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Abstract: Interactions between objects inside living cells are often investigated by looking 

for colocalization between fluorescence microscopy images that are recorded in separate 

colours corresponding to the fluorescent label of each object. The fundamental limitation of 

this approach in the case of dynamic objects is that coincidental colocalization cannot be 

distinguished from true interaction. Instead, correlation between motion trajectories 

obtained by dual colour single particle tracking provides a much stronger indication of 

interaction. However, frequently occurring phenomena in living cells, such as immobile 

phases or transient interactions, can limit the correlation to small parts of the trajectories. 

The method presented here, developed for the detection of interaction, is based on the 

correlation inside a window that is scanned along the trajectories, covering different subsets 

of the positions. This scanning window method was validated by simulations and, as an 

experimental proof of concept, it was applied to the investigation of the intracellular 

trafficking of polymeric gene complexes by endosomes in living retinal pigment epithelium 

cells, which is of interest to ocular gene therapy. 
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1. Introduction 

In the field of gene therapy, a lot of effort goes into the development of nanomedicines, with a size in 

the order of 100 nm, for the delivery of therapeutic nucleic acids to target cells [1]. The way such 

nanomedicines are processed inside these cells is one of the main determinants of their effectiveness. In 

order to optimize the performance of nanomedicines, it is therefore important to understand how they 

interact with the intracellular constituents, such as endosomes, that are involved in their transport and 

final fate. Fluorescence microscopy is the ideal tool to make this type of information available, by 

simultaneously recording multi-colour live-cell images of fluorescently labelled nanomedicines and 

intracellular organelles [2–5]. 

The most common way of investigating interactions in multi-colour images is by comparing pixel 

values between colours, for which different quantification methods exist [6–11]. However, these pixel 

based methods are very susceptible to false positives, i.e., all labelled compounds closer together than 

the microscope resolution (usually 250 nm or more) will contribute to the overall colocalization in the 

image. Fluorescence Resonance Energy Transfer (FRET) offers an alternative that is not restricted by 

the resolution, but has a limited working range of 1–10 nm [12]. Another approach is looking for the 

colocalization of discrete objects, rather than individual pixel values [13–18]. The basic condition here is 

that the objects of interest can be identified as separate entities in the microscopy images. One possibility 

to quantify object based colocalization is to compare their intensity weighted centre positions to each 

other [19]. The objects are classified as colocalized when their intensity weighted centre positions are 

closer together than a user defined maximum distance. Another possibility to quantify object based 

colocalization is to calculate the spatial overlap of the objects in both images [16]. Just like FRET, these 

object based methods are better in excluding false positives than pixel based colocalization, since the 

object positions can be determined with a precision much better than the microscope’s resolution [20,21]. 

In live-cell imaging, or any other application that involves dynamic events, the objects of interest, 

such as proteins or organelles, might be mobile. Two objects that are moving past each other by 

coincidence could, therefore, be identified as being colocalized by either the pixel or object based 

methods. This can be especially problematic in case of very dense object populations. One potential 

solution is to perform dual colour Image Cross-Correlation Spectroscopy (ICCS) [22,23]. Two 

interacting objects that move together will give rise to correlated fluorescence intensity fluctuations 

between the two simultaneously recorded detection channels. Unfortunately, this method only provides 

information that is spatially averaged over the part of the image that is included in the analysis. A 

different solution that retains the spatial information is to look at trajectories of moving objects in dual 

colour time-lapse movies, as is done in Single Particle Tracking (SPT). When the intensity weighted 

centre positions in the trajectories of two objects are closer together than a user defined maximum 

distance for a significant amount of time (i.e., in multiple consecutive images), this is a strong indication 

that they are truly interacting [24–26]. Alternatively, the recently proposed Trajectory Image Correlation 
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(TrIC) method identifies interaction between objects by calculating the local image correlation around 

the trajectory positions, and therefore, has the advantage that it does not require a user defined maximum 

distance [27]. However, the TrIC method assumes that the objects are reasonably close together (i.e., 

within a 21 by 21 pixel analysis area), and since the analysis is performed at each time point separately, 

objects passing each other by coincidence might still be identified as interacting. Recently, our group 

proposed another approach for investigating the interaction between moving objects based on the spatial 

correlation of their trajectories [28]. When the correlation between the trajectories exceeds a certain 

threshold value, the corresponding objects are considered to be interacting. Interestingly, as correlation 

is translation independent, it does not require a user defined maximum distance and offers the possibility 

to detect interactions at any distance within the image. This was shown to give more reliable results than 

in case of classic object based colocalization analysis. 

However, an objective measure for the correlation threshold has not been determined. Also, as the 

published correlation method is based on calculating the correlation between complete trajectories, it 

performs suboptimal in case trajectories are not completely correlated. For instance, intracellular motion 

can exhibit variable mobility, including immobile phases that inherently do not correlate. Another 

example is photobleaching of fluorescent labels, which degrades the localization precision in the 

trajectories, in turn affecting their correlation. There is also the possibility of transient interactions that 

take place during only a short time span, restricting the correlation to only a part of the trajectories. If the 

uncorrelated part of the trajectories in these situations is sufficiently large, the correlation determined 

from all positions in the trajectories will not exceed the correlation threshold, despite (transient) 

interaction being present. A method that can identify correlation in smaller segments of the trajectories 

with an objectively determined correlation threshold is, therefore, required. Here, such a method is 

presented, based on a scanning window approach in which the correlation is calculated over a limited 

number of positions within the trajectories. The optimal size of the window and the correlation threshold 

value are selected according to criteria that account for the localization precision in the trajectories and 

the mobility of the objects. The scanning window method is verified by simulations and applied to 

investigate the intracellular trafficking of polymeric gene complexes inside endosomes of living cells. 

2. Theory 

2.1. Identifying Interaction by Correlated Motion 

As mentioned in the Introduction, we have recently proposed a new approach to identify  

interaction [28]. Instead of looking for colocalization in terms of a maximum distance, interaction 

between two objects is assumed to result in trajectories whose positions are correlated in time. Consider 

two sequences of images in different colours acquired at time points ti (with i = 1, …, l). The observed 

motion trajectory A of an object in one colour is given by (xA(ti), yA(ti)), and the observed motion 

trajectory B of an object in the other colour is given by (xB(ti), yB(ti)). The Pearson correlation coefficient 

ρ (≤1) between the x-coordinates of both trajectories can be calculated from: 

  
                           

 
   

               
  

                 
  

   

  
(1) 
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with <xA> and <xB> the average x-coordinates of the trajectories A and B, respectively. The same 

definition applies to the y-coordinates. From now on, we will only consider the x-coordinates as the 

theory equally applies to the other dimensions. Define σA and σB as the localization precisions with 

which xA(ti) and xB(ti), respectively, were determined. Besides various experimental noise sources, the 

localization precision is essentially determined by the number of detected photons and their spatial 

distribution in the image [20,21]. Define σo as the overlay precision with which both colour images are 

aligned, which can be calculated as the standard deviation of the differences between identical positions 

in the images after overlay [26]. 

The effect of σA, σB and σo on the correlation ρ between the trajectories is illustrated in Figure 1, 

showing that, even if both objects are interacting, perfect correlation will not be obtained. This means 

that the computed correlation coefficient ρ < 1 should have a p-value smaller than 0.05, to make sure that 

it reflects true correlation rather than being obtained by coincidence under the null hypothesis that there 

is actually no correlation. However, a condition based on the p-value alone would mean that there is 5% 

chance of getting false positives in case of non-correlated trajectories. To reduce this probability, a 

correlation threshold ρmin, defined as the minimum correlation that is expected in case of correlated 

trajectories, can be imposed. As will be explained below, the ρmin threshold value depends on σA, σB and 

σo, as well as on other trajectory properties. 

