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Abstract: The objectives of this study were to reveal molecular structures of  

protein among different types of the dried distillers grains with solubles (100% wheat 

DDGS (WDDGS); DDGS blend1 (BDDGS1, corn to wheat ratio 30:70%); DDGS  

blend2 (BDDGS2, corn to wheat ratio 50:50 percent)) and different batches within DDGS 

type using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Compared 

with BDDGS1 and BDDGS2, wheat DDGS had higher (p < 0.05) peak area intensities of 

protein amide I and II and amide I to II intensity ratio. Increasing the corn to wheat ratio 

form 30:70 to 50:50 in the blend DDGS did not affect amide I and II area intensities and 

their ratio. Amide I to II peak intensity ratio differed (p < 0.05) among the different batches 

within WDDGS and BDDGS1. Compared with both blend DDGS types, WDDGS had 

higher α-helix and β-sheet ratio (p < 0.05), while α-helix to β-sheet ratio was similar 

among the three DDGS types. The α-helix to β-sheet ratio differed significantly among 

batches within WDDGS. Principal component analysis (PCA) revealed that protein 

molecular structures in WDDGS differed from those of BDDGS1 and between different 
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batches within BDDGS1 and BDDGS2. The α-helix to β-sheet ratios of protein in all 

DDGS types had an influence on availability of protein at the ruminal level as well as at 

the intestinal level. The α-helix to β-sheet ratio was positively correlated to rumen 

undegraded protein (r = 0.41, p < 0.05) and unavailable protein (PC; r = 0.59, p < 0.05). 

Keywords: protein molecular structures; α-helix to β-sheet ratio; dried distillers grains 

with soluble (DDGS); intestinal digestibility 

 

Abbreviations: CFat; crude fat; CP, crude protein; DM, dry matter; DVE, true protein digested and 

absorbed in the small intestine; ESC; ethanol soluble carbohydrates; PA, non-protein nitrogen; PB1, 

soluble true protein; PB2, intermediately degradable true protein; PB3, slowly degradable true protein; 

PC, indigestible protein; RUP, rumen undegraded protein; OEB, rumen degraded protein balance;  

OM, organic matter.  

1. Introduction 

The conventional method to determine the nutrient make-up of feeds is the traditional “wet” 

chemical analysis. This so-called “wet” chemical analysis gives no information on inherent molecular 

structure of nutrients and structural matrices of feeds. The molecular structures of nutrients, including 

proteins, are associated with their accessibility for gastrointestinal digestive enzymes and with their 

digestive behavior [1]. As opposed to “wet” chemical analysis, infrared spectroscopic techniques, such 

as Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT), have the potential to reveal 

molecular structures of proteins. These techniques have been implemented to study the protein 

secondary structure of feeds [2,3].  

Co-products from bio-ethanol processing such as dried distillers grains with solubles (DDGS) have 

been utilized as protein supplements in both dairy and beef cattle rations. Despite being excellent 

sources of intestinally digestible and absorbable protein [4,5], concerns have arisen with regard to 

inconsistency of nutrient profile of these co-products as it may lead to formulation of imbalanced diets 

for ruminants. The bio-ethanol plant-to-plant variations in nutrient content and nutrient availability of 

DDGS is documented [4,6]. The objectives of this study were to reveal the molecular structures of 

protein among different types of DDGS and different batches within each DDGS type using DRIFT, 

and to investigate if secondary structures of protein correlate to ruminal degradability and intestinal 

digestibility of protein in dairy cattle estimated by the approach of van Duinkerken et al. [7]. 

