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Abstract: Serotonin is a neurotransmitter that modulates many central and peripheral 

functions. Tryptophan hydroxylase-1 (TPH1) is a key enzyme of serotonin synthesis. In the 

current study, the interaction mechanism of phenylalanine derivative TPH1 inhibitors was 

investigated using molecular dynamics (MD) simulations, free energy calculations, free 

energy decomposition analysis and computational alanine scanning. The predicted binding 

free energies of these complexes are consistent with the experimental data. The analysis of 

the individual energy terms indicates that although the van der Waals and electrostatics 

interaction contributions are important in distinguishing the binding affinities of these 

inhibitors, the electrostatic contribution plays a more crucial role in that. Moreover, it is 

observed that different configurations of the naphthalene substituent could form different 

binding patterns with protein, yet lead to similar inhibitory potency. The combination of 

different molecular modeling techniques is an efficient way to interpret the interaction 

mechanism of inhibitors and our work could provide valuable information for the TPH1 

inhibitor design in the future. 
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1. Introduction 

5-hydroxytryptamine (5-HT, serotonin) is a monoamine neurotransmitter. Biochemically derived 

from tryptophan, serotonin is primarily found in the gastrointestinal (GI) tract, platelets, and in the 

central nervous system (CNS) of animals including humans [1,2]. In mammals, 5-HT is synthesized 

from the amino acid L-tryptophan by a short metabolic pathway consisting of two enzymes: tryptophan 

hydroxylase (TPH), and amino acid decarboxylase (DDC). The TPH-mediated reaction is the  

rate-limiting step in the pathway [3]. TPH has been found in two forms: TPH1, in several tissues, and 

TPH2, which is a neuron-specific isoform [4]. 

In the GI system, TPH1 is primarily expressed and dysregulation of the peripheral 5-HT  

signaling system is involved in the etiology of several conditions such as functional GI disorders, 

chemotherapy-induced emesis, and heart valve damage [5,6]. Therefore, it is believed that inhibitors of 

TPH1 have proven effective in treating a wide range of diseases and disorders associated with the 

serotonergic systems, such as irritable bowel syndrome [7,8]. 

Recently, new research has shown that gut-derived 5-HT is a powerful inhibitor of osteoblast 

proliferation and bone formation [9–11]. Yadav and co-workers reported that a small molecule 

inhibitor of TPH1 has the potential to become a new class of bone anabolic drugs that can be added to 

the armamentarium to treat osteoporosis [12,13]. Thus, TPH1 can be considered as a new drug target 

and this mechanism is totally different from any known anti-osteoporosis drugs [14,15]. In very recent 

work, 3D-QSAR focusing on phenylalanine series compounds such as TPH1 inhibitors have been 

reported [16]. In the QSAR study, a combination of the ligand-based and structure-based methods is 

used to clarify the essential quantitative structure–activity relationship of the known TPH1 inhibitors. 

To elucidate the protein–ligand interaction at the atomic level of these compounds helps significantly 

to obtain the TPH1 inhibitors with higher activity. The detailed modes of mechanism of the 

phenylalanine derivative inhibitor–TPH1 interactions, however, are not entirely understood. 

In the present study, computational studies including molecular dynamics (MD) simulations, 

molecular mechanics generalized Born/surface area (MM/GBSA) binding free energy calculations and 

decomposition of free energy on a per-residue basis are conducted to deeply explore the molecular 

basis for the binding. In addition, the computational alanine scanning and the structural analysis are 

carried out to gain insight into the binding mechanism. 

2. Results and Discussion 

2.1. The Dynamics Stability MD Simulation  

In this study, the MD simulations of four TPH1–inhibitor complexes (showed in Figure 1) were 

successfully run for 10 ns scale. To evaluate the reliable stability of the MD trajectories and the 

difference of the stabilities in the MD simulations, there were calculated the RMSD values of the 
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TPH1 backbone atoms relative to the initial minimized structure through the phase of the simulation 

(plotted in Figure 2). One can see that the 1a- and 1d-TPH1 complexes reached equilibrium after 5 ns 

of the simulation phase, while the 1b- and 1c-TPH1 complexes were not stable until about 7 ns. 

