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Abstract: Abiotic and biotic stresses lead to massive reprogramming of different life 

processes and are the major limiting factors hampering crop productivity. Omics-based 

research platforms allow for a holistic and comprehensive survey on crop stress responses 

and hence may bring forth better crop improvement strategies. Since high-throughput 

approaches generate considerable amounts of data, bioinformatics tools will play an 

essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and 

functional genomic studies in crops still lag far behind similar studies in humans and other 

animals. In this review, we summarize some useful genomics and bioinformatics resources 

available to crop scientists. In addition, we also discuss the major challenges and 

advancements in the “-omics” studies, with an emphasis on their possible impacts on crop 

stress research and crop improvement. 
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1. Introduction 

According to the Food and Agricultural Organization of the United Nations (FAO), food production 

must be increased by 70% in the next 40 years to meet the increasing global demand [1]. Abiotic and 

biotic stresses are major limiting factors hampering crop productivity. Therefore, understanding the 
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stress responses of crops using genomic information is important in bringing forth more effective crop 

improvement strategies. 

The publishing of the Arabidopsis thaliana genome in 2000 is a cornerstone of the plant genomics 

era [2]. Taking advantage of the high-throughput data acquisition platforms of the next generation 

sequencing technology, additional crop genomes have been subsequently decoded. So far, the draft 

genomes of more than 40 plants have been completed, including those processed in the 1000 Plant and 

Animal Project [3]. Other “-omics” technologies such as transcriptomics, proteomics, metabolomics, 

and phenomics (Figure 1) have also undergone rapid development in recent years. Together, there is a 

large volume of accumulated data, and hence data management and data mining have become a 

bottleneck for “-omics” researches.  

Figure 1. Infusion of biological “-omics” with bioinformatics. 

 

To convert the great amount of data into manageable information, it is essential to establish 

standard formats and methods for storing, retrieving, and sharing data. Algorithms based on 

mathematical and statistical models are needed to handle biological data. This review aims to provide a 

systematic summary of the currently available databases and bioinformatics resources and highlight 

some challenges and advancements in the study of genomics and other “-omics”, with emphasis on 

their implications on crop stress research. 

2. General Bioinformatics Resources 

2.1. Databases 

Various databases have been developed to accommodate the comprehensive -omics data and some 

of them also provide onsite analytical tools (Table 1). The three commonly used sequence databases 



Int. J. Mol. Sci. 2013, 14 11446 

 

 

are GenBank in USA, European Nucleotide Archive (ENA) in Europe, and DNA Data Bank of Japan 

(DDBJ). They are collaboratively accommodated by the International Nucleotide Sequence Databases 

(INSD), and the deposited data are frequently synchronized. There are also repositories designated 

specifically for plants, such as Phytozome that holds the genomic information of more than 40 plant 

species, including all the sequenced crops. Besides basic genomic information, databases such as 

Legume Information System (LIS) facilitate synteny analyses and comparative genomic studies 

between closely related crop plants. 

Table 1. Example of some commonly used databases. 

Database name URL Reference 

GenBank http://www.ncbi.nlm.nih.gov/genbank/ [4] 
ENA http://www.ebi.ac.uk/ena/ [5] 
DDBJ http://www.ddbj.nig.ac.jp/ [6] 
Phytozome http://www.phytozome.net/ [7] 
Gramene http://www.gramene.org/ [8] 
KEGG http://www.genome.jp/kegg/ [9] 
PlantGDB http://www.plantgdb.org/ [10] 
EnsemblPlants http://plants.ensembl.org/index.html [11] 
VISTA http://genome.lbl.gov/vista/index.shtml [12] 
PLAZA http://bioinformatics.psb.ugent.be/plaza/ [13] 
GigaDB http://gigadb.org/ [14] 
SGN http://solgenomics.net/ [15] 
GrainGenes http://wheat.pw.usda.gov [16] 
LIS http://www.comparative-legumes.org/ [17] 

Online resources for individual crops, together with massive datasets, have been developed  

(Table 2) where systematically integrated information including: genetic resources (genetic maps, 

molecular markers, and quantitative trait loci (QTL)); genomic resources (DNA sequences, gene 

models, and regulatory elements); gene expression data (ESTs, cDNA sequences, and transcriptomes); 

and functional units (proteomic and metabolomic data), is provided. Crops of higher economic values 

are usually accompanied with a more comprehensive database. The genomic sequences of some 

economically less important crops, such as foxtail millet, sorghum, and barley, have been released 

recently [18–20] and their corresponding integrated databases are still under development. 

Some data repositories also provide information related to abiotic and biotic stress responses. For 

example, in MaizeGDB, there are well documented records for tropical maize exhibiting tolerance to 

drought stress [21]. In SoyBase, genetic markers associated with salt tolerance, drought tolerance, and 

cyst nematode resistance are incorporated with genomic and expression information. Databases for 

individual crops could also facilitate the unveiling of the genetic basis of specific traits. For example, 

the tomato genome sequence helped identify the R-genes which were then incorporated in the Plant 

Resistance Genes database [22].  
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Table 2. Data repositories for crop plants. 

Crop  Database name URL of related database Ref 

Rice RAP-DB http://rapdb.dna.affrc.go.jp/ [23] 
Maize MaizeGDB http://www.maizegdb.org/ [24] 

Medicago 
Medicago truncatula 
SEQUENCING RESOURCE 

http://www.medicago.org/genome/index_old.php - 

Wheat GrainGenes http://wheat.pw.usda.gov/ [16] 
Potato Solanaceae Genomics Resource http://solanaceae.plantbiology.msu.edu/index.shtml - 

Soybean SoyBase http://soybase.org [25] 

Tomato 
TOMATO FUNCTIONAL 
GENOMICS DATABASE 

http://ted.bti.cornell.edu/ [26] 

2.2. Biological Ontologies Related to Crop Stress Research 

The standardization of ontology is important for the structuring of huge datasets, interconnection 

between databases, merging resources, and curation of information. Each ontology term has its own 

name, identifier/ID/accession number and definition. The identifier/ID/accession number is usually 

made up of a prefix and a number. For example, the Gene Ontology term “lipid binding” has the 

accession number GO:0008289. The definition of “lipid binding” is a gene product that can interact 

selectively and non-covalently with a lipid.  