Figure 1. The effect of the localization and overlay precision on the observed trajectories of 

interacting objects. The localization precision σA and σB of the positions in the observed 

trajectories A (green) and B (red), respectively, are defined as the standard deviation (dotted 

circles) of the observed positions around the positions of the true trajectories (black). The 

overlay precision σo between the images is defined as the standard deviation of the 

differences (dotted lines) between identical positions in the images after overlay. 

 

2.2. Correlation Threshold 

For a certain localization and overlay precision, the correlation threshold ρmin is defined as the 

minimum value of the correlation coefficient of interacting objects with a p-value smaller than 0.05. 
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Although the localization precision may vary to some extent along a trajectory, we will assume that it 

remains constant, as motivated in Section 2.3. First, consider the situation of an equal localization 

precision σ = σA = σB in both trajectories and a perfect overlay precision σo = 0. For Brownian or linear 

motion, which is common in live-cell imaging, it can be shown that the expected correlation ρ between 

trajectories with l positions is completely determined by the relative localization error r (see Appendix): 

  
 

 
  (2) 

where S is the mean step length in the trajectories, which can be estimated as: 

  
 

  
                                       

 

   

 (3) 

The expected value of the observed correlation ρ is thus identical for all trajectory pairs with l 

positions and relative localization error r, which means that the same correlation threshold ρmin can be 

used for all these trajectories. 

It can be shown that the same applies to the general and more realistic case of σA ≠ σB and σo ≠ 0  

(see Appendix). In this case, however, the localization precision σ in Equation (2) should be calculated 

according to: 

  

  
                  

    
    

 

 

 
                  

 
    

    
                         

    
  

 
 

(4) 

where var(xA) and var(xB) are the variances of the x-coordinates in the trajectories A and B, respectively. 

2.3. Scanning Window Concept 

In many circumstances, such as live-cell imaging, objects usually exhibit a variable mobility. When a 

certain part of the trajectories exhibits low mobility, the local mean step length S is smaller than the value 

over the entire trajectory. From Equation (2), it immediately follows that the local relative localization 

error r increases, which in turn decreases the correlation in this part of the trajectories. The same effect 

can be caused by a locally lower localization precision (i.e., locally higher values of σA and σB), as can be 

seen from Equations (2) and (4). Another effect that can cause a change in correlation along the 

trajectories is the presence of transient interactions, such as binding and unbinding events. These 

different situations are illustrated in Figure 2. Thus, it is clear that assessing interaction by evaluating the 

correlation over the entire trajectories may not be optimal. 

One obvious solution to this problem lies in identifying correlation in smaller parts of the trajectories 

to which the framework of Section 2.2 can be applied. This idea leads to the scanning window method, 

as illustrated in Figure 3. Basically, the correlation is calculated in small overlapping subsets of 

trajectory positions, i.e., in a window that is scanned along the trajectories. If the observed correlation in 

a window has a p-value smaller than 0.05 and is larger than the threshold ρmin for that window, the 
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objects are considered to be interacting in that window. The threshold ρmin depends on the size of the 

window and the local relative localization error r (cfr. Section 2.2). 

Figure 2. The effect of a time dependent mobility, a time dependent localization precision, 

or a time dependent interaction on the observed trajectories of interacting objects. The 

localization precision of the positions in the observed trajectory A (green) and B (red) is 

defined as the standard deviation (dotted circles) of the observed positions around the 

positions of the true trajectories (black). When one part of the trajectories exhibits low 

localization precision, the local relative localization error is large, degrading the correlation 

in that part. Also, when one part of the trajectories exhibits low mobility, the local relative 

localization error is large, which in turn degrades the correlation in that part. When the 

objects do not interact in one part of the trajectories, there is no correlation in that part. 

 

This raises the important question of what is the optimal window size. On the one hand, the window 

should be as small as possible in order to have the best temporal resolution and to ensure that the 

variation in relative localization error is minimal. On the other hand, the window should include a 

sufficient number of positions in order to detect correlation with sufficient statistical significance. 

Consider correlated trajectories and define P as the probability to observe a correlation with a p-value 

smaller than 0.05 inside a window with length w. Similar to the correlation threshold ρmin, this 

probability P depends on the relative localization error r. The optimal window length is then defined as 
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the smallest w for which P becomes larger than a user defined value. Since the window size cannot be 

smaller than 3, each position will be evaluated in at least 3 different windows (except at the trajectory 

extremities). The probability that the correlation in at least one of those windows has a p-value smaller 

than 0.05 is given by 1 − (1 − P)
3
. A probability of more than 0.99 is achieved by P = 0.8, which is the 

threshold value for P used throughout this study. 

Figure 3. An illustration of the scanning window method. A trajectory A and a trajectory B 

are scanned by windows in two directions (up and down) for both the x- and y-coordinates 

independently. For each position, the window size starts at w = 3, and the probability P is 

calculated in the window (see Table 1). If P < 0.8 (red window), an extra position is included 

in the window, until an optimal window size with P ≥ 0.8 is found (green window) for which 

the correlation is calculated. If the correlation has a p-value smaller than 0.05 and is larger 

than the threshold ρmin of the window (see Table 2), the positions in the window are assumed 

to interact (symbolized by binary values 1). If this is not the case, the positions are 

considered not to interact (symbolized by binary values 0). The results of the different 

windows and of both scans are combined according to the logical OR operation. The results 

of both coordinates are finally combined according to the logical AND operation. 
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Table 1. The probability P to observe a statistically significant correlation in a window with 

length w in a pair of trajectories coming from interacting objects with relative localization 

error r. The values were obtained from simulated completely correlated trajectories,  

for different lengths w = 3, 4, …, 200 and different relative localization errors  

r = 0.01, 0.02, ..., 1.00. The full table can be found in the Table S1. 

Simulated values of the probability P 

 w = 3 w = 4 w = 5 w = 6 … w = 200 

r = 0.01 0.97177 0.99992 1 1  1 

r = 0.02 0.90433 0.99872 1 1  1 

r = 0.03 0.82096 0.99532 0.99980 1  1 

r = 0.04 0.73582 0.99020 0.99950 1  1 

r = 0.05 0.65341 0.98112 0.99815 0.99982  1 

…
 

      

r = 1.00 0.04623 0.07992 0.12200 0.19284  1 

Table 2. The correlation threshold ρmin is the minimum statistically significant correlation in 

a window with length w and local relative localization error r in a pair of trajectories coming 

from interacting objects. The values are obtained from the correlation coefficient distribution 

of simulated completely correlated trajectories, for different lengths w = 3, 4, …, 200 and 

different relative localization errors r = 0.01, 0.02, ..., 1.00. The full table can be found in the 

Table S2. 

Simulated values of the correlation threshold ρmin 

 w = 3 w = 4 w = 5 w = 6 … w = 200 

r = 0.01 0.99693 0.95043 0.97095 0.99242  0.99998 

r = 0.02 0.99692 0.95013 0.88554 0.89819  0.9999 

r = 0.03 0.99692 0.95003 0.88114 0.91113  0.99972 

r = 0.04 0.99692 0.95004 0.88418 0.87069  0.99965 

r = 0.05 0.99692 0.95001 0.87854 0.81552  0.99925 

…
 

      

r = 1.00 0.99693 0.95002 0.87836 0.81141  0.77525 

2.4. Numerical Determination of ρmin and P 

The values of the correlation thresholds ρmin (see Section 2.2) and the values of the probabilities P to 

identify the optimal window length (see Section 2.3) were obtained by simulating correlated trajectory 

pairs that represent windows of different sizes with different relative localization errors. The simulations 

were performed in the Matlab programming environment (The Mathworks, Natick, MA, USA). First, 

one-dimensional trajectories were simulated for each combination of trajectory length w and relative 

localization error r from a set of pre-defined values (i.e., w = 3, 4, ..., 200 and r = 0.01, 0.02, ..., 1.00). 

