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Abstract: Alzheimer’s disease (AD), an age-related neurodegenerative disorder with 

progressive cognition deficit, is characterized by extracellular senile plaques (SP) of 

aggregated β-amyloid (Aβ) and intracellular neurofibrillary tangles, mainly containing the 

hyperphosphorylated microtubule-associated protein tau. Multiple factors contribute to the 

etiology of AD in terms of initiation and progression. Melatonin is an endogenously 

produced hormone in the brain and decreases during aging and in patients with AD. Data 

from clinical trials indicate that melatonin supplementation improves sleep, ameliorates 

sundowning and slows down the progression of cognitive impairment in AD patients. 

Melatonin efficiently protects neuronal cells from Aβ-mediated toxicity via antioxidant and 

anti-amyloid properties. It not only inhibits Aβ generation, but also arrests the formation of 

amyloid fibrils by a structure-dependent interaction with Aβ. Our studies have demonstrated 

that melatonin efficiently attenuates Alzheimer-like tau hyperphosphorylation. Although the 
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exact mechanism is still not fully understood, a direct regulatory influence of melatonin on 

the activities of protein kinases and protein phosphatases is proposed. Additionally, 

melatonin also plays a role in protecting the cholinergic system and in anti-inflammation. 

The aim of this review is to stimulate interest in melatonin as a potentially useful agent in the 

prevention and treatment of AD.  

Keywords: Alzheimer’s disease; melatonin; tau hyperphosphorylation; beta amyloid; 

antioxidation; cholinergic; neuroinflammation 

 

1. Introduction 

Alzheimer’s disease (AD) is an age-associated neurodegenerative disease and characterized by 

progressive loss of cognition and other neurobehavioral manifestations. Pathological hallmarks of AD 

include extracellular senile plaques (SP), mainly consisting of β-amyloid (Aβ), and intracellular 

neurofibrillary tangles (NFTs), mainly composed of abnormally hyperphosphorylated tau, a 

microtubule-associated protein [1]. In spite of a large number of studies undertaken, the etiology of AD 

is largely unknown. Many mechanisms have been proposed, including genetic predispositions (e.g., 

expression levels and subforms of presenilins (PS) and Apolipoprotein (Apo) E), inflammatory 

processes associated with cytokine releasing, oxidative stress and neurotoxicity by metal ions [2–6].  

Melatonin (N-acetyl-5-methoxytryptamine), a tryptophan metabolite and synthesized mainly in the 

pineal gland, has a number of physiological functions, including regulating circadian rhythms, clearing 

free radicals, improving immunity and generally inhibiting the oxidation of biomolecules. Decreased 

melatonin in serum and cerebrospinal fluid (CSF) and the loss of melatonin diurnal rhythm are observed 

in AD patients [7–12]. Furthermore, the level of melatonin in CSF decreases with the progression of AD 

neuropathology, as determined by the Braak stages [12]. Melatonin levels both in CSF and in 

postmortem human pineal gland are already reduced in preclinical AD subjects, who are cognitively still 

intact and have only the earliest signs of AD neuropathology [8,12]. A strong correlation exists between 

pineal content and CSF level of melatonin [8] and between CSF and plasma melatonin levels [7], 

suggesting that a reduced CSF melatonin level may serve as an early marker for the very first stages of 

AD. In mammals, melatonin exerts some of its functions through two specific high-affinity membrane 

receptors, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2). Decreased MT2 

immunoreactivity and increased MT1 immunoreactivity have been reported in the hippocampus of AD 

patients [13,14]. Although the pineal gland of AD patients has molecular changes, no changes in pineal 

weight, calcification or total protein content have been observed [8,15]. It is also shown that 

β1-adrenergic receptor mRNA disappeared, and the activity and gene expression of monoamine oxidase 

(MAO) were upregulated in AD patients, suggesting that the dysregulation of noradrenergic 

innervations and the depletion of serotonin, the precursor of melatonin, might be responsible for the loss 

of melatonin rhythm and reduced melatonin levels in AD [16]. Melatonin supplementation has been 

suggested to improve circadian rhythmicity, for example, decreasing agitated behavior, confusion and 

“sundowning”, and to produce beneficial effects on memory in AD patients [17–21]. Therefore, 
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melatonin supplementation, with its marked low toxicity [22–24], may be one of the possible strategies 

for symptomatic treatment.  