According to Figure 2, the RMSD values of the 1a-, 1b-, 1c- and 1d-TPH1 complexes were 0.17, 0.16, 

0.19 and 0.23 nm, respectively, with a deviation lower than 0.05 nm; among these structures, the  

1a-TPH1 complex had the most reliable stability. These results showed that the trajectories of the MD 

simulations for the four complexes were stable after 7 ns, so it was reasonable to do the binding free 

energy calculation and free energy decomposition based on the snapshots extracted from 7 to 10 ns. 

Figure 1. The chemical structures of the phenylalanine derivative inhibitors of TPH1.  
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Figure 2. The root-mean-square deviations (RMSD) of the backbone atoms relative to 

their initial minimized complex structures as a function of time for 1a (black), 1b (red), 1c 

(blue) and 1d (cyan). 
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More detailed analysis of root-mean-square fluctuation (RMSF) versus the protein residue number 

for the four complexes is illustrated in Figure 3. In this figure, it is observed that the four 

inhibitor/protein complexes possess the similar RMSF distributions, indicating that these inhibitors 

could have the similar interaction mode with TPH1 on the whole. Moreover, the active site regions 

(such as Asp269, His272, Ser336, etc.) show a rigid behavior for all complexes. 
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Figure 3. Root-mean-square fluctuation (RMSF) of the backbone atoms (CA, N, C) versus 

residue numbers for the TPH1–inhibitor complexes. The residues a, b and c were Asp269, 

His272 and Ser336, respectively. 

 

To estimate the difference between the MD average structures and crystal structures, the average 

structures of the MD-simulated complexes from the last 3 ns of MD simulations were superimposed 

with the crystal structure of TPH-1c complexes (plotted in Figure S1). According to the Figure S1, the 

MD average structures of four complexes are overall very similar to their crystal structures. However, 

local conformational differences were also observed. In the case of the TPH-1b and TPH-1d 

complexes, loop 1 obviously departs from its crystal structure. In the case of the TPH-1a and  

TPH-1b complexes, loop 2 deviates significantly from its crystal structures. According to Figure S1, 

the loop 1 and 2 located at the binding site, the binding of inhibitor may lead to slight shifts of the two 

loops. These results basically agree with the previous RMSD and RMSF analyses. 

2.2. Calculation of Binding Free Energies by MM/GBSA 

The MM/GBSA method had been performed to calculate the binding free energies by using the 

single trajectory protocol. The 300 snapshots were extracted at a time interval of 10 ps from the last  

3 ns of MD trajectories for the analysis of the binding free energy. The calculated binding free energies 

and components are listed in Table 1. Because the radius parameters of the fluorine, chlorine, bromine 

and iodine atoms are missing in the MM/GBSA module in Amber 12, we added radii of 1.39 Ǻ for 

fluorine, 1.75 Ǻ for chlorine, 1.85 Ǻ for bromine and 1.98 Ǻ for iodine to the pbsa program in  

Amber [17,18]. Table 1 lists the components of the molecular mechanics and solvation energies 

computed by MM/GBSA and the entropy contributions from the normal mode analysis. As seen in 

Table 1, the binding free energies of 1a, 1b, 1c and 1d to TPH1 are: −46.2, −38.0, −47.6 and  

−46.4 kcal·mol−1, respectively. Furthermore, it is encouraging that the ranking of the experimental 
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binding free energies is consistent with our predictions, which shows that the current analyses by 

MM/GBSA method are reliable.  

Table 1. Binding free energies and individual energy terms of inhibitors in complex with 

TPH1 (kcal/mol). 