2. Results and Discussion 

2.1. Protein Molecular Structures, Amide I and Amide II and Their Ratio among Different Types and 

Batches of DDGS  

Recently, several studies determined the relationship between protein molecular structures (amide I, 

amide II and their ratios) and the nutritive value of several feedstuffs [1–3,8]. The spectrum of protein 

in all DDGS samples and batches had two primary features being the amide I (at ca. 1665 cm
−1

) and 
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amide II (at ca. 1550 cm
−1

) in the spectra regions of ca. 1719–1485 cm
−1

 (Figure 1a). These two 

features are frequently used to assess protein conformation [9,10]. Compared with BDDGS1 (blend 

DDGS, wheat to corn ratio 70:30) and BDDGS2 (blend DDGS, wheat to corn ratio 50:50), the 

WDDGS (wheat DDGS) had higher (p < 0.05) peak area intensities of protein amide I and II and 

amide I to amide II peak intensity ratio (Table 1). The results are consistent with the findings of  

Yu et al. [3] who found that WDDGS had a higher amide I to II peak intensity ratio compared with 

blend DDGS. The results indicated that increasing the corn to wheat ratio from 30%:70% to 50%:50% 

in the blend DDGS did not affect protein amide I and II peak area intensities and their ratio (Table 1). 

Figure 1. Typical full-range spectrum of DDGS with (a) peak area of amide I and amide II 

(at ca. 1719–1485 cm
−1

) and (b) enlargement of amide I and II area. 

 

(a) 

 

(b) 

The different batches within WDDGS and BDDGS1 had different amide I to II peak intensity ratios 

(Table 2), which indicates a difference in protein values for dairy cattle from different batches within 

WDDGS and BDDGS1. Indeed, rumen undegraded protein (RUP) significantly differed among 

different batches within WDDGS (420.0, 378.0 and 330.6 g/kg crude protein (CP) in batch 1,  

batch 2 and batch 3, respectively) and BDDGS1 (673.5 and 511.8 g/kg CP in batch 1 and batch 2, 

respectively) [5], which may be due to the differences in their protein molecular structures. 

c 
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Table 1. Amide I and II and their ratios: Comparison of wheat DDGS and two types of 

blend DDGS using DRIFT molecular spectroscopy. 

Items 

Number of 

repetitions for 

DRIFT analysis 

Amide I Amide II 
Ratio of amide I to  

amide II 

Amides IR peak center position  ~1655 cm−1 ~1550 cm−1 ~1665/~1550 cm−1 

Amides IR peak region  ~1719–1576 cm−1 ~1576–1450 cm−1  

Amides IR peak are base line  ~1719–1485 cm−1 ~1719–1485 cm−1 ~1719–1485 cm−1 

  Based on the protein amide I and II peak area 

WDDGS 1 30 220.13 a 99.40 a 2.18 a 

BDDGS1 2 20 106.66 b 57.62 b 1.90 b 

BDDGS2 3 20 83.29 b 44.92 b 1.83 b 

SEM 4  27.380 11.364 0.624 

a,b Means with different letters in the same column are significantly different (p < 0.05). Multi-treatment comparison 

method: LSD. 1 Wheat DDGS; 2 Blend DDGS (corn to wheat ratio 30%:70%); 3 Blend DDGS (corn to wheat ratio 

50%:50%); 4 SEM = standard error of the mean. 

Table 2. Amide I and II and their ratios: Comparison of different batches within wheat 

DDGS and two types of blend DDGS using DRIFT molecular spectroscopy. 

Items 

Number of 

repetitions for 

DRIFT analysis 

Amide I Amide II 
Ratio of amide I to 

amide II 

Amides IR peak center position  ~1655 cm−1 ~1550 cm−1 ~1665/~1550 cm−1 

Amides IR peak region  ~1719–1576 cm−1 ~1576–1450 cm−1  

Amides IR peak are base line  ~1719–1485 cm−1 ~1719–1485 cm−1 ~1719–1485 cm−1 

WDDGS  Based on the amide I and II peak area 

Batch1 10 312.76 136.05 2.29 a 

Batch2 10 200.20 92.59 2.15 a,b 

Batch3 10 147.42 65.56 2.11b 

SEM  39.237 15.526 0.033 

BDDGS1     

Batch1 10 117.14 58.79 1.73a 

Batch2 10 102.17 56.44 2.07b 

SEM 10 8.884 4.513 0.022 

BDDGS2     

Batch1 10 66.32 37.68 1.74 

Batch2 10 100.27 52.30 1.91 

SEM  10.145 4.608 0.039 

a,b Means with the different letters in the same column are significantly different (p < 0.05). Multi-treatment comparison 

method: LSD. Abbreviations are explained in Table 1. 
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2.2. Protein Secondary Structure Profile and Ratio among Different Types and Batches of DDGS 

