as other groups have proposed [29,30]. Thus, a genetic background favoring  

a chronic disturbance of the metabolic homeostasis could lead to an upregulation of the 

proinflammatory-related genes, which could underlie the development of the metabolic syndrome. 

2.2.2. Genes Involved in Extracellular Matrix Remodeling 

Cell adhesion (p < 0.01) and proteolysis (p < 0.05) pathways both involved in extracellular matrix 

(ECM) remodeling showed higher mRNA levels of genes encoding for focal adhesion and ECM: 

CTGF, LTBP2, ITGB5, SPON2, MMP9 and WISP2, whereas TIMP4 and PTENP1 two inhibitors were 

downregulated in SCAAT of obese subjects. Interestingly, the expression of genes encoding a range of 

proteins associated with cytoskeletal structure of cells as Transgelin, TUBB2 and PALLD were 

upregulated (Table S1). 

Therefore, obese volunteers showed an upregulation in some extracellular matrix  

remodelation-related genes, a process that is suggested to take place during obesity to accommodate 

adipose tissue expansion, and which seems to be very important in the development of obesity  

and its co-morbidities [47]. Different studies in animals and humans have shown that some  

ECM-related genes are upregulated, such as osteopontin [48]. However, other genes like the MMPs  

(matrix metalloproteinases), seem to be downregulated [49,50]. Furthermore, an upregulation of 

PALLD, a novel actin cytoskeleton-associated protein, essential for cell-ECM interaction through 

maintaining normal actin cytoskeleton architecture [51], was detected. Recently, the possible relation 

of this gene with myocardial infarction [52] and pancreatic cancer [53] has been discarded, but a 

possible link with obesity is still under research. Another group of researchers observed, by DNA 

microarray, an expression of this gene of more than eight fold higher in large adipocytes compared to 

small adipocytes [54]. More information is needed to fully understand these outcomes. 

2.2.3. Genes Involved in Angiogenesis 

Our data show that the expression of several proangiogenic factors was also upregulated (p < 0.05) in 

obese subjects. These factors included EGFL6, Leptin, CTGF and cysteine-rich protein-61 (CYR61) 

(Table S1). In addition, ALCAM [55] and CTSB [56] also involved in inflammatory processes had 

angiogenic activities. 

In this context, accumulating evidence suggests that adipose tissue growth/expansion is dependent 

on angiogenesis and endothelial cell proliferation [57]. Here, we demonstrated that EGFL6, an 

angiogenesis-related gene previously shown to be expressed in human adipose tissue [58], is 
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upregulated in the obese. In addition, CTSB a novel cathepsin member, as CTSK and CTSP previously 

related with inflammation in White Adipose Tissue (WAT) [59,60], which encodes a lysosomal 

protease implicated in degradation of ECM and angiogenesis [61] was upregulated in obese compared 

to lean subjects. Interestingly, CTSB has been found to be overexpressed and more active under hypoxic 

conditions [62], as those suggested to occur in obese patients [5]. However, our data revealed that 

tenomodulin, which is considered a putative angiogenesis inhibitor, was also found to be upregulated 

in obese subjects. This is in agreement with the results from Saiki et al. [63]. Other investigations have 

highlighted the importance of polymorphisms in this gene in the development of obesity and type 2 

diabetes [64], cholesterol metabolism [65] and mild inflammation [66]. Furthermore, Kolehmainen  

et al. [67], suggested that tenomodulin could be involved in extracellular matrix remodeling, and in 

these samples this might be its main role instead of its anti-angiogenic properties. 

2.2.4. Genes involved in Oxidative Stress 

The analysis of the microarray revealed that several genes encoding proteins involved in ROS 

(Reactive oxygen synthesis) activity were overexpressed, such as AKR1C3, UCHL1, HSPB7 and NQO1. 

Oxidative stress is considered one of the main reasons triggering and maintaining the inflammatory 

processes that occur within obesity and related co-morbidities, such as diabetes and cardiovascular 

disease [10,11,68]. The upregulation of AKR1C3, UCHL1 and NQO1 has been linked with obesity 

previously. Thus, AKR1C3, a gene that encodes a member of the aldo/keto reductase superfamily, 

apparently induces androgen inactivation, increasing adiposity [69–71]. Furthermore, central obesity, 

which is more pernicious than peripheral obesity, is associated with overexpression of this gene [71]. 

