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Abstract: This research investigated the effect of enzymatically digested low molecular 

weight (MW) chitosan oligosaccharide on type 2 diabetes prevention. Three different 

chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition 

of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; <1000 Da, 

GO2KA2; 1000–10,000 Da, GO2KA3; MW > 10,000 Da). The in vitro results showed that 

all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory 

activity. Based on these observations, we decided to further investigate the effect of all 

three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in 

Sprague-Dawley (SD) rat model after sucrose loading test. In the animal trial, all tested 

samples had postprandial blood glucose reduction effect, when compared to control, 

however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax) for 
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GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the 

blood glucose-time curve (AUC) for GO2KA1 and control was 262 h mg/dL and  

305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood 

glucose (Tmax) for GO2KA1 was significantly delayed (0.9 h) compared to control  

(0.5 h). These results suggest that GO2KA1 could have a beneficial effect for blood 

glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. 

The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme 

α-glucosidase and since GO2KA1 (MW < 1000 Da) had higher in vivo effect, we hypothesize 

that it is more readily absorbed and might exert further biological effect once it is absorbed 

in the blood stream, relevant to blood glucose management. 

Keywords: type 2 diabetes; pre-diabetes; blood glucose; α-glucosidase inhibition;  

low molecular chitosan oligosacharide; GO2KA1 

 

1. Introduction  

Diabetes is a group of diseases marked by high levels of blood glucose resulting from defects in 

insulin production, insulin action, or both [1]. Type 2 diabetes accounts for about 90% to 95% of all 

diagnosed cases of diabetes in adults [1]. Pre-diabetes is a condition in which individuals have blood 

glucose levels higher than normal but not high enough to be classified as diabetes [2]. Pre-diabetic 

people have an increased risk of developing type 2 diabetes, heart disease, and stroke [3–5]. At least 

220 million people worldwide have diabetes and this figure is likely to double by 2030 [6]. In the 

United States, in 2007, 23.7 million people (10% of American adults) had diabetes and by 2050 this 

figure is expected to jump to 33%, or one-third of all American adults [1]. It is important to recognize 

that optimal diet-induced prevention of type 2 diabetes onset is an effective strategy to reduce the 

expected increases in morbidity and cost associated with treatment of diabetes. 

The major source of blood glucose is dietary carbohydrates that are initially hydrolyzed by 

pancreatic α-amylase, followed by α-glucosidase before being absorbed in the small intestine [7]. 

Reduction of the elevated postprandial blood glucose level is an established strategy for management 

of type 2 diabetes [8]. Inhibition of carbohydrate hydrolyzing enzymes, using α-glucosidase inhibitors 

such as Acarbose, is one way to achieve this strategy [8]. Recent studies showed that phenolic 

phytochemicals from botanical sources are natural inhibitors of α-amylase and α-glucosidase [9–12] 

and thus can be used to manage postprandial hyperglycemia with minimal side effects [9–11]. 

Chitosan is commercially obtained by the deacetylation of chitin, the most abundant natural 

biopolymer on earth after cellulose. Despite chitosan’s well-recognized beneficial effects for 

hypertension [13], cholesterol [14] and weight-loss [15] management, chelation of some metal ions 

from dietary sources becomes unfavorable for human nutrition [16]. However, these side-effects do not 

exist with low molecular weight chitosan oligosaccharide, resulting from the enzymatic digestion of 

chitosan, mainly because low molecular weight chitosan oligosaccharide can be readily absorbed into 

the bloodstream [16]. 
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Low molecular weight chitosan oligosaccharide has been shown to have many health  

beneficial biological activities including antifungal [16], antibacterial [17–19], antitumor [20,21],  

immuno-enhancing [22], anti-hypertension via ACE-I inhibition [13] and protective effects against 

infection [23]. Additionally, Kondo and others [24] showed that low molecular weight chitosan 

oligosaccharide can prevent the progression of diabetes in streptozotocin-induced diabetic mice. 

Recently, Kim and others [25] clinically demonstrated the blood glucose lowering effect of low 

molecular weight chitosan oligosaccharide in healthy human subjects.  