In AD, Aβ is generally believed to play an important role in promoting neuronal degeneration by 

rendering neurons more vulnerable to age-related increases in levels of oxidative stress and impairments 

in cellular energy metabolism [25]. As the major microtubule-associated protein, tau promotes 

microtubule assembly and stabilizes microtubules. Hyperphosphorylation will obviously reduce the 

abilities of tau, which leads to cytoskeletal arrangement disruption [26,27]. The extent of neurofibrillary 

pathology, and particularly the number of cortical NFT, correlates positively with the severity of 

dementia [28]. As melatonin is able to improve some of the clinical symptoms of AD, and the level of 

melatonin decreases dramatically during AD, studies on the relationship between melatonin and AD 

pathology will be helpful to assess its potential in the prevention or treatment of AD. In this review, we 

will address the role of melatonin in tau hyperphosphorylation and Aβ toxicity. As cholinergic deficit 

and inflammation are involved in AD pathogenesis, the protection of melatonin on the cholinergic 

system and inflammation are also introduced. Each part is described, from phenomenon observation to 

mechanism investigation and speculation. 

2. Melatonin in Tau Hyperphosphorylation 

Hyperphosphorylated tau has been identified in more than a dozen of neurodegenerative disorders, 

termed tauopathies, including AD, Niemann-Pick type C disease, and so on [29–31]. Among these 

tau-related disorders, AD is the most common and the best-studied tauopathy. In AD brains, the level 

of the hyperphosphorylated tau is 3–4-fold higher than that of tau from normal adult brains [32,33]. 

There are 79 putative serine or threonine phosphorylation sites in the longest human brain tau isoform, 

and more than 30 phosphorylation sites have been identified in AD brain, including Thr39, Ser46, 

Thr50, Thr69, Thr153,Thr175, Thr181, Ser184, Ser185, Ser195, Ser198, Ser199, Ser202, Thr205, 

Ser208, Ser210, Thr212, Ser214, Thr217, Thr231, Ser235, Ser237, Ser238, Ser245, Ser258, Ser262, 

Ser285, Ser293, Ser305, Ser320, Ser324, Ser352, Ser356, Thr377, Ser396, Ser400, Thr403, Ser404, 

Ser409, Ser412, Ser413, Ser416 and Ser422 [34–39]. The spreading of tau pathology in the brain is the 

hallmark of AD pathogenesis, and the number of NFTs is positively correlated with the clinical 

cognitive deficit of AD patients [40].  

Inhibition of tau hyperphosphorylation is one target in AD treatment. Thus, we systemically studied 

the effect of melatonin on tau hyperphosphorylation and found that melatonin efficiently attenuates tau 

hyperphosphorylation induced by wortmannin [41], calyculin A (CA) [42–44] and okadaic acid [45] in 

N2a and SH-SY5Y neuroblastoma cells. It was further demonstrated that melatonin significantly 

ameliorated tau hyperphosphorylation elicited by wortmannin [46], isoproterenol [47,48], CA [44] and 

constant light illumination [24] in rats. To elucidate the mechanisms underlying the inhibitory effect of 

melatonin on tau hyperphosphorylation, alterations of the activities of protein kinases and phosphatases 

were detected. Melatonin treatment not only inhibited wortmannin-induced glycogen synthase kinase-3 

(GSK-3) activation, isoproterenol-induced protein kinase A (PKA) activation and CA-induced protein 

phosphatase-2A (PP-2A) inactivation, but also antagonized the oxidative stress induced by these  

agents [46,49,50]. These results from our studies provide evidence for the strong efficacy of melatonin 

in inhibiting tau hyperphosphorylation. 
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To explore whether a decrease of melatonin would induce the alteration of tau phosphorylation,  

we inhibited melatonin biosynthesis by brain injection of haloperidol, an inhibitor of 

5-hydroxyindole-O-methyltransferase (one key enzyme in melatonin synthesis) in rats [51]. It was found 

that inhibition of melatonin biosynthesis not only resulted in spatial memory impairment in rats,  

but also induced an increase in tau phosphorylation with a concomitant decrease in PP-2A activity. 

