Supplementary Information

Table S1. Levels (µmol g⁻¹ dry weight) of total aliphatic and indole glucosinolates, total glucosinolates, and individual indole glucosinolates in pak choi sprouts and mature leaves 48 h after application of the respective elicitors.

<table>
<thead>
<tr>
<th></th>
<th>Total aliphatic</th>
<th>Total indole</th>
<th>Total GS</th>
<th>I3M</th>
<th>4OH13M</th>
<th>4MO13M</th>
<th>1MO13M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprouts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>41.82 ± 3.17</td>
<td>0.61 ± 0.07</td>
<td>42.43 ± 3.18</td>
<td>0.17 ± 0.03</td>
<td>0.10 ± 0.01</td>
<td>0.24 ± 0.02</td>
<td>0.10 ± 0.03</td>
</tr>
<tr>
<td>MeJA</td>
<td>50.84 ± 8.22</td>
<td>5.22 ± 1.41</td>
<td>56.06 ± 9.60</td>
<td>0.90 ± 0.29</td>
<td>0.10 ± 0.03</td>
<td>0.32 ± 0.07</td>
<td>3.90 ± 1.07</td>
</tr>
<tr>
<td>JA</td>
<td>47.02 ± 3.11</td>
<td>4.47 ± 0.49</td>
<td>51.49 ± 3.55</td>
<td>0.91 ± 0.13</td>
<td>0.13 ± 0.11</td>
<td>0.30 ± 0.06</td>
<td>3.13 ± 0.31</td>
</tr>
<tr>
<td>LA</td>
<td>44.06 ± 10.74</td>
<td>0.95 ± 0.30</td>
<td>45.02 ± 11.03</td>
<td>0.35 ± 0.11</td>
<td>0.14 ± 0.06</td>
<td>0.34 ± 0.07</td>
<td>0.14 ± 0.05</td>
</tr>
<tr>
<td>MeS</td>
<td>42.47 ± 14.10</td>
<td>0.75 ± 0.30</td>
<td>43.22 ± 14.38</td>
<td>0.25 ± 0.11</td>
<td>0.02 ± 0.01</td>
<td>0.31 ± 0.11</td>
<td>0.18 ± 0.07</td>
</tr>
<tr>
<td>Mature leaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.439 ± 0.184</td>
<td>0.071 ± 0.03</td>
<td>0.510 ± 0.210</td>
<td>0.05 ± 0.03</td>
<td></td>
<td>0.006 ± 0.002</td>
<td>0.01 ± 0.00</td>
</tr>
<tr>
<td>MeJA</td>
<td>1.788 ± 0.604</td>
<td>0.832 ± 0.32</td>
<td>2.619 ± 0.891</td>
<td>0.17 ± 0.06</td>
<td></td>
<td>0.010 ± 0.003</td>
<td>0.65 ± 0.33</td>
</tr>
<tr>
<td>JA</td>
<td>1.469 ± 0.216</td>
<td>1.678 ± 1.19</td>
<td>3.147 ± 1.263</td>
<td>0.62 ± 0.46</td>
<td></td>
<td>0.009 ± 0.004</td>
<td>1.05 ± 0.66</td>
</tr>
<tr>
<td>LA</td>
<td>0.645 ± 0.028</td>
<td>0.185 ± 0.10</td>
<td>0.830 ± 0.102</td>
<td>0.16 ± 0.09</td>
<td></td>
<td>0.013 ± 0.005</td>
<td>0.02 ± 0.01</td>
</tr>
<tr>
<td>MeS</td>
<td>0.882 ± 0.407</td>
<td>0.168 ± 0.05</td>
<td>1.051 ± 0.440</td>
<td>0.11 ± 0.04</td>
<td></td>
<td>0.010 ± 0.004</td>
<td>0.04 ± 0.01</td>
</tr>
</tbody>
</table>

GS, glucosinolates; I3M, Indol-3-ylmethyl; 4OH13M, 4-Hydroxy-indol-3-ylmethyl; 4MO13M, 4-Methoxy-indol-3-ylmethyl; 1MO13M, 1-Methoxy-indol-3-ylmethyl; MeJA, methyl jasmonate; JA, jasmonic acid; LA, linolenic acid; MeS, methyl salicylate. Each value represents the mean ± SD of five replicates.
Table S2. Expression levels of semi-quantitative realtime RT-PCR in pak choi sprouts and mature leaves 48 h after application of the respective elicitors. Each value represents the mean ± SD from three biological replicates obtained from semi-quantitative qRT-PCR analysis of gene expression levels after elicitor treatment compared to control plants. Significant changes compared to control are marked with an asterisk (Dunnett test, \(p \leq 0.05 \)).