The number of simulated trajectories Nw depended on the trajectory length w, so that the total amount of 

positions from all trajectories together was approximately 10
6
 in all cases (e.g., for w = 10, the number of 

trajectories was 10
5
). The type of motion was chosen to be Brownian motion, since it is common on a 

microscopic scale, and because unrelated Brownian trajectories on average do not exhibit correlation. 

The diffusion coefficient was taken to be D = 1 µm
2
/s and the time interval between subsequent positions 
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was τ = 0.1 s, resulting in a one-dimensional mean step of S =      = 0.447 µm. The normally 

distributed step of the Brownian trajectories was simulated by the Matlab function randn. From each 

simulated trajectory, two correlated trajectories were extracted by separately adding two normally 

distributed values to each position of the simulated trajectory, again using the Matlab function randn. 

The standard deviation of the normal distribution for the extra value is the localization precision σ = rS 

(cfr. Equation (2)). 

Subsequently, the correlation ρ between both trajectories is calculated, using the Matlab function 

corrcoef together with its corresponding p-value. For each value of w and r, let Nw,p be the number of 

trajectory pairs that are correlated with a p-value smaller than 0.05. Then, P = Nw,p/Nw is the probability 

of finding a statistically significant correlation ρ in case of interacting objects. The results are partially 

shown in Table 1. The minimum value of the statistically significant correlations is selected as the 

threshold correlation ρmin for a given w and r, as partially shown in Table 2. Note that for the smallest 

trajectory lengths w sometimes a correlation ρ smaller than zero was found (anti-correlation) with a 

p-value larger than 0.05. These correlations were treated as if they were not statistically significant. 

Also, note that the values of ρmin do not always increase with the trajectory length w. When the 

trajectories are too short, only high enough correlations are statistically significant. Only from the point 

where the trajectories are long enough so that all correlations become significant (i.e., P = 1) does ρmin 

increase with w. The practical use of Tables 1 and 2 is explained in Section 2.5. 

2.5. Scanning Window Method 

The main input for the scanning window method consists of the trajectory A given by (xA(ti), yA(ti)) 

and the trajectory B given by (xB(ti), yB(ti)) at the time points ti (with i = 1, 2, ..., l). Another required input 

is the localization precision σA and σB of trajectory A and B, respectively, calculated within the window 

as it is scanned along the trajectories, and the overlay precision σo between the images (see Section 5.4 

for information on how these values can be determined experimentally). 

Consider first the x-coordinates of the trajectories A and B. The scan starts at xA(ti) and xB(ti), with a 

window of size w = 3, which thus covers the x-coordinates from t1 to t3. The relative localization error r 

in that window is calculated, according to Equations (2)–(4). For the relative localization error r and the 

window length w = 3, the probability P can be derived from Table 1, after rounding the value of r to the 

nearest tabulated value. For example, r = 0.045 is rounded to 0.05, and the corresponding row in Table 1 

shows P = 0.653 (for w = 3). If the window has a probability P ≥ 0.8, it is considered to be the optimal 

window. If the window has a probability P < 0.8, it is extended to a size w = 4, covering the  

x-coordinates from t1 to t4. In the same manner, the probability P is calculated in the new window. This 

procedure is repeated until the optimal window size is reached for which P ≥ 0.8. In case the window size 

would become larger than both trajectories A and B, the calculation is aborted as correlation cannot be 

determined with sufficient certainty. 

Having determined the optimal window size w and the local relative localization error r, the 

correlation threshold ρmin can be determined from Table 2, again after rounding the value of r to the 

nearest tabulated value. Next, the correlation ρ between x-coordinates from both trajectories within the 

window is calculated according to Equation (1), together with the corresponding p-value. If the p-value 

is smaller than 0.05, and the correlation ρ is larger than the correlation threshold ρmin, all x-coordinates in 
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the window are assigned a binary value 1 (see Figure 3). In all other cases, a binary value 0 is assigned to 

all x-coordinates in that window. 

This procedure is repeated, starting at the next positions xA(t2) and xB(t2). The x-coordinates of the 

trajectories A and B are further scanned, position by position, until xA(tl−2) and xB(tl−2) have been 

reached. Except near the start and the end of the trajectory, the positions are evaluated at least three times 

by different windows. Therefore, for each position there are at least three binary values, indicating that 

correlation was found or not within a particular window. If correlation was found at least one time, the 

position is flagged as being correlated. This results in a list of binary values that identify the positions 

where the scan found correlation (see Figure 3). The same scanning procedure is repeated in the other 

direction, starting from xA(tl) and xB(tl) and moving towards the start of the trajectory. The results from 

both scanning directions are combined so that a position is correlated if it was flagged in one of both 

scanning directions (see Figure 3). 

The identical scanning window procedure as described above is applied to the y-coordinates. 

Afterwards, interaction is assigned to a position if correlation was found in each dimension (see Figure 3). 

The result is a list of binary values that identify the positions where the objects were found to interact. 

3. Results 

3.1. Validation by Simulations 

The performance of the scanning window method was verified with simulated pairs of 

two-dimensional Brownian motion trajectories, as explained in Section 5.1. Brownian motion was 

chosen, not only because it is common on a microscopic scale, but also because random Brownian 

motion trajectories are not expected to be correlated. A number of different situations were considered 

(see Table 3), for each of which 1000 trajectory pairs with length l = 20 and time interval τ = 0.1 s 

between successive positions were simulated. 

The situation of complete interaction was investigated for a diffusion coefficient D = 1 µm
2
/s. The 

results are shown in Figure 4a, where for each position along the trajectories the percentage of 

trajectories where the scanning window method has detected interaction is shown. In case of high 

localization precision σ = 4.47 nm, corresponding to a relative localization error of r = 0.01  

(cfr. Equation (2) with S =      = 0.447 µm), the scanning window method correctly finds 100% of 

the time interaction at almost every position. Only at the trajectory start and end points, the method 

performs slightly worse, with interaction correctly detected 98% of the time. This can be explained by 

the smaller number of windows that correspond to the trajectory extremities (see Figure 3). For lower 

localization precision σ = 44.7 nm, corresponding to a relative localization error of r = 0.10, the scanning 

window method behaviour is essentially the same. 
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Figure 4. Validation simulations for interaction and no interaction. The percentage of 1000 

pairs of simulated Brownian motion trajectories where the scanning window method has 

found interaction is shown for each position along the trajectories (black line), in case of  

(a) interaction, and (b) no interaction. All simulated trajectories have a length l = 20, a 

diffusion coefficient D = 1 µm
2
/s, and a time interval τ = 0.1 s between successive positions. 

The localization precision was chosen σ = 4.47 nm or σ = 44.7 nm, corresponding to a 

relative localization error of r = 0.01 or r = 0.10, respectively. The same trajectories were 

also analysed with an object based colocalization method with dmax = 1.65    as maximum 

distance (purple line). On the right, example pairs of trajectories are shown for the case of  

r = 0.10. 