The Gene Ontology (GO) project provides a well-established and controlled vocabulary database 

for describing the function of a gene and its gene product. The ontology covers three aspects, including 

cellular component, molecular function, and biological process. GO is used in genome annotation to 

provide information on gene products. An evidence code (by Evidence Code ontology) is used to 

describe the evidence that links the GO annotation with the gene product. The Evidence Ontology 

(EO) suggests whether an annotation has been made manually by a curator or by automated electronic 

annotation. For example, EXP refers to: “inferred from experiment”; IBA refers to: “inferred from 

biological aspect of ancestor”; and IEA refers to: “inferred from electronic annotation”. All this 

information can be found in the Gene Ontology website [27].  

Plant Trait Ontology (TO) is a controlled vocabulary for describing the plant trait and phenotype. In 

addition to anatomical and morphological traits, TO also includes a subset of controlled vocabularies 

for abiotic and biotic stress traits. For example, the yellow dwarf disease resistance (TO:0000292) is 

the child term of resistance to disease by mycophasma-like organism (TO:0000013) under the lineage 

of stress trait (TO:0000164).  

There are many other biological ontology projects for different research fields. Ontologies listed in 

Table 3 contain the information related to crop stress responses. 
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Table 3. List of ontologies containing information related to crop stress responses. 

Domain Prefix Description Reference/website 

Plant Environmental 

Conditions 
EO 

Controlled vocabulary for the representation 

of plant environmental conditions 

http://www.gramene.org/db/ 

ontology/search?id=EO:0007359 

Gene Ontology GO 
Controlled vocabulary for genes and gene 

products 
[28] 

Taxonomy Ontology GR_tax 
Representation of the taxonomic tree of plants 

in the ontology format 

http://www.gramene.org/db/ontology/ 

search?id=GR_tax:090165 

The Plant-Associated 

Microbe Gene 

Ontology 

PAMGO 
Controlled vocabulary for the interaction of 

microbes with their hosts 
[29] 

Plant Ontology PO 
Controlled vocabulary for anatomy, morphology 

and stages of development for all plants 
[30] 

Sequence Ontology SO 

Controlled vocabulary for sequence 

annotations, for the exchange of annotation 

data and for the description of sequence 

objects in databases 

[31] 

Plant Trait Ontology TO 
Controlled vocabulary for phenotypic traits in 

plants 

http://www.gramene.org/db/ontology/

search?id=TO:0000387 

3. Recent Advances and Challenges in Crop Genomics  

3.1. Polyploidy as a Major Challenge in Crop Genome Assembly 

Polyploidy is a major hindrance in crop genome assembly. One of the ways to tackle the highly 

polyploid genomes is to make references to the closely related, putative progenitor diploid genomes if 

they are available. The Catalogue of Life [32] and the Integrated Taxonomic Information System [33] 

may help to identify such related species. For example, the fiber-producing cotton (Gossypium hirsutum) 

is tetraploid, comprising an A-genome and a D-genome. To assist the assembly of the tetraploid 

genome, the diploid D-genome of G. raimondii was first sequenced and assembled [34]. A second 

example is strawberry (Fragaria × ananassa), with an estimated genome size of about 600 Mb. 

Although this is much smaller than other crop genomes, it is an octaploid (AAA'A'BBB'B') [35]. 

Therefore, the genome sequence of the woodland strawberry (Fragaria vesca), a potential progenitor 

of Fragaria × ananassa, was completed in 2012 to provide the first diploid model for the genomes of 

F. spp. [35,36]. Wheat is another example of polyploid crop genomes. The hexaploid bread wheat 

(Triticum aestivum) contains the A, B and D genomes, which probably originated from Triticum urartu 

(A genome), Aegilops tauschii (D genome), and an unknown species related to Aegilops speltoides  

(B genome). The genomic sequence information of T. aestivum, T. monococcum (a community 

standard line related to the A-genome donor), and Ae. Tauschii, as well as the cDNA sequence 

information of T. aestivum and Ae. Speltodies, were obtained [37]. With reference to the respective 

diploid genome information, over 90% of the wheat genes were successfully assembled into the A, B, or 

D genome with over 70% precision [37]. The drafted de novo genomes of T. urartu and Ae. tauschii 

were recently published, representing 94.3% and 97.0% of the predicted genome sizes respectively [38,39]. 

Although the lack of a good reference for the B genome is still an obstacle in building the T. aestivum 
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genome, these pieces of work have built a good framework for the further whole genome assembly of 

bread wheat, and established a model for the study of other polyploid genomes. 

3.2. Reduced Genetic Diversity of Modern Crops 

Modern crops originated from a small number of plants. Bottleneck effects during domestication 

and prolonged human selection together have significantly reduced the genetic diversity of modern 

crops. Such a reduction in genetic diversity has been confirmed by several genomic studies 

(Supplementary Table S1). For example, whole-genome resequencing of 14 cultivated and 17 wild 

soybean genomes revealed that the wild soybeans have higher numbers of SNPs and genetic diversity 

compared to those of the cultivated ones [40]. The domesticated rice cultivars (Oryza sativa indica and 

Oryza sativa japonica) also show a lower genetic diversity than their wild relatives (O. rufipogon and 

O. nivara) in a study on 50 accessions of cultivated and wild rice [41]. More interestingly, even though 

both indica rice and japonica rice are cultivated, the japonica rice shows significantly lower genetic 

diversity than the indica rice, suggesting that the japonica rice has suffered from a stronger bottleneck 

effect under domestication [41]. On the other hand, although maize landraces and improved lines have 

retained a higher nucleotide diversity from their wild progenitor, as compared to other self-fertilizing 

crop species, a weak bottleneck effect can still be observed [42]. Reduced genomic diversity of major 

staple crops limits their adaptability to the changing environment and reduces the room for crop 

improvement. Therefore, crop improvement programs should turn their focus to the genetically 

compatible wild species, which have higher biodiversity and can serve as natural genetic reservoirs.  