Both published studies [24,25] that investigated the effect of low molecular weight chitosan 

oligosaccharide for type 2 diabetes reported the observed effect without investigation the mechanism 

of action, which is very important for the design of more vigorous clinical studies. In this study,  

in vitro screening is used to determine the effect of different low molecular weight chitosan 

oligosaccharides (in terms of MW) on the inhibition of carbohydrate hydrolysis enzymes. Then all 

samples were further assayed in vivo in SD rats model for postprandial blood glucose level reduction 

after sucrose loading test, to further confirm the observed in vitro findings.  

2. Results and Discussion  

2.1. Rat α-Glucosidase and Porcine α-Amylase Assay 

All tested samples had dose-dependent and similar rat α-glucosidase inhibitory activity (Figure 1). 

These results indicate that the molecular weight of enzymatically digested chitosan oligosaccharide 

does not influence the inhibition of α-glucosidase (Figure 1). In the case of α-amylase inhibition, we 

observed that all the samples had significantly lower inhibitory activity, when compared to α-glucosidase 

inhibition (Figure 2). Similarly to α-glucosidase, it appears that the molecular weight differences do 

not influence the inhibitory effect of enzymatically digested chitosan oligosaccharide on α-amylase 

(Figure 2). 

This is the first report of α-glucosidase inhibitory effect of low molecular weight chitosan 

oligosaccharide. Our results present a strong α-glucosidase inhibitory effect of all samples, regardless 

of MW, and a significantly lower α-amylase inhibitory activity. Previous reports have indicated that 

plant derived phenolic phytochemicals have lower α-amylase inhibitory activity and a stronger 

inhibition activity against α-glucosidase [10,11]. The main side effects of type 2 diabetes control 

drugs, such as Acarbose, are abdominal distention, flatulence, meteorism and possibly diarrhea [26]. It 

has been suggested that such adverse effects might be caused by the excessive inhibition of pancreatic 

α-amylase resulting in the abnormal bacterial fermentation of undigested carbohydrates in the  

colon [26,27]. Our observation of lower in vitro α-amylase inhibitory activity suggests that the extent 

of the side effects (if any) will be less than Acarbose. 
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Figure 1. Dose dependent changes in rat intestinal α-glucosidase inhibitory activity  

(% inhibition) of chitosan oligosaccharides classified by molecular weight (GO2KA1;  

MW < 1000 Da, GO2KA2; MW 1000–10,000 Da, GO2KA3; MW > 10,000 Da). The 

results represent the mean ± S.D. of values obtained from three measurements. Different 

corresponding letters indicate significant differences at p < 0.05 by Duncan’s test. A−C First 

letter is among different samples and a−c second one is among different concentrations 

within same samples. 

 

Figure 2. Dose dependent changes in porcine pancreas α-amylase inhibitory activity  

(% inhibition) of chitosan oligosaccharides classified by molecular weight (GO2KA1;  

MW < 1000 Da, GO2KA2; MW 1000–10,000 Da, GO2KA3; MW > 10,000 Da). The 

results represent the mean ± S.D. of values obtained from three measurements. Different 

corresponding letters indicate significant differences at p < 0.05 by Duncan’s test. A−C First 

letter is among different samples and a−c second one is among different concentrations 

within same samples. 
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2.2. Sucrose Loading Test in SD Rat Model 

To further confirm the actual in vivo relevance of our in vitro findings that enzymatically digested 

chitosan oligosaccharide has α-glucosidase inhibitory effect regardless of MW, we performed a 

sucrose loading test in SD Rat, which is more relevant towards type 2 diabetes incidence prevention 

with normal or pre-diabetic individuals, rather than type 2 diabetes treatment. 

Our results show that all tested samples (0.1 g/kg) result in lower blood glucose peaks when 

compared to control, however higher when compared to the known type 2 diabetes drug and  

α-glucosidase inhibitor, Acarbose (0.005 g/kg) (Figures 3–5). When we calculated the more precise 

pharmacodynamics of the three tested samples (Table 1), it was clear that all treatments had better 

effect in terms of blood glucose peak (Cmax), area under the curve, which represents the total amount of 

glucose in blood (AUCmax) and the time of the observed blood glucose peak (Tmax), when compared to 

control (Table 1). Reduced blood glucose peak results in lower glucose stress that is observed after 

meals. Reduced AUCmax indicates that either less glucose is absorbed in the blood or that glucose is 

more efficiently utilized when in the blood (via glucose uptake and further utilization in muscle and fat 

cells), or both. Finally, the retardation of Tmax, indicated slower absorption of glucose in the blood, 

which could be due to the observed in vitro α-glucosidase inhibitory effects. 