<table>
<thead>
<tr>
<th>Sprouts</th>
<th>Control</th>
<th>MeJA</th>
<th>JA</th>
<th>LA</th>
<th>MeS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrMYB34_1</td>
<td>13.01 ± 0.25</td>
<td>10.25 ± 0.72 *</td>
<td>10.23 ± 0.34 *</td>
<td>12.24 ± 0.97</td>
<td>11.47 ± 0.32 *</td>
</tr>
<tr>
<td>BrMYB34_2</td>
<td>11.05 ± 0.42</td>
<td>4.19 ± 0.34 *</td>
<td>4.98 ± 1.21 *</td>
<td>8.02 ± 0.76 *</td>
<td>8.80 ± 0.65 *</td>
</tr>
<tr>
<td>BrMYB34_3</td>
<td>6.80 ± 0.18</td>
<td>2.69 ± 0.57 *</td>
<td>3.51 ± 0.30 *</td>
<td>5.98 ± 0.94</td>
<td>5.20 ± 0.25 *</td>
</tr>
<tr>
<td>BrMYB51_1</td>
<td>6.81 ± 0.34</td>
<td>6.23 ± 0.93</td>
<td>4.24 ± 1.99 *</td>
<td>5.74 ± 1.51</td>
<td>4.92 ± 0.27</td>
</tr>
<tr>
<td>BrMYB51_2</td>
<td>5.31 ± 0.26</td>
<td>4.26 ± 0.49 *</td>
<td>2.50 ± 0.43 *</td>
<td>4.01 ± 0.79 *</td>
<td>3.23 ± 0.27 *</td>
</tr>
<tr>
<td>BrMYB51_3</td>
<td>8.56 ± 0.28</td>
<td>5.74 ± 0.05 *</td>
<td>5.01 ± 0.30 *</td>
<td>5.51 ± 1.67 *</td>
<td>6.23 ± 0.67 *</td>
</tr>
<tr>
<td>BrMYB51_4</td>
<td>10.30 ± 0.23</td>
<td>7.97 ± 0.58 *</td>
<td>7.97 ± 0.39 *</td>
<td>7.76 ± 0.89 *</td>
<td>7.71 ± 0.31 *</td>
</tr>
<tr>
<td>BrMYB122_1</td>
<td>7.78 ± 0.36</td>
<td>4.71 ± 0.12 *</td>
<td>3.73 ± 0.78 *</td>
<td>5.72 ± 1.07 *</td>
<td>5.97 ± 0.51 *</td>
</tr>
<tr>
<td>BrMYB122_2</td>
<td>7.10 ± 0.29</td>
<td>5.69 ± 0.23 *</td>
<td>5.47 ± 0.29 *</td>
<td>5.96 ± 1.30 *</td>
<td>5.72 ± 0.27 *</td>
</tr>
<tr>
<td>BrCYP79B2_1</td>
<td>8.54 ± 0.46</td>
<td>4.20 ± 0.65 *</td>
<td>4.69 ± 0.43 *</td>
<td>5.95 ± 0.92 *</td>
<td>6.68 ± 0.30 *</td>
</tr>
<tr>
<td>BrCYP79B2_2</td>
<td>8.72 ± 0.31</td>
<td>5.43 ± 0.11 *</td>
<td>4.88 ± 0.38 *</td>
<td>7.18 ± 0.88 *</td>
<td>6.91 ± 0.34 *</td>
</tr>
<tr>
<td>BrCYP79B3</td>
<td>7.23 ± 0.43</td>
<td>4.23 ± 0.89 *</td>
<td>4.72 ± 0.34 *</td>
<td>5.50 ± 1.28</td>
<td>5.80 ± 0.45</td>
</tr>
<tr>
<td>BrSOT16</td>
<td>8.24 ± 0.42</td>
<td>4.69 ± 0.60 *</td>
<td>4.19 ± 0.63 *</td>
<td>6.20 ± 0.52 *</td>
<td>6.20 ± 0.38 *</td>
</tr>
<tr>
<td>BrCYP81F1</td>
<td>9.24 ± 0.63</td>
<td>7.42 ± 0.18 *</td>
<td>4.62 ± 0.24 *</td>
<td>6.17 ± 1.41 *</td>
<td>7.30 ± 0.96 *</td>
</tr>
<tr>
<td>BrCYP81F2</td>
<td>10.55 ± 0.36</td>
<td>7.68 ± 0.42 *</td>
<td>6.69 ± 0.48 *</td>
<td>7.97 ± 1.78</td>
<td>8.67 ± 0.55</td>
</tr>
<tr>
<td>BrCYP81F3_1</td>
<td>6.28 ± 0.23</td>
<td>3.74 ± 0.42 *</td>
<td>4.00 ± 0.36 *</td>
<td>4.98 ± 1.14 *</td>
<td>5.25 ± 0.72</td>
</tr>
<tr>
<td>BrCYP81F3_2</td>
<td>6.53 ± 0.20</td>
<td>5.69 ± 0.20</td>
<td>4.75 ± 0.16 *</td>
<td>6.24 ± 1.52</td>
<td>6.51 ± 0.75</td>
</tr>
<tr>
<td>BrCYP81F4_1</td>
<td>7.53 ± 0.61</td>
<td>2.48 ± 0.65 *</td>
<td>1.99 ± 0.37 *</td>
<td>5.49 ± 1.63 *</td>
<td>5.99 ± 0.84</td>
</tr>
<tr>
<td>BrCYP81F4_2</td>
<td>8.52 ± 0.40</td>
<td>0.72 ± 0.75 *</td>
<td>1.48 ± 0.44 *</td>
<td>5.50 ± 1.38 *</td>
<td>6.01 ± 0.63 *</td>
</tr>
<tr>
<td>BrOMT_1</td>
<td>8.31 ± 0.51</td>
<td>2.95 ± 0.99 *</td>
<td>3.25 ± 0.44 *</td>
<td>5.51 ± 1.77 *</td>
<td>6.27 ± 0.84</td>
</tr>
<tr>
<td>BrOMT_2</td>
<td>10.04 ± 0.36</td>
<td>8.72 ± 0.39</td>
<td>7.49 ± 0.60 *</td>
<td>7.47 ± 1.70 *</td>
<td>8.49 ± 0.91</td>
</tr>
</tbody>
</table>