3.3. Sequence and Structural Variations in Genomes Providing Clues for Stress Studies 

Sequence differences and structural variations in genomes are usually identified by comparing the 

genomes of wild species to their related landraces and modern cultivars, and also to other model 

plants. These differences can, on the one hand, provide information about genome evolution, and, on 

the other hand, serve as molecular markers for genetic mapping. Sequence differences and structural 

variations that affect gene structure, gene expression, and gene copy number are major determinants 

shaping the diversity among different varieties of the same species. For instance, wild soybeans and 

some rice accessions possess some present/absent variations or unmapped contigs that contain  

bona fide genes annotated to be involved in abiotic and biotic stresses [40,41,43,44]. One specific 

example relating to biotic stresses is the enrichment and over-representation of LRR (leucine-rich 

repeat) and NB-ARC (nucleotide-binding adaptor shared by APAF-1, certain R gene products and 

CED-4) domain-containing genes in some crop genomes [19,45]. In plant genomes, disease resistance 

(R) genes are responsible for defense responses [46]. LRR and NB-ARC are two important domains 

found on the R proteins [46]. The LRR domain-containing proteins play important roles in  

pathogen-host interactions and the activation of defense responses [47,48]. On the other hand, the NB-ARC 

domain is responsible for the mulitmerization and autoactivation of the R proteins upon stimulus [49]. The 

LRR and NB-ARC-containing genes exhibit higher ratios of nonsynonymous-to-synonymous SNPs 

than the genome average in crops such as soybean [40], rice [41,50], and sorghum [51]. In maize, 101 

out of 3490 large-effect SNPs detected are located on 49 LRR domain-containing genes [44]. LRR and 

NB-ARC domain-containing genes are important components in the plant defense response  
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system [46,49,52] while the high nonsynonymous-to-synonymous SNP ratio of LRR or NB-ARC 

domain-containing genes suggests a dynamic evolution of these genes to combat pathogens. 

In addition to disease resistance genes, some transcription factors are found to be over-retained after 

the whole-genome duplication in Musa α/β (banana) [53]. Some of these transcription factors such as 

Myb, AP2/ERF, and WRKY are known to be important regulators in abiotic stress responses [54]. On 

the other hand, compared to rice, sorghum, and maize, there are more genes encoding for cytochrome 

P450, CCAT-binding factor transcription factors, late-embryogenesis-abundant proteins, and 

osmoprotectant biosynthesis proteins in the Ae. tauschii genome (progenitor B genome of wheat) [38]. 

These genes are important for the adaptation to cold and physiological drought. Moreover, a 

significantly higher number of transmembrane ATPase subunits, which are probably involved in Na+ 

exclusion and mineral uptake, have been detected in Ae. tauschii than in wheat [37,38]. The extra 

genes in Ae. tauschii may be good candidates for wheat improvement.  

3.4. Advances in Ultra-High-Density Genetic Mapping Using SNPs 

Genetic mapping using genetic populations is one classical strategy to identify genes related to 

stress responses. Members in the mapping population can either be related (e.g., QTL mapping using 

bi-parental populations) or unrelated (e.g., genome-wide association study (GWAS) using germplasm 

collections) (for population structure, data characteristics and methods, see reviews [55,56]). There are 

some successful cases in identifying stress tolerance causal genes through mapping [57–59]. For 

example, a salt tolerance-conferring sodium transporter from rice was identified through QTL  

mapping [58]. The SKC1 locus corresponding to shoot K+ content was mapped with a BC2F2 

population generated from a cross between a salt-tolerant indica variety and a susceptible japonica 

variety [58]. The SKC1 locus was further confined to a 7.4-kb stretch by the BC3F4 progeny testing of 

fixed recombinant plants. The locus contains only a single open reading frame, which encodes for a 

HKT-type transporter. SKC1 near-isogenic lines accumulated less Na+ under salt treatment compared 

to the susceptible parent. Voltage-clamp also supports the notion that the SKC1 protein functions as a 

Na+-selective transporter that probably regulates K+/Na+ homeostasis under salt stress [58].  

Classical molecular markers for mapping such as AFLP, RFLP, and SSR markers are sparsely 

distributed in the genome, and hence limit the mapping resolution and pose difficulties in pinpointing 

the phenotype-causal genes. With the availability of genomic sequence data, SNP markers become 

more accessible for use in mapping, to help achieve a much better resolution. However, conventional 

PCR-based methods are laborious and time-consuming while the resolution of array-based methods is 

limited by the number of probes on the array.  

High-resolution genotyping by whole-genome resequencing has been established [60,61], making 

the ultra-high-density genetic mapping more attainable. In principle, this method can achieve the 

highest resolution, provided that there are enough resources to capture all the SNPs in a population.  

In reality, polymorphic SNPs are usually captured by low-coverage sequencing (~1X for unrelated 

populations [58] and <0.1X for recombinant populations [60,62,63]). 

In a QTL study of recombinant inbred populations originating from indica and japonica rice, SNPs 

between the parental reference genomes were first identified using DiffSeq in the EMBOSS package 

and cleaned by SSAHASNP in the ssaha2 package. Low-depth sequencing reads of recombinant 
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inbred lines (RILs) were mapped to the parents’ pseudomolecules by using the SSAHA2 software [64] 

to determine the genotype of each RIL. SNPs were analyzed by a sliding window approach to 

determine the recombinant break points within the genome of every single line in the population to 

form a bin map [60]. This sliding window strategy can accommodate the high error rate of next 

generation sequencing and allow missing data resulting from low-coverage sequencing [60]. Each 

“bin” will serve as a “marker” in the subsequent linkage map construction using MAPMAKER/EXP 

and in QTL mapping using QTL Cartographer. In this study, using 150 rice RILs, the  

sequencing-based method increased the resolution by 35-fold and greatly reduced the time needed for 

genotyping, compared to the map generated from 287 PCR-based markers [57]. The power of this 

method was further illustrated in a study using 210 rice RILs to map the GS3 and GW5/qSW5 loci 

related to the grain length and grain width, respectively [62].  

Since missing genotypes in low-depth sequencing would reduce the effectiveness of GWAS, after 

SNPs have been identified by mapping the sequencing reads, the k-nearest neighbor method (KNN) 

that uses in-house algorithms for data-imputation can be adopted in addition to increasing the 

sequencing depth, in order to reduce the missing genotypes [61]. GWAS has been conducted in 

mapping 14 agronomic traits, including drought tolerance, using 373 indica rice lines. One to seven 

loci have been mapped for each trait, and some of them overlap with the previously known loci/genes 

identified through bi-parental QTL mapping or mutant studies [61]. With the great reduction of 

sequencing cost (<US$0.1 per raw megabase in 2012) [65], we anticipate that mapping by sequencing 

will become a popular method to obtain high resolution maps for stress-related loci/genes. 