 

As shown in Figure 4a, these trajectories were also analysed with an earlier reported object based 

colocalization method that makes use of a maximum distance dmax = 1.65   
    

    
  to decide 

whether or not there is interaction at a particular position [26]. Here, dmax = 1.65   , considering  

σA = σB = σ and σo = 0. At almost all positions, the colocalization method finds interaction 81% of the 

time, for both relative localization errors r = 0.01 and r = 0.10. 

Similarly, it was tested if the scanning window method can correctly detect the absence of interaction. 

This was investigated for a diffusion coefficient D = 1 µm
2
/s, the results of which are shown in Figure 4b. 

In case of high localization precision σ = 4.47 nm, corresponding to a relative localization error r = 0.01, 

the scanning window method finds less than 1% of the time interaction at almost all positions (i.e., false 

positives). For lower localization precision σ = 44.7 nm, corresponding to a relative localization error  

r = 0.10, the method finds less than 3% false positives. The object based method with maximum distance 
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dmax = 1.65    finds that 81% of the trajectories are interacting at the first position, both in the case of  

r = 0.01 and r = 0.10, since the trajectories were simulated to start in the same position (see Section 5.1). 

From position 2, this percentage drops and remains below the percentage found with the scanning 

window method. 

Simulations were also carried out to evaluate the performance of the scanning window method in 

more complicated situations (representing the ones shown in Figure 2). The case of complete interaction 

with a variable diffusion coefficient was investigated for D = 1 µm
2
/s at positions 1–10 and D = 0.01 µm

2
/s 

at positions 11–20. This results in a corresponding local relative localization error r = 0.01 and r = 0.10, 

respectively, since the localization precision σ = 4.47 nm was constant at all positions. Thanks to the 

variable window size, the scanning window method finds interaction 100% of the time at most positions, 

as shown in Figure 5a. Only at the trajectory extremities, the method performs slightly worse, with 

interaction correctly detected 98% of the time. Although the object based colocalization method with 

maximum distance dmax = 1.65    is not affected by differences in diffusion coefficient, only 81% of 

the trajectories is found to interact. 

Complete interaction was also investigated with a variable localization precision σ = 4.47 nm at 

positions 1–10 and σ = 44.7 nm at positions 11–20. This results in a corresponding local relative 

localization error r = 0.01 and r = 0.10, respectively, since the diffusion coefficient D = 1 µm
2
/s was 

constant at all positions. The scanning window method finds 100% of the time interaction at most 

positions, as shown in Figure 5b. The object based colocalization method with maximum distance  

dmax = 1.65    is not affected by differences in localization precision, so that 81% of the trajectories is 

found to interact at all positions. 

Variable interaction was the last situation that was investigated, with the objects only interacting at 

positions 1–10 and not interacting at positions 11–20. The results are shown in Figure 5c, for a relative 

localization error of r = 0.01 (since D = 1 µm
2
/s and σ = 4.47 nm). Comparison to Figure 4 shows that the 

scanning window method performs as expected for the case of full interaction and no interaction. The 

transition from interaction to no interaction is almost perfectly detected at positions 9–11 with a 

resolution smaller than the expected window length w = 3 (see Table 1). Also, the object based 

colocalization method with maximum distance dmax = 1.65    performs as expected, with interaction 

being found 81% of the time in the first half and virtually no interaction in the second half. 

The simulations show that the scanning window method is capable of reliably identifying interaction, 

independent of the relative localization error. Even when parts of the trajectories are not correlated 

because of transient interactions, or exhibit low correlation because of a large local relative localization 

error, the scanning window method is still able to detect interaction when it takes place. An important 

benefit compared to the object based colocalization method is that the scanning window method is 

significantly less sensitive for false negatives that cannot be avoided by object based colocalization. 

Furthermore, it is much less sensitive to false positives in case of coincidental colocalization. 
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Figure 5. Validation simulations for variable diffusion coefficient, variable localization 

precision, and variable interaction. The percentage of 1000 pairs of simulated Brownian 

motion trajectories where the scanning window method has found interaction is shown for 

each position along the trajectories (black line), in case of (a) full interaction with 

localization precision σ = 4.47 nm, and a diffusion coefficient D = 1 µm
2
/s at positions 1–10 

and D = 0.01 µm
2
/s at positions 11–20; (b) Full interaction with a diffusion coefficient  

D = 1 µm
2
/s, and a localization precision σ = 4.47 nm at positions 1–10 and σ = 44.7 nm at 

positions 11–20; (c) A diffusion coefficient D = 1 µm
2
/s, a localization precision σ = 4.47 nm, 

and interaction at positions 1–10 and no interaction at positions 11–20. All simulated 

trajectories had a length l = 20 and a time interval τ = 0.1 s between successive positions. The 

same trajectories were also analysed with an object based colocalization method with  

dmax = 1.65    as maximum distance (purple line). On the right, example pairs of 

trajectories are shown.  
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3.2. Intracellular Trafficking of Nanomedicines 

In pharmaceutical research, nanomedicines such as polymeric gene complexes (polyplexes) are being 

developed for the delivery of therapeutic nucleic acids to target cells, such as retinal pigment epithelium 

(RPE) cells in the context of ocular gene therapy [29]. To improve therapeutic efficacy, it is of interest to 

have a detailed understanding of the postendocytic trafficking profile of polyplexes inside such cells [1]. 

In previous work, we have investigated the presence of nanomedicines in different types of endosomes 

in RPE cells as a function of time. This was done, using dual colour SPT on living RPE cells with one 

colour corresponding to the fluorescently labelled endosomes and the other to the fluorescently labelled 

polyplexes [28]. Trajectories of both polyplexes and endosomes were determined from the SPT images. 

The presence of polyplexes in endosomes was measured by determining the correlation, as defined in 

Equation (1), between the positions of the full trajectories in both colours. From here on, we will refer to 

this approach as the full trajectory method. This method was found to perform better than classic object 

based colocalization because it was less prone to find false negatives and insensitive to false positives 

due to coincidental colocalization. However, interactions might be overlooked when they only result in 

correlation over a limited part of the trajectories (see Section 2.3). This is especially relevant in the 

context of intracellular traffic, since such trajectories often exhibit immobile phases that do not correlate. 

Moreover, transient interactions such as the escape of a polyplex from an endosome or the transferral of 

the polyplex to another type of (unlabelled) endosome also give rise to trajectory pairs that are not 

completely correlated. 

The scanning window method is, therefore, expected to perform better in the investigation of 

intracellular trafficking of nanomedicines than the full trajectory method, since it inherently is capable of 

detecting interaction in small segments of trajectories. First, as a negative control, dual colour SPT 

measurements of a mixture of non-interacting yellow-green and dark red fluorescently labelled 0.1 µm 

diameter beads undergoing free diffusion were analysed with the scanning window method to verify that 

no interactions are detected (see Appendix). Next, as a proof of concept, the scanning window method 

was applied to the dual colour SPT data of the postendocytic trafficking of polyplexes inside living cells 

(more details on the experiments can be found in Sections 5.2–5.4). The measured percentages of 

polyplex trajectories that are interacting in at least one window with a flotillin-2 endosome trajectory are 

shown in Figure 6a, together with the results obtained with the full trajectory method [28]. The data 

points show the percentages for individual dual colour SPT movies that each correspond to a different 

cell. Because of the variability between living cells, there is a strong variability in the corresponding 

percentages. The running average over three subsequent values is plotted to better indicate the observed 

trend. Comparison between the values from both methods shows that the scanning window method 

found at least two times more interaction than the full trajectory method. The same qualitative trend is 

found as for the scanning window method, indicating that the underestimation of the full trajectory 

method is systematic, and should thus always be accounted for. 