Figure 3. Effect of GO2KA1 on sucrose loading test. After fasting for 24 h, six-week-old, 

male SD rats were orally administered with sucrose solution (2.0 g/kg) with or without 

samples (GO2KA1; MW < 1000 Da, positive control; Acarbose). Each point represents 

mean ± S.D. (n = 5). A−C Different corresponding letters indicate significant differences  

(p < 0.05) at 0.5 h by Duncan’s test. a−c Different corresponding letters indicate significant 

differences (p < 0.05) at 1.0 h by Duncan’s test.  

70

100

130

160

190

220

0 0.5 1 1.5 2

B
lo

od
 g

lu
co

se
 le

ve
l (

m
g/

dl
)

Times after oral administration (hour)

Control

Acarbose 5 mg/kg

GO2KA1 0.1 g/kg
a

b

c

A

B

C

 

More close evaluation of our findings suggests that GO2KA1 and GO2KA3 result in greater 

reduction of AUCmax when compared to GO2KA2. Overall, GO2KA1 administration resulted in lower 

Cmax and AUCmax values when compared to GO2KA3, but this difference was not statistically 

different. However, GO2KA1 administration reduced the blood glucose levels after 1 h by 14.3% 

(compared to control) while GO2KA3 administration resulted to a reduction around 4% (compared to 

control (Figures 3 and 5).  
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Figure 4. Effect of GO2KA2 on sucrose loading test. After fasting for 24 h, six-week-old, 

male SD rats were orally administered with sucrose solution (2.0 g/kg) with or without 

samples (GO2KA2; MW 1000–10,000 Da, positive control; Acarbose). Each point 

represents mean ± S.D. (n = 5). A−C Different corresponding letters indicate significant 

differences (p < 0.05) at 0.5 h by Duncan’s test. a−c Different corresponding letters indicate 

significant differences (p < 0.05) at 1.0 h by Duncan’s test.  
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Our findings suggest that all samples have potential for lowering postprandial blood glucose levels 

after meal, which is relevant to type 2 diabetes incidences. Additionally, our observations, that the 

effect is milder when compared to Acarbose, a known drug for type 2 diabetes treatment, indicates that 

low molecular weight chitosan oligosaccharide can be ideal for type 2 diabetes prevention in normal 

and pre-diabetic individuals that do not need to use drug innovations that have severe side effects. 

Figure 5. Effect of GO2KA3 on sucrose loading test. After fasting for 24 h, six-week-old, 

male SD rats were orally administered with sucrose solution (2.0 g/kg) with or without 

samples (GO2KA3; MW > 10,000 Da, positive control; Acarbose). Each point represents 

mean ± S.D. (n = 5). A−C Different corresponding letters indicate significant differences  

(p < 0.05) at 0.5 h by Duncan’s test. a−c Different corresponding letters indicate significant 

differences (p < 0.05) at 1.0 h by Duncan’s test.  
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All enzymatically digested chitosan oligosaccharide tested samples had similar α-glucosidase 

inhibitory activities, which resulted in slower glucose absorption (as indicated with the similar Tmax 

values among tested samples), but GO2KA1 and GO2KA3 had better effect on AUCmax (Table 1). 

Additionally, GO2KA1 had better effect for type 2 diabetes prevention in SD rats, in terms of blood 

glucose reductions of after 1 h (Figures 3 and 5), resulting to a 14%, compared to the 4% reduction 

resulting from GO2KA3 administration. Previous reports show that low MW chitosan oligosaccharide 

is more readily absorbed in the bloodstream [28,29]. We believe that low molecular weight GO2KA1 

(<1000 Da) is more readily absorbed into the bloodstream when compared to the significantly larger 

GO2KA2 and GO2KA3 (MW 1000–10,000 Da and > 10,000 Da, respectively) and might have other 

possible effects towards aiding glucose absorption into muscle and fat cells. Thus, we can speculate 

that GO2KA1 might have a “dual” beneficial effect towards blood glucose management acting both in 

the gastrointestinal level, by inhibiting carbohydrate hydrolysis enzymes, as well as in the cellular 

level, after being absorbed into the bloodstream, by aiding towards the glucose absorption into muscle 

and fat cells. 