Contribution 1a 1b 1c 1d 
ele
intΔE  −49.8 (0.82) −45.7 (0.82) −47.3 (0.85) −52.5 (0.55) 
vdw
intΔE  −42.8 (0.25) −41.7 (0.45) −49.3 (0.39) −41.0 (0.37) 

nopol
solΔG  −6.0 (0.02) −7.677 (0.02) −6.9 (0.03) −6.6 (0.04) 

ele
solΔG  66.9 (0.59) 68.837 (0.52) 69.2 (0.86) 66.7 (0.67) 

solΔG  
a 60.9(0.58) 61.2 (0.51) 62.3 (0.84) 60.1 (0.59) 

eleΔG  
b 17.1 (0.38) 23.1 (0.53) 21.9 (0.58) 14.2 (0.43) 

−TΔS −12.6 −11.8 −13.3 −13.0 

bindΔG  −46.2 (0.41) −38.0 (0.39) −47.6 (0.56) −46.4 (0.33) 

IC50(nM) 32 380 26 44 
∆Gexp 

c −42.7 −36.6 −43.3 −42.0 
a The polar/nonpolar ( ele

solΔG  + nopol
solΔG ) contributions; b The electrostatic ( ele

intΔE  + ele
solΔG ) contributions. 

All energies are averaged over 150 snapshots and are given in kcal/mol. Calculation of ∆Gbind does not 

explicitly consider entropy contributions. The values in parentheses represent the standard error of the mean; 
c Experimental binding free energies are calculated from IC50 using the following relationship:  

∆Gbind = RTlnKdissociated = RTln (IC50 + 0.5Cenzyme) ≈ RTlnIC50, where R is ideal gas constant, T is temperature 

in K (298 K is used in this article), and Cenzyme is the concentration of enzyme, which is a very small number 

after equilibration and can be omitted in most cases. 

As shown in Table 1, both the intermolecular van der Waals and the electrostatics interactions are 

important contributions to the binding, whereas polar solvation terms oppose binding. Nonpolar 

solvation terms, which correspond to the burial of SASA upon binding, contribute slightly favorably. 
Although the gas-phase electrostatic values, ele

intΔE of the four complexes show that electrostatic 

interactions are in favor of the binding. However, the overall electrostatic interactions energies, 

solΔG ( ele
sol

ele
int ΔGΔE  ) are positive and unfavorable for the binding, which is caused by the large 

desolvation penalty of charged and polar groups that is not sufficiently compensated upon complex 
formation. Comparing the van der Waals/nonpolar ( vdw

intΔE + nopol
solΔG ) contributions with the  

electro-static contributions ∆Gele, we find that the association between inhibitor and TPH1 is mainly 

driven by van der Waals/nonpolar interaction in the complex than in solution. Although the 

electrostatic interactions between TPH1 and inhibitors are strong, the electrostatic interactions between 

the solvent (water molecules) and the ligand are much stronger. Thus, when a ligand transfers from the 

solvent to the binding pocket, the electrostatic contributions are unfavorable to ligand binding [19].  

In addition, the contributions of the entropy changes to free energies (TΔS) impair the bindings of 
inhibitors to TPH1. It is noted that vdw

intΔE  values are highly correlated with the binding affinity ∆Gbind; 

furthermore, vdw
intΔE  is eight times more than nopol

solΔG . Therefore, van der Waals energies mostly drive 

the bindings of the inhibitors to TPH1. This result suggests that the optimizations of van der Waals 

interactions between the inhibitors and TPH1 may lead to the potent inhibitors. 
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2.3. Binding Mode of the TPH1–Inhibitor Complex 

Binding modes for the active site of TPH1 with inhibitors 1a to 1d are displayed in Figures 4–7. 

From Figures 4–7a it can be observed that inhibitors extend deeply into the binding site of TPH1. The 

analysis of the intermolecular interactions including hydrophobic and hydrogen-bonding contacts on 

the TPH1–inhibitor complexes is carried out using Ligplot plus [20,21], as shown in Figures 4–7b. The 

phenylalanine fragment could bind in a deep active site, formed by the hinge region residues (Arg257, 

Thr265, Glu267, His272, Glu333, Ser336 and Ser337) via two to five hydrogen bonds. The N atoms of 

the amino group could form hydrogen bonds with the backbone atoms of Gly333, Glu267 or side chain 

O atom of Ser336; the O and OXT atoms of the carboxyl group in the phenylalanine fragment could 

form hydrogen bonds with the side chain atoms of Arg257, Ser336 and Ser337, respectively.  