Because of the variable localization precision and mobility in most trajectories in the live-cell dual 

colour SPT data, the relative localization error r is also variable along the trajectories, leading to 

different window sizes for the scanning window method (cfr. Section 2.5). For instance, the dual colour 

SPT movie recorded at 53 minutes (see Figure 6b) was analysed with window sizes w between 3 and 16. 

It should be noted that the localization precision in some of the endosome trajectories is particularly low 
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(i.e., values of the localization precision in the order of 200 nm). Combined with low endosome mobility, 

this can potentially lead to a large relative localization error r (i.e., values of r in the order of 0.5). For such 

relative localization errors, the performance of the scanning window method is somewhat affected, 

leading to a higher probability to detect false positives (see Appendix). 

Figure 6. Interactions between endosomes and polyplexes measured by the scanning 

window method. (a) The percentages of polyplex trajectories that are interacting with a 

flotillin-2 type endosome trajectory inside living RPE cells at different time points after 

uptake of the polyplexes are shown. The dots represent the percentages for individual dual 

colour SPT experiments that each correspond to a different cell. The lines show the trend 

based on the running average of three subsequent experiments, and the shaded area above 

and below the lines represents the standard deviation of these averages. The red data 

corresponds to the full trajectory method and the blue data corresponds to the scanning 

window method. Using the scanning window method, a pair of trajectories was considered 

to interact if interaction was found in at least one window; (b) An overlay image and the 

corresponding trajectories of the dual colour SPT measurement at 53 minutes are shown  

(see Supplementary Movie 1). The endosomes have an eGFP label and are represented by 

green trajectories; the polyplexes have a Cy5 label and are represented by red trajectories. 

The windows where the scanning window method found interaction are indicated in blue. 

For this case, the window sizes w were situated between 3 and 16. 

 

Visual inspection of the trajectory pairs where the scanning window method only finds correlation in 

a part of the trajectories, suggests that this is mostly caused by either a low mobility or low localization 

precision in the other part of the trajectories (cfr. Figure 2). An exception is the clear example of 

transient interaction that was found in the dual colour SPT movie recorded at 100 min, as shown in 

Figure 7. Although this event could be interpreted as endosomal escape, it seems more likely that this is 

actually an endosomal fusion event where the polyplex is transferred to a different (unlabelled) type of 

endosome. The full trajectory method did not detect this transient interaction since the trajectories are 

not fully correlated. Interestingly, an earlier reported object based colocalization method [26]  

(see Section 3.1) also failed to identify this event because the endosome and the polyplex were separated 

further from each other than the user defined maximum distance. 
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Figure 7. An example of transient interaction detected by the scanning window method.  

(a) On the left, an overlay image from a dual colour SPT experiment recorded 100 minutes 

after uptake of the polyplexes. The flotillin-2 type endosomes have an eGFP label (green) 

and the polyplexes a Cy5 label (red). On the right, a subregion shows a transient event where 

a polyplex and an endosome are at first exhibiting correlated motion, after which the 

polyplex moves away from the endosome (see Supplementary Movie 2); (b) The trajectories 

found in the subregion are coloured according to the fluorescent labels, and the interacting 

positions found by the scanning window method are indicated in blue. The scanning window 

method finds interaction until 40 s; afterwards it becomes apparent that both objects are not 

interacting anymore. For this case, the window sizes w were situated between 4 and 14. 
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4. Discussion 

We have recently reported correlation between entire trajectories as a measure for the interaction 

between two dynamic species that is less prone to false positives and false negatives than classic object 

based colocalization [28]. However, this full trajectory method might not detect correlation in situations 

that are often present in live-cell imaging, such as changing mobility or transient interactions  

(see Section 2.3). Moreover, an objective measure for a threshold value of the correlation between 

trajectories of interacting objects was not determined. We, therefore, have developed a scanning window 

method, which allows spatial and temporal characterization of interaction by investigating the 

correlation in a window with a variable size that is scanned along the trajectories. The optimal window 

size depends on the local relative localization error r (cfr. Equation (2)) and is determined as the window 

size for which the probability P ≥ 0.8. The correlation threshold ρmin for the optimal window depends in 

turn on both the window size and the local relative localization error r. The values of P and ρmin can be 

determined from Tables 1 and 2, respectively. 

The scanning window method was validated with simulated trajectory pairs (see Section 3.1). It was 

shown that the method is able to accurately identify interaction, independent of the relative localization 

error r (see Figure 4a). This should come as no surprise since Table 1 and 2 were determined from 

similar simulated trajectories of interacting objects (see Section 2.4). The scanning window method, 

however, was demonstrated to perform well in the case of no interaction as well (see Figure 4b). Only for 

a large relative localization error r, the percentage of false positives was found to increase slightly. 

The performance of the scanning window method was also tested with simulated trajectory pairs that 

represent more complicated behaviour. In case of interaction along the entire trajectory, but with a 

changing diffusion coefficient, the scanning window method is still able to detect the interaction (see 

Figure 5a), because of the variable window size that accounts for the changing relative localization error. 

For the same reason, the method also performs well when the localization precision changes along the 

trajectory (see Figure 5b). Interestingly, the scanning window method is very well capable of detecting 

transient interactions along trajectories. The point at which the transition from binding to unbinding or 

vice versa occurs, was retrieved with a resolution that is smaller than the window size (see Figure 5c). 

As a comparison, the same simulated data was also analysed with an earlier reported object based 

colocalization method that makes use of a maximum distance to decide whether or not there is 

interaction at a particular position [26]. As shown in Figure 4a, this method was found to be sensitive for 

false negatives, i.e., interaction is significantly underestimated. It is also more sensitive to false positives 

in case of coincidental colocalization, which can happen when two independent objects pass by close to 

each other (see the first position in Figure 4b). The transition from binding to unbinding seems to be 

determined with a resolution that is similar to the scanning window method (see Figure 5c). Nonetheless, 

transient events detected by the object based colocalization method should be interpreted with care, 

considering for instance, the possibility of coincidental colocalization (see the first and second position 

in Figure 4b). Thus, it is clear that the scanning window method is overall a more reliable and robust 

method to detect true interaction. 

As a proof of concept, the scanning window method was applied to the trajectories of polyplexes and 

endosomes inside living cells, obtained by dual colour SPT experiments (see Section 3.2). When 

interaction was found in at least one window, the polyplex was considered to be residing in, or at least 
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interacting with, the endosome. Compared to the previously published full trajectory method [28], the 

scanning window approach was better capable of detecting this interaction. This is because it is for 

instance not uncommon for endosomes to exhibit mobility that changes over time [30,31]. In addition, a 

variable localization precision can occur, e.g. when the fluorescent labels photobleach. Both issues cause 

a variable local localization precision r and thus, a variable correlation along the trajectories. Correlation 

might also be degraded due to imperfect trajectory determination, for instance, because of the difficulty 

to unambiguously track the objects in crowded environments that are often present in living cells. In 

some cases, mistakes are unavoidable, leading to trajectories that contain incorrect positions. When there 

is interaction, the parts of the trajectories that correspond to the interacting objects still correlate, and 

hence, are found to interact by the scanning window method. A decrease in the overall correlation might 

also be caused by transient interactions, such as the escape of the polyplexes from endosomes, a process 

that is vital for the functioning of the polymeric gene complexes [1]. 