3.5. Genomic Selections 

Genomic selection (GS) is introduced to evaluate the overall effects of all contributing loci  

genome-wide [66]. During the process of GS, a training population will be used for computational 

model training to obtain the genomic estimated breeding values (GEBVs) [67]. Complex traits such as 

drought tolerance are usually determined by multiple small-effect QTLs. GEBV associates markers 

and QTLs by regarding all the markers as variables contributing to the trait and the effect of each 

marker allele towards the complex QTLs is quantified (it can be zero). GEBV determines the sum of 

the marker effects and thus indicates the breeding value of an individual; favorable individuals with 

high GEBVs from breeding populations will be selected for field application. Genotypic and 

phenotypic information of the breeding population can be used to further improve the computational 

model to form a training-breeding cycle [66]. Unlike GWAS and QTL studies, which are designed to 

reduce the breeding time by selecting plants with desired molecular markers at early growth stages 

instead of evaluating the actual phenotypes at a later stage, GEBVs serve only as selection criteria but 

do not lead to target markers or causal genes.  

As high-throughput genotyping and phenotyping have accelerated GS studies by increasing marker 

density and selection capacity, one of the major challenges of GS is selection accuracy. Evaluations of 

GS accuracy have been performed in maize [68], wheat [69,70], barley [71], and cassava [72]. Several 

statistical models for GEBV calculations, including best linear unbiased prediction (BLUP) [67], 

Bayesian shrinkage regression (BayesA, BayesB, etc.) [73], and mixed models have been employed. 

There is no agreement on which model is the most efficient, because many factors such as population 
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size and genetic background may affect statistical power [71]. It is believed that GS is a valuable 

approach for plant breeding [74], however, it will take some time for this concept to develop into a 

practical tool [75]. A GS-based breeding scheme has already been proposed and is considered to be an 

important tool for developing durable stem rust-resistant wheat [76].  

3.6. Identification of Stress-Related Gene Families 

When properly annotated genomes are available, the genome-wide identification of all members of 

a gene family will become feasible. Since genome duplication (polyploidy or paleopolyploidy) and 

single gene duplication are common in crops [77], genes usually exist in multiple copies and/or in gene 

families. Identifying all members of a gene family may give a more comprehensive view on the 

possible functions of a group of evolutionarily related genes. Bioinformatics tools such as  

Fgenesh [78], GAZE [79], and JIGSAW [80] have been adopted for searching gene families in crops.  

Two typical ways to identify members of gene families from within a genome are keyword search 

and pattern/homology search. Keyword search usually requires precise keywords including gene 

names and controlled vocabularies. The most commonly used controlled vocabularies are Gene 

Ontology, as mentioned in section 2.2, and the functional classification by Pfam, InterPro and  

KEGG [81–83].  

A genome-wide pattern search usually begins with searching sequence databases using programs 

like BLASTP or TBLASTN [84]. Databases can either be online resources (Table 1) or in-house 

databases. The occurrence of the desired functional domains in the potential sequences can then be 

verified using the Pfam protein families database [81], SMART database [85], or HMMER [86]. When 

the BLAST results are associated with unannotated sequences, these will require further analyses to 

determine the putative gene structures. One example of applying the above strategy to identify  

stress-related genes is the analysis of AP2/EREBPs in the rice genome [87]. “AP2/EREBP” was used 

as the keyword in searching databases, including DRTF, MSU NCBI, and KOMBE. Any  

non-redundant sequences obtained were then used as query terms in the TBLAST and BLASTP 

searches of the MSU and NCBI databases. Four genes with an incomplete AP2 domain were excluded 

after Pfam and SMART analyses because of their very small AP2/ERF domain. A total of 163 genes 

were identified using this method, in contrast to the 139 genes as suggested previously [87]. 

Expression studies revealed that a number of the members are responsive to abiotic or biotic stresses. 

A few of them can even be induced by multiple stresses, suggesting their possible involvement in 

stress responses [87].  

Supplementary Table S2 summarizes the strategies and tools used in recent literature on  

genome-wide analyses of gene families related to stress responses in major crops.  

4. Functional Genomics 

4.1. Transcriptome 

There are two major technologies for obtaining the overall transcription map of specific plant tissues: 

hybridization-based microarray technology [88] and next generation RNA sequencing technology 

(RNA-seq) [89]. RNA-seq technology, in conjunction with efficient bioinformatics tools, is now more 
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widely used to support predicted gene models, extract differentially expressed genes, and find novel 

transcripts in de novo assemblies. Public repositories such as ArrayExpress [90] are designed for the 

storage of expression data. Standard data formats including Minimum Information about Microarray 

Experiments (MIAME) or Minimum Information about Sequencing Experiments (MINSEQE) are 

unified to facilitate transcriptome data submission/downloading. Bioinformatics tools dealing with 

transcriptome alignment, splicing event prediction, and de novo assembly are also available (Table 4). 

Table 4. Widely used bioinformatics tools for the analysis of transcriptome data.  

Software  Description Download URL  Reference 

ABMapper RNA-seq data alignment  http://hkbic.cuhk.edu.hk/software/abmapper [91]  

Bowtie RNA-seq data alignment  http://bowtie-io.sourceforge.net/bowtie2/index.shtml [92]  

Cufflinks Transcript assembly http://cufflinks.cbcb.umd.edu/ [93] 

DEGseq 
Differential gene expression 

detection 
http://www.bioconductor.org/packages/2.11/bioc/html/DEGseq.html [94] 

Infernal RNA-seq data alignment http://infernal.janelia.org/ [95] 

Oases De novo assembly www.ebi.ac.uk/~zerbino/oases/ [96] 

Tophat 
RNA-seq data alignment & 

Alternative splicing detection 
http://tophat.cbcb.umd.edu/ [97] 

Trans-AByss De novo assembly http://www.bcgsc.ca/platform/bioinfo/software/ [98] 

Trinity De novo assembly http://trinityrnaseq.sourceforge.net/ [99] 

Crops such as maize [100] and soybean [101] have their own transcriptome atlases, compiled from 

sub-transcriptomes from multiple tissues and different developmental stages. For the transcriptome 

atlas of soybean, plant ontology (PO) was used to describe the developmental stage of each 

experimental tissue, providing a common ground for readers and users to discuss and perform further 

analyses. The cDNA short reads generated by Illumina Genome Analyzer were aligned to the soybean 

reference genome sequence assembly using GSNAP, released in 2005. The digital expression counts 

were determined using the R programming language and normalized using a variation of RPKM 

methods [101]. The global inventory of expressed transcripts of crops under stress is dynamic, both 

temporally and spatially. Time series sampling is a typical experimental design to trace the trajectory 

of such differentially expressed transcripts of crops under stress conditions. A typical example was the 

study of the soybean transcriptome under alkaline stress. Soybean plants were treated with NaHCO3 

and transcriptomes were analyzed using microarray [102]. GO terms were successfully assigned to the 

1380 significantly changed probe sets that are related to metabolism, signal transduction, energy, 

transcription, secondary metabolism, transporter, as well as disease and defense. A time series study 

revealed the interplay of signal transduction and metabolism during the progression of the treatment. 