Supplementation with melatonin by prior injection for one week and reinforcement during the 

haloperidol administration period significantly improved memory retention deficits, arrested tau 

hyperphosphorylation and oxidative stress and restored PP-2A activity [51]. We also used constant 

illumination to interrupt melatonin metabolism in rats. Concomitant with decreased serum melatonin, 

the constantly illuminated rats developed spatial memory deficits, tau hyperphosphorylation at multiple 

sites, activation of GSK-3 and PKA, as well as suppression of PP-1. Prominent oxidative damage and 

organelle lesions, demonstrated by increased expression of endoplasmic reticulum (ER) stress-related 

proteins, including immunoglobulin-binding protein (BiP)/GRP78 and CHOP/GADD153, decreased the 

number of rough ER and free ribosome, resulted in thinner synapses and increased superoxide dismutase 

and MAO, which were also observed in the light exposed rats. Simultaneous supplementation of 

melatonin partially arrested the behavioral and molecular impairments [24]. Although it is unclear 

whether diminished melatonin concentration is one causative factor in AD pathology or only a 

secondary process, our results strongly implicate the important role of decreased melatonin in 

Alzheimer-like spatial memory impairment and tau hyperphosphorylation.  

Chemical agents used in our studies, including wortmannin, isoproterenol and CA, not only induced 

tau phosphorylation, but also initiated oxidative stress, as manifested by an elevated level of 

malondialdehyde and an altered activity of superoxide dismutase (SOD) [41–43]. Furthermore, 

melatonin is a potent direct free radical scavenger and indirect antioxidant that acts by augmenting the 

activity of several important antioxidative enzymes, such as SOD, glutathione peroxidase and 

glutathione reductase [52]. Constant illumination not only induced the decreased serum melatonin level, 

but also the increased levels of SOD and MAO in rats [24]. Oxidative stress is known to influence the 

phosphorylation state of tau [53–55]. The accumulation of misfolded and aggregated proteins in 

neurons of AD brain was considered to be related to oxidative stress, along with its molecular structure 

changes with aging [56]. As an antioxidant and free radical scavenger [57–59], melatonin prevents the 

overproduction of free radicals and reduces neuronal damage resulting from a variety of pathological 

processes [60–62]. It is therefore possible that prevention against tau phosphorylation by melatonin is 

partially due to its antioxidant activity. 

Some studies also indicated melatonin may act as an enzyme modulator in a way that is unrelated to 

its antioxidant properties. Accumulating data provide evidence for the regulation by melatonin of 

protein kinases, including PKA [63,64], protein kinase C (PKC) [65,66], Ca2+/calmodulin-dependent 

kinase II (CaMKII) [67,68] and the mitogen-activated protein kinase (MAPK) family [69–72]. The 

documented correlation between melatonin and cAMP indicates that melatonin might inhibit PKA 

activity through the melatonin receptor coupled inhibition of adenylyl cyclase and reduction of  

cAMP [63,64]. Although there is no evidence of a direct relationship between melatonin and GSK-3 

activity, one of our studies has found that melatonin treatment revised constant light illumination 

induced GSK-3 activation in the brain of rats [24]. 
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3. Melatonin and Aβ Toxicity  

Aβ, composing 39−43 amino acid residues derived from its precursor, amyloid precursor protein 