Comparison of the scanning window method with the full trajectory method shows that the latter 

method misses at least half of the interactions (see Figure 6a). Since it only searches for correlation on 

the full trajectory scale, the conventional correlation method does not notice many of the trajectory pairs 

that only partly correlate, due to the reasons discussed above. Interestingly, the scanning window 

method was capable of detecting transient interactions like the one shown in Figure 7. 

The scanning window method could be tested on other types of motion besides diffusion, and  

Tables 1 and 2 for the determination of P and ρmin could be adjusted if required. In the specific case that 

the objects are undergoing different types of motion, trajectory analysis could first be applied to 

determine the trajectory segments that correspond to these types of motion [32], which could then be 

analysed separately. 

5. Materials and Methods 

5.1. Validations Simulations 

The scanning window method was validated by simulations in Matlab. Different sets of 1000 pairs of 

two-dimensional Brownian motion trajectories with length l = 20 and time interval τ = 0.1 s between 

successive positions were simulated. The Brownian motion step in each dimension was simulated with 

the Matlab function randn, assuming a standard deviation equal to the mean step S =     . In most sets, 

the diffusion coefficient was taken D = 1 µm
2
/s, resulting in S = 0.447 µm. The two trajectories of each 

simulated pair start at the same position, and remain identical as long as there is interaction, depending 

on the set. A normally distributed value was added to each coordinate of each trajectory separately, again 

using the Matlab function randn. The standard deviation of this normal distribution is the localization 

precision σ, which is equal for both trajectories. The values of the localization precision were either 

chosen σ = 4.47 nm or σ = 44.7 nm, in order to obtain a relative localization error r = 0.01 or r = 0.10, 

respectively, according to Equation (2). The overlay was taken to be perfect, i.e., σo = 0. In one set, the 

localization precision was different in the first and second half of the trajectories. In another set, the 

diffusion coefficient was different in the two trajectory halves, both leading to local relative localization 

errors in the windows that are variable. The different conditions of each set of simulated trajectories are 
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listed in Table 3. The scanning window method is applied to each pair of simulated trajectories, as 

explained in Section 2.5. 

Table 3. The conditions for each set of simulated trajectory pairs for the validation of the 

scanning window method. Each set consists of 1000 pairs of Brownian motion trajectories 

with trajectory length l = 20 and time interval τ = 0.1 s between successive positions. The 

presence or absence of interaction, the diffusion coefficient D, the mean step S, and the 

localization precision σ are listed in function of the trajectory positions. 

Trajectory parameters used for the validation simulations 

Situation Position Interaction D (µm
2
/s) S (µm) σ (nm) 

interaction, r = 0.01 1–20 yes 1 0.447 4.47 

interaction, r = 0.10 1–20 yes 1 0.447 44.7 

no interaction, r = 0.01 1–20 no 1 0.447 4.47 

no interaction, r = 0.10 1–20 no 1 0.447 44.7 

interaction, variable D 1–10 yes 1 0.447 4.47 

11–20 yes 0.01 0.0447 4.47 

interaction, variable σ 1–10 yes 1 0.447 4.47 

11–20 yes 1 0.447 44.7 

variable interaction 1–10 yes 1 0.447 4.47 

11–20 no 1 0.447 4.47 

5.2. Live-Cell Sample Preparation 

The preparation of the sample for the live-cell dual colour SPT experiments is described in detail 

elsewhere [28]. Briefly, ARPE-19 cells (retinal pigment epithelial cell line, ATCC number CRL-2302) 

were cultured in DMEM:F12 supplemented with 10% FBS, 2 mm L-glutamine, and 2% P/S. All cells 

were grown at 37 °C in a humidified atmosphere containing 5% CO2. The pGL4.13 plasmid was labelled 

with Cy5 using the Label IT Nucleic Acid Labeling Kit (Mirus Bio Corporation, Madison, WI, USA) 

according to the manufacturer’s instructions at a 1:2 (v:w) ratio of Label IT Tracker Reagent and 

plasmid. Polymeric gene complexes were obtained by adding a poly(N,N'-cystaminebisacrylamide  

4-aminobutanol) (p(CBA-ABOL)) solution of 0.6 mg/mL to a plasmid solution of 0.05 mg/mL in a final 

mass ratio of 48/1 in 25 mm HEPES buffer pH 7.2 and vortexing the mixture for 10 s. ARPE-19  

cells were seeded at a concentration of 220.000 cells per well on sterile MatTek coverslips  

(1.5)-bottom dishes (MatTek Corporation, Ashland, MA, USA). The next day, cells were transfected 

with plasmids coding for the eGFP construct eGFP-Flot2 using Lipofectamine according to the 

manufacturer's description. Fresh polymeric gene complexes were diluted 5× in OptiMEM when added 

to the cells expressing fluorescent protein constructs, corresponding to 4 μg of Cy5-labeled plasmid. 

Intense contact with the cells was assured through repetitive pipetting at room temperature, allowing 

electrostatic adhesion of the polyplexes to the plasma membrane. Next, the cells were washed and 

imaged in fresh OptiMEM to chase the cell-associated fraction of polymeric gene complexes. 

  



Int. J. Mol. Sci. 2013, 14 16504 

 

 

5.3. Experimental Set-Up 

The dual colour SPT experiments were carried out on a custom-built laser widefield epi-fluorescence 

microscope set-up that is described elsewhere in detail [33]. Briefly, the microscope was a Nikon 

TE2000-E (Nikon, Brussels, Belgium) with a Nikon Plan Apochromat NA = 1.4 oil immersion 100× 

objective lens. eGFP was excited with a 100 mW Calypso 491 nm diode pumped solid state laser 

(Cobolt, Solna, Sweden) and Cy5 was excited with a 30 mW IQ1C 636 nm diode laser (Power 

Technology, Little Rock, AR, USA). The fluorescence light coming from the sample was collected again 

by the objective lens and sent through the side port of the microscope towards a Cascade II:512 electron 

multiplication charge coupled device (EMCCD) camera (Roper Scientific, Tucson, AZ, USA). A pair of 

achromat lenses was placed in between the camera and microscope side port for an extra 2× 

magnification of the image on the CCD chip so that one pixel corresponded to a distance of 89 nm in the 

sample. A dichroic mirror placed between both achromat lenses reflected the fluorescent light with a 

wavelength below 630 nm and transmitted the wavelengths above 630 nm. Accompanying mirrors and 

notch filters (AHF Analysentechnik, Tuebingen, Germany) guided the reflected and transmitted part of 

the fluorescence each to one half of the CCD chip. High-speed movies were recorded using the NIS 

Elements (Nikon, Brussels, Belgium) imaging software. The EMCCD camera was synchronized with an 

acousto-optical tunable filter to only illuminate the sample during the actual camera exposure time so as 

to minimize phototoxicity and photobleaching. The living cells were placed on the microscope in a stage 

top incubation chamber (Tokai Hit, Shizuoka, Japan), set at 37 °C, 5% CO2, and 100% humidity. 

5.4. SPT Experiments and Analysis 

Movies of 60 seconds were recorded on different time points at a speed of 2 frames per second and 

with an image acquisition time of 30 ms. For each movie, a different cell was selected for imaging in 

order to minimize photobleaching and phototoxicity, and to obtain information on a large population of 

cells. Cells were chosen, based on a relatively low expression level of eGFP-constructs to minimize the 

possibility of a disturbed cell functioning. 