MapMan tools were used to visualize these changes [102]. Other time series studies include the studies 

of rice root under low potassium [103], cassava under cold stress [104], and soybean subjected to 

Pseudomonas syringae infection [105]. The other widely reported experimental design is the 

comparative transcriptome study performed among crop accessions with different degrees of stress 

tolerance, such as the study of soybean accessions exhibiting differential tolerance toward low 

potassium [106], rice cultivars with contrasting abilities to withstand drought [107] and chilling [108], 



Int. J. Mol. Sci. 2013, 14 11454 

 

 

wheat with differential drought tolerance [109], and Medicago [110] and foxtail millet [111] cultivars 

with differential salt tolerance.  

Another strategy to associate transcript abundance to genomic variations is the expression QTL 

(eQTL), which use differentially expressed transcripts as the quantitative traits [112]. The eQTL maps 

of maize root [113] and rice shoots [114] have identified thousands of cis and trans regulation factors 

by population transcriptome screening. The eQTLs co-localizing with traditional QTL regions could 

give supportive evidence explaining the genetic basis of the targeted phenotypic characters. One 

successful example is the eQTL study of the partial resistance toward Puccinia hordei in barley [115], 

in which some eQTLs were reported to co-localize with previously known rust resistance QTL regions.  

4.2. Proteome  

Due to the alternative splicing of RNA transcripts and post-translational modifications of the 

proteins themselves, the proteome within a cell can be much more complicated than the corresponding 

genome. The gel-based proteomics technology will soon be obsolete due to its limited sensitivity and 

semi-quantitative nature [116]. The rise of the next generation proteomics systems such as Orbitrap 

and QStar, together with the application of isotopic tag-based quantitative proteomics (ICATs [117], 

SILAC [118], isobaric tag-based quantitative proteomics (ITRAQ [119]), and label-free quantitative 

proteomics (MaxQuant [120], Serac [121], SIEVE (Thermo Scientific, San Jose CA, USA)) have 

expedited the development of high-throughput proteomic studies. Nevertheless, the pace of adopting 

these platforms in plant stress studies is far behind studies in humans. 

Despite the advancement in the proteomics platforms, the application of de novo peptide sequencing 

is still limited. Protein identifications still largely rely on database searches in which experimental 

peptide mass spectra are compared with theoretical peptide mass spectra generated from existing 

sequence databases. Some commonly used databases and useful algorithms are summarized in Table 5. 

Since the genomes of many crops have not been completely sequenced, and some others are still 

unknown, proteins of species without a genome database are frequently identified by referring to  

cross-species databases. In these cases, it is not uncommon that molecular weights and isoelectric 

points (pI) of the identified proteins may deviate from the actual spot position on the 2D gel, despite 

the high protein scores.  

Comprehensive reviews summarizing plant proteomic studies from 2006 to 2008 are  

available [122,123]. We have also summarized the plant proteomic studies in 2012 (Supplementary 

Table S3). Recently, plant proteomic investigations have been subdivided into several areas, including 

subcellular proteomics and proteomics-related post-translational modifications. For example, 21 

differentially expressed proteins were identified from salt-treated wheat chloroplasts [124], and 13 and 

11 differentially expressed microsomal proteins, respectively, were identified from two distinct 

cadmium-accumulating soybean cultivars [125].  

Stress-induced posttranslational modifications of proteins are common. They are either the results 

of deleterious damage from the stress, or beneficial modifications to regulate the functions of the 

proteins in order to cope with the stress. To study posttranslational modifications of proteins, special 

techniques within proteomics are used. Redox proteomics requires special labeling methods, including 

the reduction and subsequent labeling of the oxidized thiol groups with 5-iodoacetamidofluorescein 
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(IAF) [126]. Twenty-two highly oxidized proteins involved in a wide range of biological processes 

were identified in ozone-treated rice using this method [127]. Phosphoproteome [128], glycoproteome, 

and secretome [129–132] are sub-categories of proteomics that require special staining and enrichment 

techniques. Post-translational modifications involved in gene expression regulations will be discussed 

in the Epigenomics section below.  

Table 5. Bioinformatics resources commonly used in crop proteomic studies. 

Program URL 

Mascot http://www.matrixscience.com 

SEQUEST http://fields.scripps.edu/sequest/index.html 

X!Tandem http://www.thegpm.org/TANDEM/index.html 

Database URL 

Expasy http://www.expasy.org/ 

UniprotKB/SwissProt and UniProtKB/TrEMBL database http://www.uniprot.org/help/uniprotkb 

Protein Information Resource (PIR) http://pir.georgetown.edu/ 

RCSB Protein Data Bank (RCSB PDB) http://www.rcsb.org/pdb/download/download.do 

EMBL-EBI’s Protein Data Bank in Europe (PDBe) http://www.ebi.ac.uk/pdbe/ 

SWISS-2DPAGE http://world-2dpage.expasy.org/swiss-2dpage/ 

The Plant Proteome Database (PPDB) http://ppdb.tc.cornell.edu/ 

Plant Protein Phosphorylation DataBase (P3DB) http://www.p3db.org/ 

RIKEN Plant Phosphoproteome Database (RIPP) https://database.riken.jp/sw/links/en/ria102i/ 

Secretom—The Tomato Fruit Glycoproteome http://solgenomics.net/secretom/detail/glycoproteome 

Plant Secretome KnowledgeBase (PlantSecKB) http://proteomics.ysu.edu/secretomes/plant.php 

4.3. Interactome 

Protein-protein interactions determine the contextual functions of a protein and hence play a crucial 

role in regulation and signal transduction [133]. There are several commonly used experimental 

systems to identify protein-protein interactions, including: (1) yeast two hybrid (Y2H) (reviewed  

in [134]); (2) biomolecular fluorescence complementation (BiFC) (reviewed in [134]); (3) affinity 

pull-down coupled with mass spectrometry (AP-MS) (reviewed in [134]); (4) blue native PAGE [135]; 

and (5) structural analysis of protein crystals [136,137]. In addition, literature curation involving 

tedious literature searches can be used to supplement the experimental efforts [138] and in silico 

prediction can be done by searching for orthologous pairs which interact in other systems, to identify 

possible interologues [134,139]. Multiple systems are generally adopted to authenticate the interactions. 