Despite methodological considerations that have to be taken into account when using α-helix to  

β-sheet ratio to study the secondary structure of proteins [11], this criterion has been successfully used 

to explore differences in protein secondary structure of feedstuffs [8,12].  

The protein amide I peak centered at 1663 cm
−1

 for α-helix and 1632 cm
−1

 for β-sheet in different 

co-products and batches of different bio-ethanol processing plants (Tables 3 and 4). These results were 

in the range of those reported by Yu et al. [3]. The α-helix and β-sheet intensities were significantly 

higher in WDDGS than in BDDGS1 and BDDGS2 (Table 3), while α-helix to β-sheet ratio was similar 

among the different types of DDGS. A high proportion of β-sheet in the secondary structure of 

proteins is thought to decrease access of gastrointestinal digestive enzymes to break down the protein 

structures, which in turn leads to a low protein value for the animal [13]. Therefore, the similar α-helix 

to β-sheet ratio among DDGS types may explain why the DVE (true protein digested and absorbed in 

the small intestine) supply in dairy cows was similar among the DDGS types (Table 5).  

The intensity of the peak height of α-helix and β-sheet were similar between the different batches 

within BDDGS1 and BDDGS2, while α-helix to β-sheet ratios significantly differed among the 

batches within WDDGS (Table 4; p < 0.05).  

Table 3. Characteristics of protein secondary structures (α-helix, β-sheet, and their ratio): 

Comparison of wheat DDGS and two types of blend DDGS using DRIFT  

molecular spectroscopy. 

Infrared absorption 
Protein secondary structures 

α-helix β-sheet Ratio of α-helix to β-sheet 

Items 
Number of repetition 

for DRIFT analysis 

α-helix peak 

center (cm−1) 

β-sheet peak 

center (cm−1) 

peak base 

line (cm−1) 
~1663 (cm−1) ~1632 (cm−1) ~1663/1632 (cm−1) 

     
Based on the protein α-helix and β-sheet  

peak height 

WDDGS 30 1665 1632 ~1718–1485 2.54 a 2.03 a 1.26 

BDDGS1 20 1663 1632 ~1718–1485 1.36 b 1.11 b 1.23 

BDDGS2 20 1663 1632 ~1718–1485 1.10 b 0.85 b 1.29 

SEM     0.325 0.260 0.022 

a,b Means with different letters in the same column are significantly different (p < 0.05). Multi-treatment comparison method: LSD. 

Abbreviations are explained in Table 1.  
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Table 4. Characteristics of protein secondary structures (α-helix, β-sheet, and their ratio): 

Comparison of different batches within wheat DDGS and two types of blend DDGS using 

DRIFT molecular spectroscopy. 

Infrared absorption 

Protein secondary structures 

α-helix β-sheet 
Ratio of α-helix to 

β-sheet 

Items 
Number of repetition 

for DRIFT analysis 

α-helix peak 

center (cm−1) 

β-sheet peak 

center (cm−1) 

peak base line 

(cm−1) 
~1663 (cm−1) ~1632 (cm−1) ~1663/1632 (cm−1) 