After recording the movies, the images in the two different colours (i.e., with fluorescence light above 

and below 630 nm) were aligned using an affine transformation. The transformation parameter values 

were determined from an image of immobilized beads (TetraSpeck, Molecular Probes, Gent, Belgium) 

that are fluorescent in both colours. Image processing was performed in Matlab on all images for 

identification of the individual object spots, as explained in detail elsewhere [33]. The object locations 

were determined using an intensity weighted centre algorithm, as it was recently shown that it is more 

robust than the fitting of a Gaussian function in case of moving objects [34]. Using a nearest neighbour 

algorithm, these positions were used to reconstruct the trajectories. Since the objects are moving 

stochastically, their position during image acquisition is unknown, making it impossible to determine the 

exact localization precision for an individual localization event. However, for the intensity weighted 

centre algorithm, it is possible to calculate the localization precision σc that is expected on average [34]:  

  
   

        

 
  

                

     
  (5) 
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where a is the pixel size, b
2
 describes the variance of the local photon background, N is the total number 

of photons in the observed spot, and s is the standard deviation of the Gaussian approximation of the 

average object spot for diffusion with a diffusion coefficient D during image acquisition time Δt [34]: 

     
  

   

   
 
  

  
   

 
  (6) 

where s0 = 150 nm is the standard deviation of the Gaussian approximation of the spot in case the object 

is stationary and located in the focal plane, and z0 is defined by: 

   
   

 
  

    (7) 

with λ ≈ 550 nm the wavelength of light and n ≈ 1.33 the refractive index of the sample. Note that in 

Equation (6), it is assumed that the objects remain around the focal plane while they are being tracked, 

which is a reasonable approximation in our live-cell SPT experiments. The conversion factor between 

pixel values and photon numbers needed for determining b
2
 and N in Equation (5) is calculated 

according to a standard procedure that is explained elsewhere [34,35]. The diffusion coefficient D in 

Equation (6) is determined from the mean square displacements in the trajectory (or in the window 

scanned along the trajectory), which is standard practice [34,36]. Besides the localization precision, the 

overlay precision was determined as σo = 3 nm for all movies by an experimental procedure as reported 

before [34]. 

The scanning window method is applied to each pair of trajectories, as explained in Section 2.5. To 

restrict the calculation time, trajectory pairs that cannot realistically correspond to interacting objects are 

not considered, i.e., at least one pair of positions from both trajectories should be within a distance of  

500 nm from each other, in both the x- and y-direction. When the method finds at least one window with 

correlation, the trajectories are assumed to originate from objects that, at least temporarily, interact with 

each other. When there are different candidate trajectories in one colour that are correlated with a certain 

trajectory in the other colour, the pair with the highest number of correlated positions is retained. 

6. Conclusions 

We have developed the scanning window method for measuring the interaction between moving 

objects in dual colour microscope time-lapse images. Employing a scanning window along two 

trajectories in which the correlation between the positions is calculated, not only spatial but also 

temporal information about the interaction becomes available. The scanning window method was 

validated with simulations and applied to the trajectories of endosomes and polymeric gene 

nanoparticles in living cells. Interaction was more reliably found with the scanning window method than 

by simple correlation analysis over the entire trajectory at once, which in turn was already proven to 

perform more reliably than the classic object-based approach. The additional temporal information thus 

allows a more sensitive estimation of the interactions between objects, and moreover, provides a means 

to detect transient interaction events. 
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Appendix 

1. The Effect of the Localization and Overlay Precision on the Correlation 

Consider a one-dimensional trajectory XA and a one-dimensional trajectory XB. The Pearson 

correlation R between both trajectories is given by: 

  
          

               
  (8) 

The numerator is called the covariance and is defined as: 

                                    (9) 

where E[X] is the expected value of X. The denominator in Equation (8) is the square root of the product 

of two variances, defined by: 

                    
   

                    
    

(10) 

Assume now that the observed trajectories xA and xB deviate from the real trajectories XA and XB, 

respectively, because of experimental uncertainty: 

         

          
(11) 

with δA and δB deviations caused by the finite localization and overlay precision. The part coming from 

the localization precision follows a distribution around zero with standard deviation σA and σB, 

respectively. The deviations caused by the overlay process are not strictly defined, besides that their 

difference is following a distribution around zero with standard deviation σo, which is called the overlay 

precision. For mathematical convenience, it is therefore assumed that δA and δB are distributed  

around zero with a standard deviation   
     

    
    and   

     
    

   , respectively. 

Combining Equations (9) and (11), the covariance between xA and xB is given by: 

                       (12) 

The variance of xA and xB follow from Equations (10) and (11): 

                     

                     
(13) 
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The Pearson correlation ρ between the observed trajectories xA and xB is thus given by: 

  
          

                                                
  

(14) 

Consider now the special situation σA' = σB' = σ, in this case the correlation becomes: 

  
          

                                      
  (15) 

Both correlations will be equal if the following condition for σ is fulfilled: 

                                                         (16) 

This is a quadratic equation in σ
2
, with solution: 

    
               

 
 

 
                  

 
      

            
            

    
  

 
  

(17) 

Using Equation (13) and considering the definitions of σA' and σB', this can be rewritten as: 

    
                  

    
    

 

 
  

                  
 
    

    
                         

    
  

 
  

(18) 

This expression is more useful than Equation (17), since the variances var(XA) and var(XB) cannot be 

determined experimentally. 

In reality, the complete trajectories xA and xB are not known, only discrete positions xA(ti) and xB(ti) at 

different time points ti (i = 1,2, …, l) are measured, from which the sample variances can be determined: 

        
 

   
              

 

 

   

 

        
 

   
              

 

 

   

  

(19) 

with <xA> and <xB> the average positions of the observed trajectories xA and xB, respectively: 

     
       
 
   

 
 

     
       

 
   

 
  

(20) 
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2. Correlation between Trajectories of Interacting Objects 

Consider a one-dimensional trajectory XA of one object and a one-dimensional trajectory XB of 

another object. Assume that both objects are interacting, resulting in identical trajectories, aside from a 

constant displacement d: 

     

        
(21) 

The observed trajectories xA and xB deviate from the real trajectories, because of  

experimental uncertainty: 

        

           
(22) 

with δA and δB deviations caused by the finite localization and overlay precision. As explained above, 

both can be assumed to be distributed around zero with equal standard deviation σ defined in  

Equation (17). According to Equation (15), the Pearson correlation between the observed trajectories xA 

and xB is thus given by: 

  
          

                                      
  (23) 

According to Equations (9) and (10), the covariance cov(x, x + d) and the variance var(x, x + d) are 

equal to: 

                  

                 
(24) 

This allows to rewrite Equation (23) as: 

  
 

    
  

      
  

  

      
 
 

  

(25) 

The correlation between observed trajectories of interacting objects is thus completely determined by 

the ratio of σ
2
/var(x). Assume for instance that the interacting objects are undergoing Brownian motion 

with diffusion coefficient D. If the trajectories are observed during a time t, the variance is given by [34]: 

       
 

 
    (26) 

The mean step in the trajectory over a time interval τ < t is known to be [37]: 

        (27) 

Combining Equations (26) and (27) immediately results in: 

       
 

  
    (28) 
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Another example is linear motion with velocity v. If the trajectories are observed during a time t, the 

variance is given by: 

       
 

  
      (29) 

The (mean) step in the trajectory over a time interval τ < t is: 

      (30) 

Combining Equations (29) and (30) immediately results in: 

       
  

    
    (31) 

Linear and Brownian motion thus give rise to the following relationship between trajectory variance 

and mean step: 

            (32) 

where f is a factor that depends on the ratio t/τ between the observation time and time interval for the 

step. Inserting this expression in Equation (25) gives: 

  
 

   
 
 
 
 
 
 
 

 
 
   

 
 
 
 

  

(33) 