(APP), plays a pivotal role in the pathogenesis of AD [25,73]. Mature APP is processed proteolytically 

by distinct α-secretase or β-secretase pathways [74]. The nonamyloidogenic α-pathway involves the 

cleavage of APP within the Aβ sequence by α-secretase to release an N-terminal APP fragment, which, 

in turn, is cleaved by γ-secretase. Thus, the cleavage by γ-secretase precludes the formation of Aβ. The 

amyloidogenic β-secretase pathway, which results in the formation of intact Aβ peptide, is mediated by 

the sequential cleavage of β-secretase and γ-secretases at the N- and C-terminals of the Aβ sequence, 

respectively [75]. Melatonin has been found to inhibit normal levels of secretion of soluble APP (sAPP) 

in different cell lines by interfering with APP full maturation [76]. Additionally, administration  

of melatonin efficiently reduced Aβ generation and deposition both in vivo [77,78] and  

in vitro [76,79–81]. We have demonstrated that melatonin reduces Aβ generation in mouse 

neuroblastoma N2a cells harboring APP695 [80,82].  

However, an in vivo study showed that melatonin did not affect the expression of APP holoprotein in 

transgenic Tg2576 mice [77]. Furthermore, despite achieving high plasma concentrations of melatonin, 

chronic melatonin therapy in old Tg2576 mice initiated at 14 months of age not only failed to remove 

existing plaques, but also failed to prevent additional Aβ deposition [83]. This result is in contrast with 

those of diminished Aβ in melatonin-treated wild-type mice [78] and reduced Aβ and protein nitration in 

melatonin-treated Tg2576 mice [77]. The initiation time of melatonin treatment might account for the 

difference between the studies of Matsubara et al. [77] and Quinn et al. [83], in which the same 

transgenic Tg2576 mouse model was used. Amyloid plaque pathology typically appears in 10–12-month 

old Tg2576 mice [84]. Melatonin treatment in the study of Matsubara et al. was started when the mice 

were four months old (prior to the appearance of hippocampal and cortical plaques) [77], an earlier 

pathological stage compared with 14 months of age in the study of Quinn et al. [83]. However, both 

studies concur in finding little evidence of the potent antioxidant effects of melatonin in the oldest mice. 

These findings indicate that melatonin has the ability to regulate APP metabolism and prevent Aβ 

pathology, but fails to exert anti-amyloid or antioxidant effects when initiated after Aβ deposition. 

Although consistent conclusions were achieved, none of the related studies further explain how 

melatonin exerts its inhibitory effect on Aβ generation. The proteolytic cleavage of APP by the 

α-secretase pathway is regulated by many physiological and pathological stimuli and the 

PKC-dependent mechanism is one of the most recognized. Stimuli, such as muscarinic and 

metabotrophic glutamate receptor agonists and phorbol esters, share the capacity to stimulate soluble 

APP secretion and inhibit Aβ formation through PKC activation [75]. The mechanism whereby PKC 

activity increases soluble APP secretion is still unknown, but it may involve additional kinase steps and 

the eventual activation of the secretases that mediated APP cleavage. Recently, the inhibitory regulation 

by GSK-3 inhibition on Aβ generation has been well-established [85–87]. The mechanism behind this is 

not clear. It was demonstrated that inhibition of GSK-3 and upregulation of c-Jun N-terminal kinase 

(JNK) result in elevated matrix metalloprotease activity and increased degradation of Aβ [88]. As 

phosphorylation of GSK-3 leads to its inactivation, the data suggest that activated GSK-3 may inhibit or 

reduce JNK activation by certain stimuli [89]. GSK-3 interacts with presenilin-1 (PS1), a cofactor for 

γ-secretase, implying that GSK-3 may function as a component in the γ-secretase complex [90,91]. 
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Assuming that melatonin can influence PKC and GSK-3 activity as mentioned earlier, it is postulated 

that melatonin may regulate APP processing through the PKC and GSK-3 pathways. As PKC is an 

upstream regulator of GSK-3, GSK-3 may be one of the common signal pathways increasing Aβ 

generation and tau hyperphosphorylation. Regulation of the Aβ fibril formation and the important 

pathological property of Aβ, such as neurotoxicity and resistance to proteolytic degradation, depend on 

the ability of peptides to form β-sheet structures and/or amyloid fibrils [92,93].  