WDDGS     Based on the protein α-helix and β-sheet peak height 

Batch1 10 1664 1632 ~1718–1485 3.60 2.89 1.25 b 

Batch2 10 1666 1632 ~1718–1485 2.34 1.82 1.29 a 

Batch3 10 1665 1632 ~1718–1485 1.71 1.38 1.23 b 

SEM     0.465 0.371 0.006 

BDDGS1        

Batch1 10 1664 1632 ~1718–1485 1.36 1.06 1.28 

Batch2 10 1661 1632 ~1718–1485 1.36 1.16 1.17 

SEM     0.124 0.078 0.030 

BDDGS2        

Batch1 10 1662 1632 ~1718–1485 0.96 0.74 1.31 

Batch2 10 1665 1632 ~1718–1485 1.23 0.97 1.28 

SEM     0.143 0.095 0.027 

a,b Means with the different letters in the same column are significantly different (p < 0.05). Multi-treatment comparison method: LSD. 

Abbreviations are explained in Table1. 

Table 5. Rumen undegraded protein, protein digestibility and digested rumen undegraded 

protein in wheat and blend DDGS. 

Items WDDGS BDDGS1 BDDGS2 SEM 

Rumen undegraded protein (RUP, g/kg CP) 376.2 b 592.7 a 593.9 a 20.69 

Rumen degraded protein balance (OEB, g/kg DM) 159.1 a 82.0 b 65.8 b 8.25 

In vitro intestinal digestibility 1 of RUP (g/kg RUP) 806.9 781.5 788.0 15.03 

True protein digested and absorbed in the small 

intestine (DVE, g/kg DM) 
177.7 184.8 170.4 5.00 

SEM = standard error of mean. a,b Means with the different letters in the same row are significantly different (p < 0.05). 

Multi-treatment comparison method: LSD. Abbreviations are explained in Table 1. 1 Intestinal digestion of rumen 

undegraded protein estimated using the tree step in vitro assay. 

2.3. Multivariate Analysis of Spectra from Protein Internal Structures among Different Types and 

Batches of DDGS 

The spectra of protein molecular structures, in the region ca. 1719–1485 cm
−1

, analyzed by cluster 

analysis (CLA) has been used to discriminate the molecular structural differences among  

feedstuffs [3,12]. The CLA performs an agglomerative hierarchical cluster analysis of a spectral data 

set and displays the results as a dendogram. First it calculates a distance matrix, which contains 

information on the similarity of the spectra. Then, by hierarchical clustering, the algorithm searches 

within the distance matrix for the two most similar spectra (minimal distance). These spectra are 
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combined into a new object (a “cluster” or “hierarchical group”). The spectral distances between all 

remaining spectra and the new cluster are then recalculated [14].  

The mixed dendrogram (Figure 2a) of WDDGS, BDDGS1 and BDDGS2 showed similarity of 

spectral data in their amide I and II regions, indicating that they were not completely different in 

protein spectroscopic features. Liu et al. [15] could also not separate spectra in the amide I and II 

region of wheat DDGS from corn DDGS by CLA.Four classes were distinguished below linkage 

distance less than 19 with CLA for different batches within WDDGS (Figure 2b). All cases of batch 3 

were in class 1 and 2, except for one case in class 3, all cases of batch 1 were in class 3 and 4, except 

for one case in class 2, and all cases of batch 2 were in class 2 and 3, except for one case in class 4. 

Therefore, batch 1 and 3 were almost completely separated while there was a larger overlap of batch 2 

with both batch 1 and 3. Gamage et al. [16] performed CLA on the fingerprint region (1800–800 cm
−1

) 

of three batches of WDDGS and they could separate two batches from each other with the third batch 

having overlap with both other batches.  

Figure 2. Cluster analysis of protein molecular spectra: (a) Wheat DDGS (W), BDDGS1 

(B1; 30% corn and 70% wheat) and BDDGS2 (B2, 50% corn and 50% wheat); (b) Three 

batches within wheat DDGS; (c) Two batches within BDDGS1; and (d) Two batches  

within BDDGS2. 