Table 1. Pharmacodynamic (PD) parameters of SD control rats or after administration of 

GO2KA1, GO2KA2, GO2KA3 and Acarbose after sucrose ingestion. 

Groups 
PD parameters 

AUClast (h·mg/dL) Cmax (mg/dL) Tmax (h) 

Sucrose Control 305.1 ± 7.3 A 193.0 ± 5.1 a 0.5 ± 0.0 
 Acarbose (5.0 mg/kg) 214.7 ± 15.2 B 118.8 ± 10.9 b 1.2 ± 0.8 
 GO2KA1 (0.1 g/kg) 262.4 ± 11.9 C 152.0 ± 6.3 c 0.9 ± 0.7 

  PD parameters 

  AUClast (h·mg/dL) Cmax (mg/dL) Tmax (h) 

Sucrose Control 306.8 ± 7.3 A 192.0 ± 8.8 a 0.6 ± 0.2 
 Acarbose (5.0 mg/kg) 226.1 ± 5.8 B 125.2 ± 7.0 b 0.9 ± 0.2 
 GO2KA2 (0.1 g/kg) 289.1 ± 10.1 A 167.0 ± 12.8 c 0.9 ± 0.2 

  PD parameters 

  AUClast (h·mg/dL) Cmax (mg/dL) Tmax (h) 

Sucrose Control 305.1 ± 7.3 A 193.0 ± 5.1 a 0.5 ± 0.0 
 Acarbose (5.0 mg/kg) 222.5 ± 17.8 B 116.4 ± 10.8 b 1.2 ± 0.8 
 GO2KA3 (0.1 g/kg) 268.3 ± 11.2 C 154.0 ± 9.2 c 0.7 ± 0.3 

A−C & a−c Different corresponding letters indicate significant differences at p < 0.05 by Duncan’s test. 

3. Experimental Section  

3.1. Materials  

Chitosan oligosaccharides classified by molecular weight (GO2KA1; MW < 1000 Da, GO2KA2; 

MW 1000–10,000 Da, GO2KA3; MW > 10,000 Da) were purchased from Kunpoong Bio Co. Ltd. 

(Seoul, Korea). Porcine pancreatic α-amylase (EC 3.2.1.1) and rat intestinal acetone powders of  

α-glucosidase (EC 3.2.1.20) were also purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). 

Unless noted, all chemicals were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). 
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3.2. α-Glucosidase Inhibition Assay 

To evaluate the potency of chitosan oligosaccharide s classified by molecular weight GO2KA1, 

GO2KA2, GO2KA3, the dose dependent inhibitory effect of the three selected samples on rat 

intestinal α-glucosidase was evaluated using different concentrations (between 5 and 20 mg/mL). Rat 

intestinal α-glucosidase assay referred to the method of Kwon et al. [10] with slight modification. A 

total of 0.1 g of rat-intestinal acetone powder was suspended in 3 mL of 0.9% saline, and the 

suspension was sonicated 12 times for 30 s at 4 °C. After centrifugation (10,000g, 30 min, 4 °C), the 

resulting supernatant was used for the assay. Sample solution (50 μL) and 0.1 M phosphate buffer  

(pH 6.9, 100 μL) containing glucosidase solution (1.0 U/mL) was incubated at 25 °C for 10 min. After  

pre-incubation, 5 mM p-nitrophenyl-α-D-glucopyranoside solution (50 μL) in 0.1 M phosphate buffer 

(pH 6.9) was added to each well at timed intervals. The reaction mixtures were incubated at 25 °C for 

5 min. Before and after incubation, absorbance was read at 405 nm and compared to a control, which 

had 50 μL of buffer solution in place of the extract by micro-plate reader (SUNRISE; Tecan Trading 

AG, Saltzburg, Austria). The α-glucosidase inhibitory activity was expressed as inhibition % and was 

calculated as follows (1): 

  100(%) Inhibition 
405

405405 
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Control

ExtractControl

A

AA
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3.3. a-Amylase Inhibition Assay 