The concept of the plant interactome was initiated years ago, and was based mainly on the 

information collected through literature curation [140]. Subsequently, an experimentally constructed 

interactome map of A. thaliana was established via intensive screening, recording a total of  

6200 high-confidence interactions among 2700 proteins through the screening of proteins encoded by 

8000 open reading frames in the Arabidopsis genome [141]. It is estimated that this screening only 

captured around 2% of the binary protein-protein interactome in A. thaliana [141]. Using the in silico 

interolog prediction method, more than 37,000 interactions among 4567 rice proteins were predicted, 

168 of which have been experimentally confirmed [139]. In this piece of work, the INPARANOID 3.0 

program was used to predict high-confidence protein orthologues in 12 species including rice. With the 
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assumption that protein-protein interactions are retained in evolutionarily conserved orthologous 

proteins, rice protein-protein interactions were compiled using the predicted orthologous proteins and 

the known interactions in interactome databases [139]. Only a few studies directly related to crop 

stress interactomes have been published (Table 6). In the search for rice stress-related interactomes, 4 

stress proteins related to disease (XA21 and NH1) and flooding (SUB1A and SUB1C) were used as 

baits for the initial interactome screens by Y2H [142]. Preys identified from the initial screens were 

then used as baits for subsequent screens. Together with the information from literature curation, an 

interactome network consisting of 100 proteins were constructed. The interactomes of the two kinds of 

stresses were linked by proteins such as SNRK1A, which has been shown to be related to ABA, a 

positive regulator of abiotic stress responses and a negative regulator of biotic stress responses [142]. 

Online resources such as PRIN [143] can help to predict rice interactomes, while BioGRID [144], 

DIP [145], PlaPID [146], and InAct [147] can be queried for some pre-determined interactomes in 

certain plant species. Recent large-scale stress interactome studies in crop plants are shown in Table 6. 

Table 6. Recent large-scale stress interactome studies in crop plants. 

Species  Stress Strategy Reference 

Rice Abiotic and biotic Using stress components as bait in Y2H [142,148] 
Wheat Cold and dehydration Using stress components as bait in Y2H [149] 

Soybean SCN infection In silico prediction [150] 

4.4. Epigenome  

In addition to the genetic information encoded by DNA, epigenetic modifications of DNA and 

histones provide another dimension of regulation to influence gene expressions. Chromatin-associated 

proteins, including DNA methylase, histones, and histone-modifying enzymes, are cataloged in the 

ChromDB [151]. Technological platforms for epigenomic research can be considered as an extension 

of genomic and proteomic studies with modifications in analysis protocols.  

For example, cytosine DNA methylation, one of the epigenetic modifications, plays an important 

role in gene silencing and genomic imprinting [152,153]. The transcriptional levels of endogenous 

genes are highly correlated with the methylation status within their promoter or transcribed  

regions [154,155]. One way to detect DNA methylation is to capture and enrich the methylated DNA 

fragments by immunoprecipitation [156]. Bisulfite treatment is another way to distinguish between 

methylated and unmethylated DNA. The bisulfite treatment converts unmethylated (but not methylated) 

cytosines to uracils [157]. Both immunoprecipitation-enriched and bisulfite-treated DNA can be 

analyzed by microarray- or sequencing-based methods to the single-base level of resolution [157–159]. 

A number of bioinformatics tools are designed to handle the bisulfite sequencing data (Table 7).  

Both biotic and abiotic stresses will lead to massive changes in the DNA methylation status [160–162]. 

Some stress-induced DNA methylations can be inherited by the next generation. The mechanism  

for trans-generation DNA methylation may be partially mediated by small RNAs [163]. This  

trans-generation DNA methylation has been observed in some crops in response to stress [164,165], as 

a way of pre-acquiring immunity toward the upcoming stresses via designed parental priming [164].  
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Table 7. Bioinformatics tools for the analysis of bisulfite sequencing data. 

Tools Descriptions Reference 

BiQ 

Analyzer HT 
Quantitative study of locus-specific DNA methylation patterns from bisulfite sequencing data. [166] 

Bismark Mapping of bisulfite-sequencing reads and methylation calling. [167] 

BRAT-BW Genome-wide single base-resolution methylation data analysis [168] 

BSmooth 
Providing estimate of methylation profiles with low-coverage whole-genome  

bisulfite-sequencing data. 
[169] 

BS seeker Mapping of bisulfite-sequencing reads. [170] 

BSMAP Bisulfite reads mapping algorithm. [171] 

CpG_MPs Analysis of biosulfite-sequencing read and identification of genome-wide methylation pattern [172] 

GBSA Both gene-centric or gene-independent analyses of whole-genome bisulfite sequencing data [173] 

Kismeth 
Analysis of plant bisulfite sequencing results, with a tool for designing bisulfite sequencing 

primers. 
[174] 

QUMA Quantification tool for methylation analysis [175] 

RRBSMAP Derivative of BSMAP—a specific tool for reduced-representation bisulfite sequencing [176] 

Histone proteins are responsible for the packing of DNA. The epigenetic modifications of core 

histones affecting the tightness of DNA packing are called histone codes that can relay important 

information to affect gene expressions [177]. The Histone Sequence Database provides a 

comprehensive collection of histone sequences and structural information [178].  

The addition of acetyl groups to histones neutralizes the positive charges and hence loosens the 

condensed DNA, leading to transcriptional activation [179], while the methylation of histones results 

in gene deactivation or repression [180]. The phosphorylation of histones causes the relaxation of 

chromatin and modulates histone acetylation and methylation [181]. 

Individual types of histone modifications on specific amino acid residues can be detected using 

specific antibodies or various mass spectrometries while genome-wide histone-DNA associations can 

be captured by chromatin immunoprecipitation (ChIP) and subsequently analyzed using either 

microarray (ChIP-Chip) [182] or sequencing (ChIP-seq) [183].  

Some histone-modifying enzymes are induced in crops under stress. For example, a trithorax-like 

H3K4 methyltransferase was found to be induced by drought in drought-tolerant barley cultivars [184] 

while a histone deacetylase was found to be induced by compatible infections and repressed by 

incompatible infections [185]. The methylation statuses of four transcription factors were affected by 

salt stress. The expression of three of these transcription factors were also found to be correlated with 

their H3 methylation and acetylation statuses [186]. A genome-wide study in rice identified 4837 

genes that harbor differential H3K4me3 modification under drought stress, in which the expression of 

609 genes were significantly correlated with the H3K4me3 modification [187]. 

4.5. Phenome 

Every observable biological characteristic beyond the genotype can be regarded as the phenotype. 