  

  

The spectra from two batches within BDDGS1 formed three distinct classes just below linkage 

distance of 18 (Figure 2c). The cases of both batches were spread over the classes, which suggest that 

the protein spectral features were similar for both batches. 
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The spectra for two batches within BDDGS2 were grouped into two distinct clusters below the 

linkage distance of 28, except for one spectrum of batch 1 (Figure 2d), indicating that protein spectral 

features were different for batch 1 and 2.  

The second multivariate analysis used in the current study was principal component analysis (PCA), 

which is a statistical data reduction method. The PCA was used to identify similarities or variations in 

the protein amide I and amide II spectra of the different DDGS types and their different batches.  

Protein molecular structures of WDDGS were discriminated by PCA from BDDGS2 into separate 

ellipses, while the protein molecular structures of BDDGS2 were similar to both WDDGS and 

BDDGS1 (Figure 3a).  

Figure 3. Principal component analysis with 1st vs. 2nd principal component of spectra 

from protein molecular structures in: (a) Wheat DDGS (W), BDDGS1 (B1; 30% corn and 

70% wheat) and BDDGS2 (B2, 50% corn and 50% wheat); (b) Three batches within wheat 

DDGS; (c) Two batches within BDDGS1; and (d) Two batches within BDDGS2. 

  

  

The ellipses of batches 1 and 3 in WDDGS were almost completely separated, while the ellipse of 

batch 2 overlapped with the ellipses of the other two batches (Figure 3b). A similar trend was seen for 

the fingerprint region of three batches of WDDGS [16]. The inherent amide I and II protein structures 

differed among the batches of BDDGS1 and BDDGS2 as they were grouped into two separate ellipses 

with no overlapping (Figure 3c,d). This confirms the results of CLA that molecular structures of 

protein in a specific type of DDGS may differ between its different batches.  
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2.4. Correlation between α-Helix to β-Sheet Ratios and Nutrient Profile 

The α-helix to β-sheet ratio correlated with intermediately degradable true protein (PB2; r = −0.40, 

p = 0.035), unavailable protein (PC; r = 0.59, p = 0.001), and RUP (r = 0.41, p = 0.031) and tended to 

correlate with rumen degraded protein balance (OEB; r = −0.34, p = 0.080; Table 6). The positive 

correlation with RUP and negative correlation with OEB is consistent with Liu et al. [15]. The α-helix 

to β-sheet ratio did not correlate with intestinal digestibility of RUP in vitro and DVE (Table 6). In Yu 

and Nuez-Ortín [17], α-helix to β-sheet ratio positively correlated with protein fraction PC. The PC 

fraction was undegradable, and contained proteins associated with lignin and tannins and  

heat-damaged proteins [17]. These results indicate that a higher α-helix to β-sheet ratio may result in a 

higher undegradable protein content in the DDGS. There was a positive correlation between α-helix to 

β-sheet ratio and intestinal digestibility of RUP in vitro, but it was not significant (Table 6). This result 

was opposite to the previous findings of Liu et al. [15] and Yu and Nuez-Ortín [17]. They found that  

α-helix to β-sheet ratio negatively correlated to intestinal digestibility of RUP in vitro. We do not have 

a plausible explanation for such a discrepancy. 

Table 6. Correlation between α-helix to β-sheet ratios and protein sub-fractions, and 

ruminal and intestinal availability of protein based on the DVE/OEB 2010 protein 

evaluation system in the different types of DDGS. 

Items 
Correlation with protein α-helix to β-sheet ratios 

Correlation coefficient, r p-value 

Protein fraction 
1
 (g/kg DM)   

PA −0.21 0.280 

PB1 −0.06 0.765 

PB2 −0.40 0.035 

PB3 0.24 0.219 

PC 0.59 0.001 

Ruminal and intestinal availability of protein   

Rumen undegraded protein (RUP, g/kg CP) 0.41 0.031 

Rumen degraded protein balance (OEB, g/kg DM) −0.34 0.080 

In vitro intestinal digestibility of RUP (g/kg RUP) 0.10 0.615 

True protein digested and absorbed in the small 

intestine (DVE, g/kg DM) 
0.15 0.448 

1 PA = non-protein nitrogen; PB1 = soluble true protein; PB2 = intermediately degradable true protein;  

PB3 = slowly degradable true protein; PC = indigestible protein. 