Additionally, Svensson et al. [72] have shown that diet induced weight loss reduced AKR1C3 mRNA 

levels in human obese subjects, and that larger adipocytes presented higher levels of this gene in 

comparison to smaller adipocytes. Moreover, a deubiquitinating enzyme, Ubiquitin carboxy-terminal 

hydrolase L1 (UCH-L1), seemed to be deficient in humans with type 2 diabetes [73], although it has 

been found overexpressed under hypoxic conditions and in visceral fat from humans modulating 

Peroxisome proliferator-activated receptor gamma (PPARγ) signaling pathway [74]. In addition, 

Palming et al. [75] have shown that NQO1 expression, a member of the reduced Nicotinamide 

Adenine Dinucleotide Phosphate (NAD(P)H) dehydrogenase (quinone) family, is increased in human 

adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers 

of liver dysfunction. Furthermore, the use of capsaicin as an antiobesity compound reduced the 

expression of NQO1 in rats [76]. 

Interestingly, HSPB7 a heat shock protein, to our knowledge, has not been linked to obesity, but there 

are several studies reporting its association to cardiovascular disease, although its overexpression seems 

to be protective [77], common variants in this gene have been associated with advanced heart failure [78]. 

2.3. Under-Represented GO Biological Process Categories 

2.3.1. Genes Involved in Apoptosis 

The apoptosis induction pathway was downregulated (p < 0.05), five transcripts encoding proteins 

involved in this inhibited pathway are: RAD21; S100B; RHOB; PLAGL1; CIDEA. 
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2.3.2. Genes in Cell Control and Cell Cycle 

A general downregulation of genes concerning categories of the regulation of cell cycle control/cell 

proliferation, and cell growth and maintenance that might reflect the change in SCAAT from obese 

subjects was found (Table S2). 

2.3.3. Genes in Signal Transcription 

The transcription regulation category included fifteen genes that were downregulated (p < 0.05). 

Interestingly, and contrary to expectations, several genes involved in the JNK (c-Jun N-terminal 

kinases) signal transduction pathway: FOS, FOSB, and JUN (forming the transcription factor complex 

AP-1, activator protein 1) were downregulated. However, the data of the RT-PCR analysis did not 

confirm the FOS downregulation in SCAAT from obese compared to lean. In addition to this, 

Chazenbalk et al. [79] and Jones et al. [80] have recently reported an underexpression of FOS and JUN 

in women with Polycystic Ovary Syndrome, a disease often accompanied by obesity [81,82], agreeing 

with our results found in young male subjects. Moreover, CITED2 a member of the cited family of 

nuclear regulators and NR3C1 were downregulated (Table 2). 

Additional data are given in Tables S1 and S2, which show other interesting upregulated and 

downregulated genes. For instance, a gene importantly upregulated is SVEP1, which has not been 

previously identified in adipose tissue. SVEP1 is a novel cell adhesion molecule that has been shown 

to be expressed throughout the early phases of myogenesis [83] and in cultured osteogenic cells [84]. 

There is no information about the function of SVEP1 in adipose tissue, but it would be interesting to 

address if it has a potential role in adipogenesis in obesity. 

The current study, as others found in the scientific literature [85], has used RNA samples derived 

from adipose tissue for gene expression profile analysis focusing on obesity. This kind of study design 

is distinct from those in which RNA extracts prepared from separated adipocytes and stroma vascular 

cells (SVC) were utilized. However, it is worth noting that a study with Pima Indians, observed a 

similar upregulation of inflammation-related genes in both preadipocytes/stromal vascular cells and in 

adipocytes of adipose tissue from obese Pima Indians, demonstrating that both preadipocytes/SVC and 

adipocytes may play complementary roles in obesity-related inflammation [86,87]. The above-mentioned 

studies reported a NR3C1 downregulation as we found in our study. 

2.4. Association of Gene Expression with Metabolic Syndrome 

Interestingly, 11 genes differentially expressed in the results of this array, such as: ALCAM; CTSB, 

C1S, CITED2, YKL40, EGFL6, MIF, NR3C1, PALLD, SAA2 and TNMD, were found to be correlated 

with some relevant metabolic syndrome features considering all the enrolled subjects as a whole (Table 3). 

For example, gene expression of several transcripts encoding components of the innate immune 

system as C1S and SAA2 a proinflammatory and lipolytic adipokine, were positively associated with 

waist circumference (r = 0.69; p < 0.01, r = 0.71; p < 0.05, respectively). Furthermore, C1S correlated 

negatively with QUICKI (r = −0.51; p < 0.05), and HDL-cholesterol (r = −0.67; p < 0.01);  

and positively with triglycerides (r = 0.71; p < 0.01) and total cholesterol (r = 0.57; p < 0.05). 

Moreover, SAA2 was associated positively with BMI (r = 0.53; p < 0.05). 
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Table 3. Correlation between gene expression and some relevant metabolic syndrome (MS) features. 