The 2-amino group of the pyrimidine or triazin ring could also form hydrogen bonds with the side 

chain atoms of Glu317 and Tyr235. Additionally, the oxygen atoms of the solvent water molecules 

could form other hydrogen bonds with the N atoms of inhibitors and backbone or side chains of the 

active site residues. These hydrogen bonds may help to stabilize the interaction between TPH1 and 

inhibitors. Moreover, the naphthalene ring could interact with a hydrophobic binding pocket, 

characterized by residues Met124, Leu236, Pro238, Phe313 and Ala339. 

Figure 4. (a) Binding modes of inhibitor 1a with the key residues of TPH1 that are 

essential for the binding; (b) 2D contour of the binding modes generated by Ligplot plus. 
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Figure 5. (a) Binding modes of inhibitor 1b with the key residues of TPH1 that are 

essential for the binding; (b) 2D contour of the binding modes generated by Ligplot plus. 

 

Figure 6. (a) Binding modes of inhibitor 1c with the key residues of TPH1 that are 

essential for the binding; (b) 2D contour of the binding modes generated by Ligplot plus. 
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Figure 7. (a) Binding modes of inhibitor 1d with the key residues of TPH1 that are 

essential for the binding; (b) 2D contour of the binding modes generated by Ligplot plus. 

 

Table 2. Hydrogen bond analysis of the inhibitors into TPH1 binding site based on  

MD Simulation. 

Inhibitor Donor AcceptorH Acceptor % Occupied Distance (Ǻ) Angle (Degree) 

1a 

DRG:O 257:HH22 257:NH2 98.3 2.832 21.92 

336:OG DRG:H1 DRG:N 86.0 3.094 39.82 

333:O DRG:H1 DRG:N 71.7 3.016 41.57 

317:OE2 DRG:HAR DRG:NAR 17.3 3.046 18.62 

317:OE1 DRG:HAR DRG:NAR 15.0 3.113 22.19 

DRG:O 265:HG1 265:OG1 11.7 3.003 31.25 

1b 

267:O DRG:H1 DRG:N 80.7 2.899 30.02 

317:OE1 DRG:HAR DRG:NAR 74.7 2.834 31.52 

DRG:OXT 257:HH22 257:NH2 66.0 2.847 19.37 

DRG:OXT 257:HH12 257:NH1 37.3 3.161 42.36 

DRG:O 257:HH22 257:NH2 27.0 2.823 22.22 

DRG:O 257:HH12 257:NH1 17.7 3.243 43.09 

267:O DRG:H2 DRG:N 10.0 2.990 33.24 

1c 

DRG:O 257:HH22 257:NH2 87.0 2.844 18.14 

DRG:O 336:HG 336:OG 72.7 2.746 16.02 

333:O DRG:H2 DRG:N 53.3 2.952 16.27 

340:OE2 DRG:H1 DRG:N 52.3 2.731 37.99 

340:OE2 DRG:H2 DRG:N 26.7 2.813 38.05 

333:O DRG:H1 DRG:N 26.0 2.943 17.35 

DRG:O 257:HH12 257:NH1 20.0 3.224 43.44 

317:OE1 DRG:HAR DRG:NAR 13.3 2.860 25.73 

DRG:OXT 257:HH12 257:NH1 10.0 3.227 24.00 

DRG:OXT 257:HH22 257:NH2 9.7 3.265 35.96 

235:OH DRG:HAR DRG:NAR 8.0 3.165 40.77 
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Table 2. Cont. 

Inhibitor Donor AcceptorH Acceptor % Occupied Distance (Ǻ) Angle (Degree) 

1d 

DRG:O 257:HH22 257:NH2 99.3 2.800 18.60 

336:OG DRG:H1 DRG:N 97.7 2.917 22.46 

DRG:OXT 337:HG 337:OG 32.3 2.655 19.75 

235:OH DRG:HAR DRG:NAR 17.3 3.192 41.50 

DRG:O 257:HH12 257:NH1 12.7 3.363 49.29 

333:O DRG:H1 DRG:N 6.0 3.234 56.37 

In order to further investigate the influence of the configuration on the hydrogen bonding network, 

the visible percentage of hydrogen bonds during the MD simulations was calculated and the results 

was displayed in Table 2. As shown in Table 2, according to Table 1, two significant results are 

obtained: (1) The hydrogen bonds between the carboxyl group and the active site residues, to inhibitors 