Phenotypes can be observed at the molecular, cellular, organismal, and population levels. Phenotypes 

also vary throughout the organism’s lifecycle, spanning different growth stages, and during different 
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periods of stress. The environment can also exert significant influences on the phenotype. The total 

sum of phenotypes of an organism or a population constitutes the phenome.  

As mentioned in section 2.2, to make phenotypic data in public databases more searchable and 

accessible to users of bioinformatics tools, ontologies are used to describe the setup of the experiment 

and the phenotypic data. For example, one may study salt tolerance (TO:0006001) at the whole-plant 

flowering stage (PO:0007016) and the days to flower (TO:0000344) of Oryza sativa (GR_tax:013681), 

in a greenhouse study (EO:0007248) under a sodium chloride regimen (EO:0007048). These 

ontologies provide a common language to describe an experiment and render it understandable by both 

researchers and computational algorithms. For instance, some people may record certain phenotypes 

during the flowering stage. However, what does it mean by “flowering stage”? Some people refer to 

“flowering stage” as the time when the first flower opens. Others may refer to it as having half of the 

individual plants with flowers opened. In this case, the flowering time is well defined in plant 

ontology. PO:0007026, PO:0007034, PO:0007053 and PO:0007052 refer to the stage at which the first 

flower, 1/4 of the flowers, 1/2 of the flowers, and 3/4 of the flowers, open, respectively. PO:0007024 

marks the end of the flowering stage. The application of these ontologies can thus reduce the 

discrepancies in annotating the phenotypes and treatment conditions. 

High-quality phenotypic information is essential for mapping, association studies, gene 

identifications, gene functional studies and genomic selections. To design experiments to collect 

phenotypic information, some critical parameters have to be considered, such as the sample/population 

sizes, experimental conditions, phenotypes to be assessed, and the data acquisition methods.  

Table 8. Databases for mutant and germplasm resources.  

Species Databases URL 

Barley Barley DB http://www.shigen.nig.ac.jp/barley/ 

Barley NordGen Plant Collection http://www.nordgen.org 

Maize RescueMu Maize Mutant Phenotype Database http://maizegdb.org/rescuemu-phenotype.php 

Rice Oryza Tag Line http://oryzatagline.cirad.fr/ 

Rice Rice Tos17 Insertion Mutant Database http://pfg101.nias.affrc.go.jp/ 

Soybean SoyBase—Fast Neutron Mutants http://www.soybase.org/mutants/index.php 

Tomato Genes that Make Tomatoes http://zamir.sgn.cornell.edu/mutants/index.html 

Tomato LycoTILL http://www.agrobios.it/tilling/index.html 

Tomato TOMATOMA http://tomatoma.nbrp.jp/index.jsp 

Tomato/Pea URGV TILLING Database http://urgv.evry.inra.fr/UTILLdb 

Tomato/Potato SOL genomics network http://solgenomics.net/ 

Wheat The Scottish Wheat Variety Database http://wheat.agricrops.org/menu.php 

The size of a population can vary from a few plants for functional studies, several hundred lines for 

mapping and GS, to as many as a thousand germplasms for GWAS. Some public collections of 

germplasms or populations are available for public requests. The United States Department of 

Agriculture National Plant Germplasm System has a collection of over 500,000 germplasm accessions 

from 10,000 plant species including rice, soybean, tomato and many other staple crops. Table 8 

summarized some publicly available mutant and germplasm collections, some of which also provide 

phenotypic descriptions and photos of the mutant.  
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Since the phenome is the overall outcome of the interactions between the genotype and the 

environment, whether the phenotypic data are collected in a controlled environment or not can greatly 

affect the final interpretation of results. Field experiments can better mimic the actual conditions of 

crop production, but the consistency of the phenotype greatly depends on the location of the field, the 

soil composition, weather conditions, season, and so on. The interpretation of results can thus be 

complicated. For example, a change in the transpiration rate in some of the plants may not solely be 

the result of the stress treatment, but also the result of localized changes in light intensity and/or 

temperature in the field [188]. In general, a larger number of replications are required to compensate 

for the effects due to environmental variations. A controlled environment such as that in a greenhouse 

or a growth chamber can minimize the effects of environmental fluctuations and hence will emphasize 

the contribution of the genotype. However, data from controlled experiments are usually limited in 

scale and may overlook the fast-changing environment in the real production field.  

Choosing the appropriate phenotypes to be assessed is also important. For example, stomatal 

conductance and pathogen titer are good indicators of osmotic stress tolerance and disease resistance, 

respectively. However, they are not quite applicable in large-scale experiments due to the limitation of 

the machine and the laborious procedures. On the other hand, fresh weight and biomass can truly 

reflect the productivity of the crops, but taking these measurements is destructive to the plant. For 

morphological and physiological phenotyping of crops under stress, a conversion of stress symptoms 

to parameters that can be captured and digitized is needed for high-throughput automation. Commonly 

used methods include: 2D or 3D visible light imaging [189,190], infrared thermography [188],  

near-infrared imaging, spectral reflectance [191], fluorescence analysis [191,192], stable isotope 

analysis [193] and X-ray imaging [194]. For example, a study of wheat salt stress response suggested 

that the shoot area calculated from 3 digital images (2 side and 1 top images) showed a strong positive 

correlation with manually measured leaf area and shoot fresh weight which commonly serve as the 

indicators of salt tolerance in crops [195]. As a non-destructive method, the imaging system could 

continuously monitor the growth of the plant and distinguish its bi-phasic (osmotic stress phase and 

ionic stress phase) growth under salinity stress [195]. Another example is related to osmotic stresses 

(salinity and drought) that reduce stomatal conductance. Since the reduction in stomatal conductance 

will halt the cooling effect of transpiration, infrared thermal imaging can be used to monitor the degree 

of salinity and drought stress [188,196]. In the case of lesions on leaf surfaces caused by plant 

diseases, instead of measuring the lesion area on each leaf, determining the reduction in chlorophyll 

fluorescence is a possible alternative [197]. 

In addition to the physiological phenotypes, metabolite profiles in crops are also altered by both 

biotic and abiotic stresses [198,199]. Deleterious metabolites such as reactive oxygen species might be 

generated through the disruption of normal cellular processes while beneficial metabolites such as 

signaling molecules and osmoprotectants may be generated to alleviate the stress [200,201].  