Intervention in the Aβ aggregation process can be considered an approach to stopping or slowing the 

progression of AD. Melatonin can interact with Aβ40 and Aβ42 and inhibit the progressive formation of 

β-sheet and/or amyloid fibrils [94–96]. The anti-fibrillogenic effect of melatonin has been demonstrated 

by different techniques, including circular dichroism (CD) spectroscopy, electron microscopy and 

nuclear magnetic resonance (NMR) spectroscopy and electrospray ionization mass spectrometry 

(ESI-MS) [95]. Moreover, the interaction between melatonin and Aβ appears to depend on the structural 

characteristics of melatonin, rather than on its antioxidant properties, because it could not be reproduced 

by melatonin analogs or other free radical scavengers [92,94]. Evidence derived from ESI-MS proved 

that there was a hydrophobic interaction between Aβ and melatonin, and proteolytic investigations 

suggested that the interaction took place on the 29–40 residues of the Aβ segment [95]. Results from 

NMR spectroscopy further confirmed a residue-specific interaction between melatonin and any of the 

three histidine and aspartate residues of Aβ [96]. The imidazole-carboxylate salt bridges formed by the 

side chains of histidine (His+) and aspartate (Asp-) residues are critical to the formation of the amyloid 

β-sheet structures [97], and disruption of these salt bridges promotes fibril dissolution [98].  

Melatonin could promote the conversion of β-sheets into random coils by disrupting the 

imidazole-carboxylate salt bridges and, thus, prevent Aβ fibrillogenesis and aggregation. It is therefore 

possible that by blocking the formation of the secondary β-sheet conformation, melatonin may not only 

reduce neurotoxicity, but also facilitate clearance of the peptide via increased proteolytic degradation. It 

has been demonstrated that melatonin directly interacts with Aβ and prevents its aggregation [99]. Aβ 

treatment elicits a spectrum of cellular damage, including increases in lipid peroxidation and 

intracellular free calcium concentration, oxidative damage to mitochondrial DNA and the emergence of 

apoptotic markers [100]. Mitochondria are not only the primary site of reactive oxygen species (ROS) 

generation, but also the primary target of attack for ROS. Melatonin was considered to stabilize the 

fluidity of mitochondrial inner membranes; and binding to mitochondrial membranes was revealed [101]. 

Oxidative stress acts synergistically with the disturbance of intracellular calcium homeostasis. The free 

radical-induced membrane damage induces further calcium influx, and the resultant accentuated calcium 

influx, in turn, will induce the generation of further free radicals. Therefore, oxidative stress plays a 

central role in Aβ-induced neurotoxicity and even cell death. Aside from Aβ causing oxidative stress, it 

has been proposed that oxidative damage could exacerbate a vicious cycle, in which amyloidogenic 

processing of APP would be further facilitated to generate more Aβ, which, in turn, enhances oxidative 

stress [102]. Accumulating data implies that melatonin efficiently protects cells against Aβ-induced 

oxidative damage and cell death in vitro [103,104] and in vivo [77,105–107]. In Aβ-treated cells and 

animals, melatonin exerts its protective activity mainly through an antioxidant effect, whereas in 

APP-transfected cells and transgenic animal models, the underlying mechanism is attributed to not only 

its antioxidant property, but also its anti-amyloid property, including inhibition of both Aβ generation 

and formation of β-sheets and/or amyloid fibrils.  
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Additionally, some findings suggest a role for perturbed melatonin signaling in the sleep 

disturbances that are common in AD patients [108–110]. By in vivo microdialysis in Tg2576 mice, it 

was found that the amount of brain interstitial fluid (ISF) Aβ correlated with wakefulness. 

Additionally, the ISF Aβ also significantly increased during acute sleep deprivation, but decreased 

with infusion of a dual orexin receptor antagonist. Chronic sleep restriction significantly increased Aβ 

plaque formation [111]. Furthermore, administration of melatonin efficiently reduced Aβ generation 

and deposition, both in vivo and in vitro [76–81]. Thus, melatonin may inhibit Aβ generation and 

loading, but the mechanism needs further investigation.  