To evaluate the potency of chitosan oligosaccharide s classified by molecular weight (GO2KA1, 

GO2KA2, GO2KA3) the dose dependent inhibitory effect of the three selected samples on rat 

intestinal α-amylase was evaluated using different concentrations (between 5 and 20 mg/mL). Porcine 

pancreatic α-amylase inhibition referred to the method of Kwon et al. [10]. Sample solution (200 μL) 

and 0.02 M sodium phosphate buffer (pH 6.9 with 0.006 M sodium chloride, 500 μL) containing  

α-amylase solution (0.5 mg/mL, 5.0 mU/mL) were incubated at 25 °C for 10 min. After  

pre-incubation, 500 μL of a 1% starch solution in 0.02 M sodium phosphate buffer was added. The 

reaction mixture was then incubated at 25 °C for 10 min. The reaction was stopped with 1.0 mL of 

dinitrosalicylic acid (DNS) and incubation in a boiling water bath for 5 min, followed by cooling down 

to room temperature. The reaction mixture was then diluted after adding distilled water, and 

absorbance was measured at 540 nm (2) with ELISA micro-plate reader (SUNRISE; Tecan Trading 

AG, Saltzburg, Austria). 

  100(%) Inhibition 
540
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3.4. Sugar Loading Test 

Effect on hyperglycemia induced by carbohydrate loads in Sprague-Dawley (SD) rats was evaluated 

by the studying the inhibitory action of GO2KA1, GO2KA2, GO2KA3 and Acarbose on postprandial 
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hyperglycemia. Five week-old male SD rats were purchased from Joongang Experimental Animal Co. 

(Seoul, Korea) and fed a solid diet (Samyang Diet Co., Seoul, Korea) for one week. The rats were 

housed in a ventilated room at 25 ± 2 °C with 50% ± 7% relative humidity, and under an alternating  

12 h light/dark cycle. After six groups of five male SD rats (180–200 g) were fasted for 24 h, 2.0 g/kg 

of sucrose were orally administrated concurrently with 0–500 mg/kg inhibitors (GO2KA1, GO2KA2, 

GO2KA3 and Acarbose). The blood samples were then taken from the tail after administration and 

blood glucose levels were measured at 0, 0.5, 1, and 2 h. The glucose level in blood was determined by 

glucose oxidase method and compared with that of the control group, which had not taken the 

inhibitors. The parameters for blood glucose levels were calculated using WinNonLin program 

(Version 5.2.1, Pharsight Corporation, Cary, NC, USA). Maximum observed peak blood glucose level 

(Cmax) and the time at which it is observed (Tmax) were determined based on the observed data. Area 

under the blood glucose-time curve up to the last sampled time-point (AUClast) was estimated by the 

trapezoidal rule. 

3.5. Statistical Analysis 

All data are presented as mean ± S.D. Statistical analyses were carried out using the statistical 

package SPSS (Statistical Package for Social Science, SPSS Inc., Chicago, IL, USA) program and 

significance of each group was verified with the analysis of One-way ANOVA followed by the 

Duncan’s test of p < 0.05. 

4. Conclusions  

This is the first report of low molecular weight chitosan oligosaccharide mediated α-glucosidase 

inhibition, relevant to type 2 diabetes prevention. Our significant in vitro and in vivo findings indicate 

that enzymatically digested chitosan oligosaccharide has α-glucosidase inhibitory activity, which is not 

molecular weight dependent. Our in vivo observations suggest that all tested samples had significant 

and similar effect on blood glucose management in the tested model. However, GO2KA1, with  

MW < 1000 Da seemed to have a better effect towards postprandial blood glucose management after  

1 h of meal. This observation should not be overlooked and further evaluated. We hypothesize, that 

GO2KA1 with MW below 1000 Da might have “dual” effect towards glucose management by 

inhibiting carbohydrate hydrolysis enzymes, as well as by aiding towards the glucose absorption into 

muscle and fat cells in the cellular level, since it is easier absorbed into the bloodstream (when 

compared to the significantly larger GO2KA2 and GO2KA3). Based on our findings more research 

will be performed towards elucidating the exact mechanism of action of GO2KA1 for type 2 diabetes 

prevention, with focus on the potential insulin sensitizing effect on muscle and fat cells. 
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