Mature leaves

<table>
<thead>
<tr>
<th>Sprouts</th>
<th>Control</th>
<th>MeJA</th>
<th>JA</th>
<th>LA</th>
<th>MeS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrMYB34_1</td>
<td>14.16 ± 0.89</td>
<td>13.97 ± 0.89</td>
<td>13.15 ± 1.67</td>
<td>14.96 ± 2.80</td>
<td>13.76 ± 1.15</td>
</tr>
<tr>
<td>BrMYB34_2</td>
<td>6.29 ± 0.44</td>
<td>6.50 ± 0.68</td>
<td>6.80 ± 3.15</td>
<td>8.75 ± 0.71</td>
<td>8.23 ± 3.26</td>
</tr>
<tr>
<td>BrMYB34_3</td>
<td>3.54 ± 0.91</td>
<td>4.00 ± 0.47</td>
<td>-0.62 ± 1.02 *</td>
<td>4.50 ± 0.32</td>
<td>8.48 ± 0.41 *</td>
</tr>
<tr>
<td>BrMYB51_1</td>
<td>8.01 ± 1.63</td>
<td>8.73 ± 0.38</td>
<td>7.43 ± 1.11</td>
<td>8.26 ± 0.77</td>
<td>7.51 ± 0.61</td>
</tr>
<tr>
<td>BrMYB51_2</td>
<td>3.97 ± 0.35</td>
<td>5.94 ± 0.09 *</td>
<td>6.45 ± 0.41 *</td>
<td>6.52 ± 0.40 *</td>
<td>5.75 ± 0.18 *</td>
</tr>
<tr>
<td>BrMYB51_3</td>
<td>11.53 ± 0.75</td>
<td>11.25 ± 0.58</td>
<td>10.76 ± 0.31</td>
<td>10.22 ± 1.19</td>
<td>9.25 ± 0.19 *</td>
</tr>
<tr>
<td>BrMYB51_4</td>
<td>10.54 ± 0.39</td>
<td>11.50 ± 0.32 *</td>
<td>11.78 ± 0.27 *</td>
<td>10.47 ± 0.24</td>
<td>9.68 ± 0.44 *</td>
</tr>
<tr>
<td>BrMYB122_1</td>
<td>12.01 ± 0.98</td>
<td>12.55 ± 0.66</td>
<td>8.47 ± 1.79 *</td>
<td>13.17 ± 0.33</td>
<td>11.66 ± 1.07</td>
</tr>
<tr>
<td>BrMYB122_2</td>
<td>12.38 ± 2.72</td>
<td>9.45 ± 0.51</td>
<td>9.40 ± 0.78</td>
<td>8.96 ± 2.42 *</td>
<td>8.97 ± 0.53 *</td>
</tr>
<tr>
<td>BrCYP79B2_1</td>
<td>6.00 ± 0.61</td>
<td>5.89 ± 1.41</td>
<td>3.94 ± 0.16 *</td>
<td>7.44 ± 0.20</td>
<td>6.82 ± 0.31</td>
</tr>
<tr>
<td>BrCYP79B2_2</td>
<td>8.95 ± 0.78</td>
<td>8.69 ± 0.99</td>
<td>5.15 ± 0.16 *</td>
<td>9.40 ± 0.54</td>
<td>9.27 ± 0.59</td>
</tr>
<tr>
<td>BrCYP79B3</td>