4. Protection of Melatonin on the Cholinergic System  

Cholinergic system deficit is also an early and primary event in the pathogenesis of AD [112]. 

Neurons in the nucleus basalis of Meynert, a major source of cholinergic innervation of the cerebral 

cortex and hippocampus, undergo a profound and selective degeneration in AD brain [113–115]. The 

level of acetylcholine (ACh) is decreased in the early stage of AD, whereas the activities of the 

synthesizing enzyme, choline acetyltransferase (ChAT), and the hydrolyzing enzyme, 

acetylcholinesterase (AChE), do not change until the late stage of AD [116–118]. Other biological 

investigations of tissue from biopsy and autopsy have found a profound decrease of ChAT activity in the 

neocortex of AD patients, correlating positively with the severity of dementia [102]. Although the 

mechanism leading to the ACh deficit is still unknown, the inhibitor of AChE has been employed as a 

treatment and is considered the standard of care for the treatment for mild-to-moderate AD [119].  

Melatonin has protective effects on the cholinergic system. A previous study has also demonstrated 

that melatonin partially prevented peroxynitrite-induced inhibition of choline transport and ChAT 

activity in several neuronal proteins from synaptosomes and, more readily, from synaptic vesicles [120]. 

Additionally, it is reported that four-month melatonin treatment significantly ameliorated the 

neuropathological, behavioral and biochemical changes in eight-month-old APP695 transgenic mice 

with Aβ deposition, significant learning and memory deficit and a profound reduction in ChAT activity 

in the frontal cortex and hippocampus [105]. Another study also showed that similar treatment with 

melatonin antagonized spatial memory deficit and decreased ChAT activity in ovariectomized adult  

rats [121]. However, in rats infused intracerebroventricularly with Aβ for 14 days, where ChAT activity 

was significantly reduced, melatonin was unable to restore the activity of this enzyme [122]. Melatonin 

showed the inhibition only on the lipopolysaccharide (LPS)-induced increase in AChE activity, whereas 

no changes were observed in CSF treated rats. These results are in support of the inhibitory influence of 

melatonin on AChE activity in streptozotocin-induced dementia [123]. 

Compared with placebo, the cholinesterase inhibitors, such as donepezil, tacrine, rivastigmine and 

galantamine, which can resolve acetylcholine deprivation, are able to stabilize or slow decline in 

cognition, function, behavior and global change [124]. Melatonin secretion decreases in AD, and this 

decrease has been postulated as responsible for the circadian disorganization, decrease in sleep 

efficiency and impaired cognitive function seen in those patients. Melatonin replacement has been 

shown effective to treat sundowning, mild cognitive impairment (MCI), an etiologically heterogeneous 

syndrome that precedes dementia, and other sleep wake disorders in AD patients. Besides inhibition on 

AChE activity, the prospects for melatonin as a treatment for AD are also based on scavenging of 
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reactive oxygen and nitrogen species, resolving sleep disturbance, decreasing Aβ toxicity and  

loading [125]. There is no clinical evidence to show which is better for AD patients regarding the AChE 

inhibitor and melatonin. However, the combination of these two drugs may have much better effects. 

Recently tacrine-melatonin hybrids were designed and synthesized as new multifunctional drug 

candidates for AD [126,127]. The compounds show improved cholinergic and antioxidant properties, 

being more potent and selective inhibitors of human AChE than tacrine and capturing free radicals  

better than melatonin. They exhibit low toxicity and may be able to penetrate the central nervous  

system [126]. Direct intracerebral administration of one of these hybrids, N-(2-(1H-indol-3-yl)ethyl)-7- 

(1,2,3,4-tetrahydroacridin-9-ylamino) heptanamide, decreased Aβ-induced cell death and amyloid 

burden in the brain parenchyma of APP/PS1 mice. Furthermore, the reduction in Aβ pathology was 

accompanied by a recovery in cognitive function [127].  