In other words, for a certain ratio t/τ, the observed correlation between two interacting objects 

undergoing Brownian or linear motion is completely determined by the following ratio, termed the 

relative localization error: 

  
 

 
  (34) 

However, the mean step S cannot be determined experimentally. In reality, the actual trajectory x is 

not known, only discrete positions xA(ti) and xB(ti) different time points ti (i = 1, 2, ..., l) are measured. In 

this case the time interval is given by τ = ti − ti−1 (i = 2, ..., l) and the total observation time by t = lτ, from 

which immediately follows that the ratio t/τ = l. From the trajectories the sample mean steps can be 

determined as: 

    
 

  
                                      

 

   

  (35) 

These are estimations of the mean steps defined in Equations (27) and (30). All observed trajectories 

with length l of interacting objects that are undergoing Brownian or linear motion will thus have the 

same expectation value for the correlation if they have the same relative localization error r. This result 

is valid for all types of motion that fulfill the condition in Equation (32), i.e., the variance of the 

trajectories of the interacting objects should be linearly related to the square of the mean step. 
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3. The Influence of a High Localization Error 

In case of low localization precision or low mobility, the relative localization error r will be large 

(see Equation (34)). Simulations were performed to investigate the influence of a large relative 

localization error r = 0.5 on the performance of the scanning window method. 

Two sets of 1000 pairs of two-dimensional Brownian motion trajectories with length l = 20 and time 

interval τ = 0.1 s between successive positions were simulated in the Matlab programming environment 

(The Mathworks, Natick, MA, USA). The Brownian motion step in each dimension was simulated with 

the Matlab function randn, assuming a standard deviation equal to the mean step S =     . The 

diffusion coefficient was taken D = 1 µm
2
/s, resulting in S = 0.447 µm. In both sets, the two trajectories 

of each simulated pair start at the same position. The subsequent positions are also identical in the first 

set (i.e., interaction), while they are independent from each other in the second set (i.e., no interaction). A 

normally distributed value was added to each coordinate of each trajectory separately, again using the 

Matlab function randn. The standard deviation of this normal distribution is the localization precision σ, 

which is equal for both trajectories. The value of the localization precision was chosen σ = 223.6 nm, in 

order to obtain a relative localization error r = 0.5. The overlay was taken to be perfect, i.e., σo = 0. The 

scanning window method is applied to each pair of simulated trajectories. 

The results in the situation of complete interaction are shown in Figure A1a, where for each position 

along the trajectories the percentage of trajectories where the scanning window method has detected 

interaction is shown. The scanning window method finds 99% of the time interaction in the middle of the 

trajectories. Towards the trajectory extremities, the method performs worse, reaching 80% at the 

trajectory start and end point. This can be explained by the smaller number of windows that correspond 

to the trajectory extremities. 

Figure A1. Validation simulations for interaction and no interaction in case of a large 

relative localization error. The percentage of 1000 pairs of simulated Brownian motion 

trajectories where the scanning window method has found interaction is shown for each 

position along the trajectories (black line), in case of (a) interaction, and (b) no interaction. 

All simulated trajectories have a length l = 20, a diffusion coefficient D = 1 µm
2
/s, and a time 

interval τ = 0.1 s between successive positions. The localization precision was chosen  

σ = 223.6 nm, corresponding to a relative localization error of r = 0.5. The same trajectories 

were also analysed with an object based colocalization method with dmax = 1.65    as 

maximum distance (purple line). 
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As shown in Figure A1a, these trajectories were also analysed with an earlier reported object based 

colocalization method that makes use of a maximum distance dmax = 1.65    to decide whether or not 

there is interaction at a particular position [26]. At almost all positions, the colocalization method finds 

interaction 81% of the time. 

Similarly, it was tested if the scanning window method can correctly detect the absence of interaction, 

the results of which are shown in Figure A1b. The scanning window method finds that less than 1% of 

the trajectories are interacting at the trajectory start and end points (i.e., false positives). However, away 

from the trajectory extremities, the scanning window method performs worse, going up to 11% in the 

middle of the trajectories. The object based method with maximum distance dmax = 1.65    finds that 

81% of the trajectories are interacting at the first position, since the trajectories were simulated to start in 

the same position. From position 2, this percentage drops and becomes smaller than 10% from position 5. 

For large relative localization errors, the performance of the scanning window method can thus be 

affected, leading to a somewhat higher probability to detect false positives. In this situation, the results of 

the scanning window method should thus be interpreted with care. 

4. Negative Control Experiment 

Dual colour SPT measurements were performed on a mixture of yellow-green and dark red 

fluorescently labelled 0.1 µm diameter beads (FluoSpheres, Molecular Probes, Gent, Belgium). 

Afterwards, the scanning window method was used to search for interaction between the bead 

trajectories. This provides a negative control, since no interaction is expected between the yellow-green 

and dark red beads. 

The microscope sample was prepared by diluting the bead mixture in water and applying 5 mL 

between a microscope slide and a cover slip with a double-sided adhesive spacer of 120 µm thickness 

(Secure-Seal Spacer, Molecular Probes, Bleiswijk, The Netherlands) in between. The dual colour SPT 

experiments were carried out on a custom-built laser widefield epi-fluorescence microscope set-up that 

is described elsewhere in detail [33]. Ten movies of 6 seconds were recorded at a speed of 35 frames per 

second and with an image acquisition time of 6 ms. The camera frame rate was obtained by selecting a 

subregion on the CCD chip of 256 by 512 pixels. After recording the dual colour SPT movies, the 

images in the two different colours were aligned using an affine transformation, calculated from an 

image of immobilized beads (TetraSpeck, Molecular Probes, Gent, Belgium) that are fluorescent in both 

colours. The individual beads were identified in each image of all movies by image processing 

performed in Matlab, as explained in detail elsewhere [33]. After determining the bead positions by an 

intensity weighted centre algorithm, the bead trajectories were reconstructed by a nearest neighbour 

algorithm. The average localization precision for the intensity weighted centres was calculated as 

explained in detail elsewhere [34]. 

The scanning window method was applied to all possible pairs of trajectories. Note that no restriction 

was imposed on the distance between the trajectories, which is possible with the scanning window 

method because correlation is translation independent. Using the scanning window method, a pair of 

trajectories was considered to interact when interaction was found in at least one window. The average 

percentage of trajectory pairs in a dual colour SPT experiment that are found to interact by the scanning 

window is shown in Figure A2a, together with the results obtained with the full trajectory method [28]. 
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The scanning window method identified only 0.5% of the trajectory pairs as interacting, and the full 

trajectory method performs even slightly better with only 0.1% of trajectory pairs detected as interacting. 

The scanning window method thus correctly predicts the absence of interaction. 

Figure A2. The scanning window method applied to dual colour SPT measurements on a 

mixture of yellow-green and dark red 0.1 µm diameter beads diffusing in water as an 

experimental negative control. (a) The average percentage of trajectory pairs in a dual colour 

SPT experiment that are found to interact by the scanning window and the full trajectory 

method. Both values were calculated from 10 dual colour SPT experiments and the error bars 

correspond to the standard deviation. All possible trajectory pairs were analysed, i.e., there 

was no restriction on the distance between two trajectories. Using the scanning window 

method, a pair of trajectories was considered to interact when interaction was found in at 

least one window; (b) An overlay image and the corresponding trajectories of one dual 

colour SPT measurement are shown (see Supplementary Movie 3). The yellow-green beads 

are represented by green trajectories and the dark red beads are represented by red 

trajectories. The scanning window method did not find interactions between the trajectory 

pairs for this particular movie. 
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