<td>10.52 ± 0.79</td>
<td>9.27 ± 1.19</td>
<td>5.91 ± 0.93 *</td>
<td>8.18 ± 0.87 *</td>
<td>9.25 ± 0.58</td>
</tr>
<tr>
<td>BrSOT16</td>
<td>5.45 ± 0.53</td>
<td>2.88 ± 0.14 *</td>
<td>0.37 ± 0.07 *</td>
<td>5.93 ± 0.52</td>
<td>4.69 ± 0.36</td>
</tr>
<tr>
<td>BrCYP81F1</td>
<td>14.38 ± 0.35</td>
<td>15.36 ± 0.75</td>
<td>13.23 ± 0.74</td>
<td>15.85 ± 0.78 *</td>
<td>13.68 ± 0.17</td>
</tr>
<tr>
<td>BrCYP81F2</td>
<td>14.77 ± 1.83</td>
<td>14.89 ± 1.87</td>
<td>13.76 ± 1.31</td>
<td>17.47 ± 0.07</td>
<td>15.16 ± 2.40</td>
</tr>
<tr>
<td>BrCYP81F3_1</td>
<td>6.52 ± 0.61</td>
<td>5.42 ± 0.43 *</td>
<td>5.75 ± 0.31</td>
<td>7.48 ± 0.24 *</td>
<td>5.72 ± 0.39</td>
</tr>
</tbody>
</table>
Table S2. Cont.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>MeJA</th>
<th>JA</th>
<th>LA</th>
<th>MeS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BrCYP81F3_2</td>
<td>9.53 ± 0.74</td>
<td>8.98 ± 1.24</td>
<td>9.73 ± 1.02</td>
<td>10.98 ± 1.04</td>
<td>9.75 ± 0.39</td>
</tr>
<tr>
<td>BrCYP81F4_1</td>
<td>8.50 ± 0.69</td>
<td>7.03 ± 3.47</td>
<td>7.11 ± 2.86</td>
<td>9.72 ± 0.21</td>
<td>7.66 ± 2.68</td>
</tr>
<tr>
<td>BrCYP81F4_2</td>
<td>11.77 ± 0.43</td>
<td>−0.02 ± 0.14 *</td>
<td>0.72 ± 0.53 *</td>
<td>12.55 ± 0.26</td>
<td>10.57 ± 1.12</td>
</tr>
<tr>
<td>BrOMT_1</td>
<td>5.00 ± 0.75</td>
<td>0.48 ± 0.49 *</td>
<td>1.00 ± 0.12 *</td>
<td>9.25 ± 2.14 *</td>
<td>6.99 ± 0.44 *</td>
</tr>
<tr>
<td>BrOMT_2</td>
<td>14.22 ± 0.73</td>
<td>13.11 ± 0.32</td>
<td>12.48 ± 0.27</td>
<td>15.63 ± 0.55</td>
<td>13.18 ± 1.84</td>
</tr>
</tbody>
</table>

MeJA, methyl jasmonate; JA, jasmonic acid; LA, linolenic acid; MeS, methyl salicylate.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).