5. Role of Melatonin in Neuroinflammation of AD 

A common factor in AD pathogeny is the over activation of microglia with the consequent over 

expression of proinflammatory cytokines [128–130]. The accumulation of Aβ in plaques, as well as Aβ 

oligomers may produce sequential inflammatory/oxidative events and excitotoxicity, causing 

neurodegeneration and cognitive impairment [131]. Furthermore, the epidemiological studies have 

shown that non-steroidal anti-inflammatory drug (NSAID) use decreases the incidence of AD [132]. Aβ 

has been shown to act as a proinflammatory agent, activating many inflammatory components, and SP, 

surrounded by microglia and astrocytes, coexist with cytokines and chemokines [133]. The Aβ-induced 

activation of microglia is thought to be one of the major sources of the inflammatory response [134]. It 

has been reported that melatonin attenuates kainic acid induced microglial and astroglial responses, as 

determined by immunohistochemical detection of isolectin-B4 and glial fibrillary acidic protein 

(GFAP), the specific markers for microglia and astroglia, respectively [135]. Oral melatonin 

administration also attenuated Aβ-induced proinflammatory cytokines, nuclear factor-κB (NF-κB) and 

nitric oxide (NO) in the rat brain [107].  

It is reported that melatonin significantly reduced the proinflammatory response, decreasing by 

nearly 50% the Aβ-induced levels of proinflammatory cytokines, Interleukin-1-β (IL1-β), Interleukin-6 

(IL6) and tumor necrosis factor-α (TNF-α), in vivo [107]. Furthermore, NF-κB DNA binding activity 

was inhibited by melatonin [136,137]. More recently, it has been demonstrated that melatonin reduces 

NF-κB-induced IL-6 in a concentration-dependent manner in Aβ-treated brain slices [138]. Melatonin 

administration is also reported to reduce Aβ-induced learning and memory impairment in rats, along 

with a significant decrease in positive glial cells expressing NF-κB-induced IL-1β in addition to 

complement 1q (C1q) in hippocampus [139]. 

6. Conclusions 

Melatonin is one of the most powerful antioxidants acting at various levels, and the level of melatonin 

reduces during aging and in AD patients [24,40,140–142]. Additionally, its indirect antioxidant effects 

and anti-amyloid effects are based on the support of appropriate circadian phasing and anti-excitotoxic 

actions [68,143]. Thus, it is not surprising that melatonin is protective in numerous experimental 

systems and has been proposed as a treatment for AD. Recent studies from APP transgenic mice have 
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indicated that early, long-term melatonin supplementation produces anti-amyloid and antioxidant 

effects, but no such effect is produced when melatonin treatment is initiated after the age of amyloid 

formation [76,77,79,80]. Extensive clinical trials and studies with transgenic models are necessary to 

confirm the role of melatonin at the late pathological stage of AD. If melatonin has no effect at the late 

stage of AD, studies on melatonin should be limited to the prevention of AD, rather than treatment.  

Adverse reactions of melatonin may occur, such as fever on the first day of melatonin treatment, 

hyperkinesia or complaints of restless legs, menorrhagia, pigmentation on arms and legs, headache and 

abdominal reactions, thrombosis and drowsiness [16,17,144,145]. Apart from these adverse reactions, 

early and long-term application of melatonin may at least slow down the development of AD. Besides 

the positive effects in experimental systems concerning antagonism of cholinergic deficit, inflammation, 

fibrillogenesis and tangle formation, the sleep-promoting effects and the suppression of sundowning are 

important results justifying the use melatonin. Although there is evidence to postulate melatonin as a 

useful and therapeutic tool in MCI and AD, larger double-blind multicenter studies are urgently needed 

to further explore and investigate the potential and usefulness of melatonin. As decreased MT2 

immunoreactivity and increased MT1 immunoreactivity have been reported in the hippocampus  

of AD patients [13,14], specific melatonin receptor regulators and new melatonin derivatives are  

expected urgently. 
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