MS features 
ALCAM CTSB C1S CITED2 YKL-40 EGFL6 MIF NR3C1 PALLD SAA2 TNMD 

r p r p r p r p r p r p r p r p r p r p r p 

BMI (kg/m2) 0.73 ** 0.61 * 0.42 – −0.51 – 0.53 * 0.17 – 0.25 – −0.69 * 0.46 – 0.53 * 0.51 * 
Waist circumference (cm) 0.71 ** 0.75 ** 0.69 ** −0.52 – 0.35 – −0.02 – 0.66 * −0.49 – 0.56 * 0.71 * 0.34 – 

QUICKI −0.59 * −0.34 – −0.51 * 0.21 – −0.15 – −0.41 – −0.42 – 0.73 * −0.33 – −0.12 – −0.47 – 
Triglycerides (mg/dL) 0.41 – 0.15 – 0.71 ** −0.27 – 0.19 – 0.56 * 0.31 – −0.52 – 0.45 – 0.37 – 0.35 – 
Total-Chol (mg/dL) 0.65 * 0.31 – 0.57 * −0.08 – 0.25 – 0.15 – 0.36 – −0.50 – 0.48 – 0.43 – 0.44 – 
HDL-Chol (mg/dL) −0.68 ** −0.24 – −0.67 ** 0.15 – −0.10 – −0.36 – −0.22 – 0.16 – −0.64 * −0.28 – −0.32 – 
Systolic BP (mmHg) 0.59 * 0.39 – 0.39 – −0.73 ** 0.45 – −0.18 – 0.12 – −0.65 – 0.47 – 0.22 – 0.29 – 
Diastolic BP (mmHg) 0.20 – 0.11 – 0.36 – −0.78 ** 0.47 – 0.25 – −0.11 – −0.42 – 0.37 – 0.32 – 0.09 – 

Spearmann correlation was performed between gene expression (arbitrary units 2−ΔΔCt) and other parameters. * p < 0.05; ** p < 0.01. BMI: Body mass index; insulin 

sensitivity was indirectly determined by the QUICKI model. All the studied subjects were considered as a whole group, n = 18. 
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In addition, the association of several genes related to inflammation: ALCAM, an adhesion  

molecule of the Ig superfamily, which correlates with BMI (r = 0.73; p < 0.01) waist circumference  

(r = 0.71; p < 0.01), QUICKI (r = −0.59, p < 0.05), total cholesterol (r = 0.65; p < 0.05),  

HDL cholesterol (r = −0.68; p < 0.01), and systolic BP (r = 0.59; p < 0.05) was evidenced.  

CTSB a member of the cathepsin family correlated with BMI (r = 0.61; p < 0.05),  

waist circumference (r = 0.75: p < 0.01). These findings involving C1S, SAA2, ALCAM and CTSB are 

novel to the author’s knowledge. 

YKL-40 (also known as CHI3L1), recently defined as a biomarker of inflammation elevated in 

patients with type 2 diabetes and related to insulin resistance, correlates with BMI (r = 0.53; p < 0.05), 

as seen in previous studies [88–90] and in contrast with Nielsen et al. [42]. Furthermore, tenomodulin, 

a member of the cytoskeleton involved in the fibrosis process correlated with BMI (r = 0.51; p < 0.05), 

as found by the group of Carlsson [63]. In this context, it has been observed that an upregulation of 

certain genes in the inflammatory response and cell adhesion molecules promote the recruitment of 

monocytes and other cells, triggering the cardiovascular disease [91]. 

3. Experimental Section 

3.1. Experimental Subjects 

Nine lean (22–33 years old) and nine obese (21–35 years old) male high fat consumers with similar 

physical activity patterns and matched by age were recruited, using a validated questionnaire based on 

self-reported questions about lifestyle and food frequency consumption as previously described [18]. 

In order to confirm that the amount and composition of the energy intake was >40% from fat, each 

subject completed a 3 day weighed food record for two weekdays and one weekend day. The food 

records were analyzed with a computerized program (Medisystem, SanoCare, Madrid, Spain) by a 

trained nutritionist. Physical activity/sedentary lifestyles were assessed (Table 1) through the number 

of hours per week spent sitting down, (watching TV or videos, computer games, reading or listening to 

music, etc.) on a typical work day and on a typical weekend day [92]. 

3.2. Anthropometrical Measurements and Adipose Tissue Biopsy 

On the experimental day, volunteers arrived at the Clínica Universidad de Navarra after 12 h of 

overnight fast. Anthropometrical measurements were made by standard procedures as previously 

described [18]. Then, biopsies of subcutaneous abdominal periumbilical area adipose tissue (1–2 g) 

were performed by liposuction under local anaesthesia following an overnight fast. The samples were 

washed, soaked in RNA-later (Qiagen, Valencia, CA, USA) to avoid RNA degradation and then stored 

at −80 °C until their utilization. The protocol was approved by the Ethical Committee of the University 

of Navarra meeting the standards of the Declaration of Helsinki (Add 1997), and all subjects gave their 

written informed consent before participating in the study. 