Current platforms for metabolomic analyses include various forms of liquid  

chromatography-coupled mass spectrometry (LC-MS), gas chromatography-coupled MS (GC-MS), 

capillary electrophoresis-coupled MS (CE-MS), fourier transform MS (FT-MS), fourier transform 

infrared spectrometry (FT-IR), and one- or two-dimension nuclear magnetic resonance (NMR). Raw 

spectra generated by mass spectrometry or NMR can be analyzed by making references to either  

in-house or online databases (Table 9). Biological multivariate data generated from metabolomic 
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studies are commonly analyzed using principal component analysis (PCA) [202], partial least square 

(PLS) [203], and orthogonal projections to latent structures (O-PLS) [203,204]. 

Table 9. Mass spectra databases and other bioinformatics resources for metabolomic studies. 

Database URL Reference 

AOCS Lipid Library http://lipidlibrary.aocs.org/index.html - 
Golm Metabolome Database http://gmd.mpimp-golm.mpg.de/ [205] 
Lipidomics Gateway http://www.lipidmaps.org/ [206] 
Madison-Qingdao Metabolomics 
Consortium Database 

http://mmcd.nmrfam.wisc.edu/ [207] 

Manchester Metabolomics Database http://dbkgroup.org/MMD/ [208] 
MassBank http://www.massbank.jp/index.html [209] 
Metabolome Express https://www.metabolome-express.org/ [210] 
METLIN http://metlin.scripps.edu/ [211] 
NIST Chemistry WebBook http://webbook.nist.gov/chemistry/#Notes - 

Software/Tools URL Reference 

AMDIS http://www.amdis.net/ - 
COLMAR http://spinportal.magnet.fsu.edu/ [212] 
MetDat http://smbl.nus.edu.sg/METDAT2/ [213] 
MetaboSearch http://omics.georgetown.edu/MetaboSearch.html [214] 

Numerous metabolomic studies have been done on crops under stress, including: salinity [215–217], 

drought [218–221], flooding [222], ozone treatment [223], fungal infections [224–226], bacterial 

infections [217,227], other infections [228], and multiple stresses [229,230]. 

There are two major research strategies in metabolomic studies: metabolic fingerprinting and 

metabolic profiling. Metabolic fingerprinting uses the mass-to-charge ratio of mass spectrometry, the 

peak height and/or retention time of chromatography and the strength of NMR signal as the metabolomic 

signature in specific samples, such that the identity of each metabolite is not necessary [231]. This 

helps to classify different samples into categories. For example, metabolic fingerprints have been made 

to differentiate between disease-resistant and susceptible varieties [217,227,228] or between  

salt-tolerant and sensitive varieties [232]. In one study, fourier transform infrared (FT-IR) 

spectroscopy was used for the metabolic fingerprinting of salt-treated tomatoes [233]. A total of 882 

FT-IR spectra variables were collected between the wave number 4000 to 600 cm−1 for each  

sample [233]. Through discriminant function analysis (DFA) of the spectra variables, without knowing 

the identity and the quantity of each metabolite, salt-treated and control samples can be discriminated. 

Furthermore, key regions within the spectrum distinguishing the treated from the untreated samples 

were identified through genetic algorithms, and the major components were found to be amino radicals 

and nitrile-containing compounds [233]. Thus, disease resistance and stress tolerance of novel crop 

varieties can be assessed by comparing their metabolic fingerprints with those of well characterized 

varieties, facilitating the screening process. 

On the other hand, metabolic profiling compares the metabolic compositions between samples and 

hence the quantitation and identification of the metabolites are required. Signal patterns must be matched 

to known standards or depositions in the databases in order to identify the actual compounds. For 

example, the accumulation of compatible solutes, such as proline, glycine-betaine, and their precursors, 
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is usually observed in osmotically stressed crops, especially in tolerant varieties [216,220,221].  

A specific example is the mitochondrial metabolic profile of flood-stressed soybean; metabolites were 

extracted from the roots and hypocotyls of soybean seedlings with or without submergence  

stress [226], and were then analyzed using capillary electrophoresis mass spectrometry. Eighty-one 

mitochondria-related metabolites were identified and quantified with reference to the commercially 

available standards [226]. There was an accumulation of TCA cycle-related metabolites, including 

citrate, succinate, and aconitate, but a reduction in ATP in flood-stressed plants, which can be 

explained by the arrest of aerobic respiration due to anoxia [222]. Following a similar logic, the 

accumulation of antimicrobial compounds, such as caffeic acid, phytoalexins, glycoalkaloids, and 

other polyphenolic compounds, are common in pathogen-infected crops compared to their uninfected 

counterparts [224–226,228]. Glucose oxidase secreted by a fungal pathogen, Botrytis cinerea, can also 

lead to the accumulation of gluconic acid in Vitis vinifera cv. Chardonnay berries [226]. 

5. Future Perspectives 

Sequencing throughput is no longer the major limiting factor in genomics and transcriptomics 

studies. The next generation sequencing platforms can actually generate enough depth for genome 

assembly in one or several runs [234]. However, sequence assembly and annotation for complex 

genomes remain challenging. The data acquisition platforms for other “-omics”, on the other hand, are 

under rapid development to catch up with the pace of genomic research. While the data source is no 

longer a rate-determining step, data integration and interpretation have become the bottleneck in the 

research pipeline. One obstacle hindering the cross-platform analyses of different datasets is the 

variations in experimental designs, treatment conditions, and data formats. Drawing meaningful 

conclusions may sometimes be difficult when there are discrepancies between two germplasms. For 

example, the transcriptomic data of one germplasm may not be used effectively to explain the 

proteomic data of another germplasm. Researchers should therefore strategically design experiments to 

generate interrelated -omics data using carefully selected germplasms. The standardization of data 

acquisition and storage formats using strictly controlled vocabulary is also important. 

With the advance of computer technology and high-throughput analysis platforms, life processes 

can now be captured, digitized, and stored in the hard disk of a computer. Yet, no matter how perfectly 

a genome is sequenced and assembled, biological data from experiments are still essential to connect 

the genotypes and the phenotypes. A few softwares/platforms have been developed to integrate the 

interactions of cellular components into networks [235,236]. For example, the VirtualPlant has been 

developed as a software platform for the integration and analysis of different levels of data [237].  

It provides large datasets of Arabidopsis gene annotation, gene functional categories, microarray data, 

biochemical pathways, interaction information, and microRNA:mRNA interaction information. Users 

can also upload their own gene lists and microarray data for analysis, and identify coexpressed genes, 

interacting proteins, and metabolites associated with their genes of interest. Building a similar platform 

for crop plants could be extremely useful but it requires a well-coordinated effort among different 

research centers and groups. 
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