The results of this study indicated that at least for the different types of DDGS, the ratio of α-helix 

to β-sheet in proteins had an influence on the availability of protein in the rumen (PB2 and OEB) and 

intestine (PC and RUP) in dairy cattle. 
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3. Experimental Section  

3.1. Sample Collection and Preparation 

From February 2009 to January 2010, seven different batches of wheat DDGS and blend DDGS 

(BDDGS1, wheat to corn ratio 70:30; BDDGS2, wheat to corn ratio 50:50) were collected from  

two bio-ethanol processing plants located in Saskatchewan, Canada. Three different batches of wheat 

DDGS were sampled on December 13 and 27 of 2009 and January 11 of 2010. Batches of blend 

DDGS (two batches for each blend) were collected on February 6 (blend2), February 9 (blend1), 

February 17 (blend1) and March 9 (blend2) of 2009. On a given sampling day, three samples of DDGS 

were taken over a period of 24 h. However, only two samples were used for wet chemical profiling,  

in situ rumen studies and determination of protein molecular structures.  

3.2. Diffused Reflectance Fourier Transformed Infrared Spectroscopy (Drift) 

The DDGS samples were two times finely ground to pass through a 0.25 mm screen (Retsch ZM-1, 

Brinkmann Instruments LTD, Mississauga, ON, Canada). Samples of ground DDGS were then mixed 

with KBr in a ratio of one part of co-product with four parts of KBr in a 2 mL centrifuge tube and 

vortexed for 10 s. Diffuse reflectance infrared Fourier transform spectroscopy was performed using a 

Bio-Rad FTS-40 with a ceramic IR source and MCT detector (Bio-Rad laboratories, Hercules, CA, 

USA). Data was collected using Win-IR software. Spectra were generated from the mid-IR  

(4000–800 cm
−1

) portion of electromagnetic spectrum with 256 co-added scans and a spectral 

resolution of 4 cm
−1

 (Figures 1a). Spectral analysis was done with OMNIC 7.2 software (Spectra Tech., 

Madison, WI, USA, 2006). Protein amides I and II and protein secondary structures α-helix and  

β-sheet were identified according to the published reports [18,19].  

3.3. Amide I, Amide II and α-Helix and β-Sheet Ratio Identification 

The amide I and amide II absorption intensity of the peak area and their ratio were calculated with 

baseline ca. 1719–1485 cm
−1

 (Figure 3a,b). The protein amide I bond is primarily a C=O stretching 

vibration (80%) plus C–N stretching vibration which absorbs at ca. 1655 cm
−1

 [9,20]. Protein amide II 

consists primarily of N–H bending vibrations (60%) along with C–N stretching vibrations (40%) 

absorbs at ca. 1550 cm
−1

 [9,20]. Protein secondary structures were determined using the amide I 

functional group band located in the region of ca. 1719–1576 cm
−1

. The intensity of the peak height at 

ca. 1663 (α-helix) and 1632 (β-sheet) cm
−1

 was used to calculate α-helix to β-sheet ratio. 

3.4. Chemical Analysis and Protein Partitioning  

The detailed chemical analysis, protein partitioning and chemical profiles were described by 

Azarfar et al. [21].  

3.5. Rumen Incubation Procedure 

Four rumen fistulated (internal diameter 10cm; Bar Diamond Inc., Parma, OH, USA) non-pregnant 

dry Holstein Frisian cows were used in an in situ trail, which had been reviewed and approved by 
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Animal Care Committee of the University of Saskatchewan (Animal Use Protocol # 19910012). The 

cows were individually housed in pens at the experimental farm of the University of Saskatchewan 

(Saskatoon, SK, Canada) and cared for according the Canadian Council on Animal Care guidelines [22]. 