3.3. Blood Pressure and Measurements 

Blood pressure (systolic and diastolic) was measured with a standard mercury sphygmomanometer 

(Minimus II, Riester, Germany) as described elsewhere [93]. Fasting blood measurements were made 
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by standard procedures as previously described [18]. The quantitative insulin sensitivity check  

index (QUICKI) was determined using the inverse of the sum of the logarithms of the fasting  

insulin (µU/mL) and fasting glucose (mg/dL). 

3.4. Microarray Analysis 

Total RNA was isolated from each human subcutaneous fat sample as previously described [45]. 

Then, RNA was pooled to minimize the biological variation between the individual lean and obese 

subjects. Thus, 15 µg of total RNA from two pools of three lean subjects (L1 and L2) and two other 

from three obese individuals (O1 and O2) were used in the standard protocol from Affymetrix to label 

targets. These targets (biotinylated complementary RNA were hybridized to the Human HG-U133 A 

GeneChip arrays (Affymetrix, Santa Clara, CA, USA) at Progenika Biopharma Inc (Bilbao, Spain), 

using tools obtained from Affymetrix and according to the manufacturer’s protocol (Affymetrix,  

Santa Clara, CA, USA). Thus, a total of four array hybridizations were performed. 

Differences in expression of individual genes between obese-susceptible and lean-resistant, were 

analyzed using Microarray Analysis Suite (MAS) 5.0 (Affymetrix, Santa Clara, CA, USA). The 

alteration ratios of the gene expression were represented as means of Signal Log Ratio (SLR) of the 

four quotients. Quotients were calculated from the gene expression for the obese subjects divided by 

that of the lean subjects. The “change call” criteria of Affymetrix software for several known genes 

related to obesity matched a call change value of 75% (“increase”: leptin; “decrease”: adiponectin). 

These changes were verified by RT-PCR [45]. For this reason, as a cutoff value, concordance in the 

different call change of 75% or more was chosen in the indications of “increase” and “decrease” for  

obesity-dependent changes, as previously described [94]. Then, the results from MAS were classified 

according to GO biological process criteria [95] and analysis of biological pathways was performed by 

the WebGestalt system [96], which uses the hypergeometric test to identify those pathways in which 

the number of identified genes exceeded the number expected (p < 0.05). Up and downregulated genes 

were analyzed separately. 

3.5. Real-Time PCR Analysis 

Differential gene expression was further confirmed by RT-PCR of a subset of genes from individual 

SCAAT sample cDNA (n = 9 in each group). Reagents for RT-PCR analysis of: Activated leukocyte 

cell adhesion molecule (ALCAM), Cathepsin B (CTSB), Complement component 1, s subcomponent (C1S), 

CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), YKL-40 (chitinase 3-like 1 (CHI3L1)), 

EGF-like-domain, multiple 6 (EGFL6), v-fos FBJ murine osteosarcoma viral oncogene homolog FOS, 

Tenomodullin (TNMD), macrophage migration inhibitory factor (MIF), Palladin (PALLD),  

serum amyloid A2 (SAA2), nuclear receptor subfamily 3, group C, member 1 (NR3C1) and 18S 

(Assays-on-Demand, TaqMan Reverse Transcriptase reagents, and TaqMan Universal PCR Master mix) 

were purchased from Applied Biosystems (Foster City, CA, USA) and the experimental conditions 

were used according to the manufacturer’s protocol. Amplification and detection of specific products 

were performed with the ABI PRISM 7000HT system (Applied Biosystems). Human 18S was used as 

reference to normalize the expression levels between samples allowing data to be expressed relative to 
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18S rRNA, therefore compensating for any differences in reverse transcriptase efficacy, as  

previously described [45]. 

3.6. Statistical Analysis 

Differences between the lean and obese groups were analysed by the unpaired Student’s t or U Mann 

Whytney’s test after testing the normality with the Kolmogorov–Smirnoff and Shapiro–Wilk tests. The 

Spearman correlation coefficient was used to identify related variables. Statistical analysis was 

performed using the SPSS 15.1 software for Windows (SPSS Inc., Chicago, IL, USA). Values of  

p < 0.05 were considered as statistically significant. 

4. Conclusions 

In summary, we characterized two groups of subjects with different susceptibility to gaining weight 

and developing metabolic syndrome cluster, despite both groups eating a similar amount of fat and 

performing the same level of physical activity. In this context, we suggested that it is not an excessive 

energy intake per se but a genetic background favoring chronic disturbance of metabolic homeostasis, 

which could be behind the upregulation of the proinflammatory/oxidative stress-related genes and 

could underlie a vulnerability to the metabolic syndrome. 
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