The cows had free access to water and were fed 15 kg DM/day total mixed ration twice daily in equal 

portions at 8.00 a.m. and 4.00 p.m. The total mixed ration consisted in %DM of 55% barley silage, 

12.5% alfalfa hay, 5% dehydrated alfalfa and 27.5% concentrates as described in Yu et al. [23]. 

In order to generate a homogeneous sample, DDGS samples were processed using a laboratory 

scale roller mill (gap, 0.203 mm; Apollo Machine and Products Ltd, Saskatoon, SK, Canada) prior to 

the in situ trial. In situ rumen degradation kinetics were determined as described by Yu et al. [24]. 

Approximately seven grams of sample were weighed into pre-weighed numbered nylon bags  

(10 × 20 cm; pore size of 41 µm; Nitex 03–41/31 monofilament open mesh fabric, Screentec Corp., 

Mississauga, ON, Canada), resulting in a sample-to-bag surface ratio of 17.5 mg/cm
2
. The bags were 

randomly assigned to the four cows, and incubated in the rumen in two runs for 72, 36, 12, 6 and 2 h 

by the “all-out method”. A polyester mesh bag (45 cm × 45 cm with a 90 cm length of rope to be 

anchored to the cannula) was used to hold the bags in the rumen. For incubation times of 72 h, 36 h,  

12 h, 6 h and 2 h, seven, six, five, four and two bags of each sample were randomly incubated in the 

rumen of each cow, respectively. Immediately after retrieval, all bags were placed in cold tap water to stop 

microbial fermentation and then washed manually five times in cold tap water followed by oven drying at 

55 °C for 48 h. The 0 h incubation samples were washed by the procedure described by Azarfar et al. [25] 

to fractionated washable fraction (W) into a truly washable soluble fraction (S) and a washable but 

insoluble fraction (WI). Since the WI was almost zero, for the purpose of modelling it was assumed 

that the W fraction equalled the S fraction. Incubation residue from the treatment bags were pooled 

within time and incubation run.  

3.6. Rumen Degradation Kinetics  

Protein and carbohydrate were fractionated using in situ approach described in the updated version 

of the DVE/ OEB protein evaluation system [7], in which, CP, neutral detergent fibre (NDF), and 

residual non-starch polysaccharide (RNSP; calculated as OM − (CP + CFat + starch + ESC + NDF)) 

were partitioned into a truly soluble fraction (S), a washable but insoluble fraction (WI), a  

non-washable potentially degradable fraction [D; calculated as (1000 − (S + WI) − U)] and a  

non-washable undegradable fraction (U; the residue after 72 h of rumen incubation). In the current 

study WI of CP was assumed to be zero as described earlier. The ESC is designated S fraction of 

carbohydrates, and was assumed to degrade instantly in the rumen [7]. The rest of carbohydrates were 

classified into NDF, RNSP and starch. The washable RNSP and starch (WIRNSP and WIStarch, 

respectively) were assumed to contain only insoluble material, while NDF was assumed to contain no 

washable fraction. Since the incubation residues were not directly analyzed for CFat, the correction 

factors 65%, 44%, 17% and 3% of the original CFat were applied to calculate RNSP for the 0 h, 2 h, 6 h 

and 12 h incubation residues, respectively [7].  

Fractional degradation rates of D for CP, NDF and RNSP (Kd, /h) were calculated by fitting the 

degradation data to a first-order kinetics model described by Robinson et al. [26]:  

R(t) = U + D × e 
−Kd × (t − lag)

 (1) 
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where R(t) is residue (g/kg) left after t hours of rumen incubation (h), lag is lag time (h) and Kd is 

fractional degradation rate of D fraction (/h).  

Since the U and lag are assumed to be zero for starch, the following model was applied to estimate 

Kd of D fraction for starch [27]: 

R(t) = (100 − W) × e
−Kd × t

 (2) 

where W is washable fraction. The parameters of models were calculated using the NLIN procedure of 

SAS 9.2 [28] with iterative least squares regression (Gauss-Newton method). 

Due to the lack of fit, effective rumen degradation was not determined for RNSP of BDDGS1  

and BDDGS2. 

3.7. Intestinal Digestion of Rumen Undegraded Protein  

The estimation of intestinal digestion was determined by two methods. In the first method intestinal 

digestibility of rumen undegraded protein (RUP) was calculated as: 

dRUP = (RUP − UCP)/RUP × 1000 (3) 

where dRUP is digestibility of RUP (g/kg RUP) and UCP is undegraded fraction of CP after 72 h rumen 

incubation. In the second method a three steps in vitro approach as described by Calsamiglia and  

Stern [29] was used to estimate dRUP. 

3.8. The DVE/OEB Protein Evaluation System 

The protein value of DDGS for cattle was evaluated with the DVE/OEB protein evaluation  

system [7]. Methodology and full results are described in Azarfar et al. [5]. 

3.9. Statistical Analysis 

Statistical analyses were performed using the MIXED procedure of SAS 9.2 [28]. The models  

used were:  

Yij = µ + Fi + eij (4) 

Yij = µ + Bi + eij (5) 

where, Yij is an observation of the dependent variable ij (amide I, amide II, α-helix, β-sheet and their 

ratios); µ is the population mean for the variable; Fi is the fixed effect of feed sources (i = 3; WDDGS, 

BDDGS1 and BDDGS2); Bi is the fixed effect of batch (i = 2 for WDDGS and 3 for BDDGS1 and 

BDDGS2) and eij is the random error associated with the observation ij. Model 1 was used to study the 

effects of feed sources, while the second model was used to compare the different batches within 

DDGS source. In the first model batch and sample were regarded as experimental replicates whereas in 

the second model sample was considered as replicate. 

For all statistical analyses, significance was declared at p < 0.05. The Fisher’s protected least 

significant difference (LSD) test was used for multiple treatment comparisons using the LSMEANS of 

SAS 9.2 [28] with letter grouping obtained using SAS pdmix800 macro [30]. 
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Relationship between the ratio of α-helix to β-sheet with protein sub-fractions, rumen undegraded 

protein (RUP), intestinal digestibility of RUP, true protein digested and absorbed in the small intestine 

(DVE), and rumen degraded protein balance were performed using the CORR procedure of  

SAS 9.2 [28] using a Pearson correlation method. The normality check was performed using the 

UNIVARIATE Procedure of SAS 9.2 [28]. 

3.10. Multivariate Analysis of Drift Protein Molecular Spectra 

Agglomerated hierarchical cluster analysis (CLA) and principal component analysis (PCA) were 

performed using Statistica software 9.0 (StatSoft Inc., Tulsa, OK, USA, 2007) to classify and 

distinguish the inherent differences of protein molecular structures among the DDGS samples and 

batches within DDGS source. Spectral region 1719–1485 cm
−1

 was used for CLA and PCA. For the 

CLA, Ward’s algorithm method was used without any prior parameterization of spectral data. For the 

PCA, the first two principal components were plotted. 

4. Conclusions  

The results of this study indicate that dried distillers grains with solubles are good sources of 

intestinally digested and absorbed protein for ruminants. However, the variation in protein molecular 

structures among batches within DDGS and therefore their protein values are factors that have to be 

taken into account before their inclusion in ruminant diets. The cluster and principal component 

analyses reveal that the protein molecular structures in a specific type of DDGS may differ between 

different batches and that these differences are easily revealed by univariate and multivariate analysis 

of DRIFT spectra in the molecular protein region. The results of the current study indicate that protein 

secondary structures, α-helix to β-sheet ratio, were significantly correlated with rumen undegraded 

protein and tended to have a significant correlation with rumen degraded protein balance. Therefore, 

the secondary structures of protein affect the protein supply to dairy cattle. 
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