1a, 1c and 1d, hydrogen bonds mainly existed between the O atom and the Arg257, but to inhibitor 1b, 

hydrogen bonds mainly existed between the OXT atom and the Arg257; (2) The hydrogen bonds 

between the 2-amino group of the pyrimidine or triazin ring and the active site residues, to inhibitors 

1a, 1b and 1c hydrogen bonds mainly existed between the N atom and the Glu317, but to inhibitor 1d, 

hydrogen bonds mainly existed between the N atom and the Tyr235; and the occupied percentages of 

1a, 1c and 1d were less than 20, but the occupied percent of 1b was more than 70. These two results 

showed that the inhibitors 1a and 1c can produce similar interaction contacts with TPH1. Moreover, 

the different hydrogen bond interaction modes between inhibitor 1b and the other inhibitors could 

come from its different binding conformation. Furthermore, it could be inferred that the different 

hydrogen bond interaction modes between inhibitor 1c and 1d may be from the chiral effect of the  

α-carbon atom of naphthalene ring. 

2.4. Decomposition Analysis of the Binding Free Energies  

For the purpose of obtaining the detailed presentation of the inhibitor/TPH1 interactions, free 

energy decomposition analysis was employed to decompose the total binding free energies into 

inhibitor–residue pairs. The quantitative information of each residue’s contribution is extremely useful 

to interpret the binding modes of inhibitors with TPH1. The interactions between the inhibitors and 

each residue of TPH1 are plotted in Figure 8. In Figure 8, the four inhibitors have the similar 

interaction patterns, which mean stronger interactions with residue Met124, Tyr125, Tyr235, Pro238, 

Arg257, Glu267, Asp269, Thr370, Cys271, His272, Glu317, Gly333, Ser336 and Ile369 of TPH1. It is 

notable that Arg257, His272, Ser336 and Ile369 are the key residues for the distinction in all inhibitors. 
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Figure 8. Decomposition of the binding free energies on a per-residue basis for the  

TPH1-1a (a), TPH1-1b (b), TPH1-1c (c) and TPH1-1d (d). 

  

  

2.5. Computational Mutagenesis of the Binding-Site Residues 

To investigate other factors besides inter-molecular interactions that may help confer specificity, 

computational alanine scanning was employed to probe which residues make a significant 

intermolecular contribution to the differential in binding. This method depends on the assumption that 

local changes of the protein do not influence the whole conformation of the complex significantly.  

The thirteen key residues covering the walls of the pocket are mutated as shown in Figure 9 and the 

results of the mutagenesis are presented. Data are also depicted as a graph in Figure 9. It must be noted 

that computational mutagenesis was done with the single-trajectory method. This means that the 

simulation trajectory of the wild-type TPH1 complex was used to generate the structures of the 

mutated TPH1–inhibitor complexes. Positive energetic changes (∆∆Gbind = ∆Gmut − ∆Gwt) represent an 

unfavorable interaction. As expected, we see that in general, mutations of active site residues are 

highly unfavorable with all four inhibitors. Figure 9 displays the changes of the inhibitor–residue 

interaction caused by the alanine scanning. The alanine scanning results in the reduction of the 

inhibitor–residue interaction energy for the selected residues. The inhibitor–residue interaction 

energies of six common residues have a decrease of higher 1.0 kcal·mol−1, and these residues include 

Tyr235, Arg257, His272, Glu317, Ser336 and Ile369. This result shows these six residues located in 

the hot spot of the surface between the inhibitor and TPH1. In addition, the decreases in the interaction 

energy of Tyr125 with inhibitor 1a is higher than 4.0 kcal mol−1, and the decreases in the interaction 
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energy of Asp269, Thr270 and Cys271 with inhibitor 1b is higher than 1.0 kcal mol−1; the above 

results basically agree with the previous analyses. 

Figure 9. Effects of selected amino acid residues of the TPH1 binding pocket on the 

calculated free energies (kcal·mol−1) for the binding of four ligands to the TPH1 in the 

MM/GBSA computational alanine scanning (∆∆Gbind = ∆Gmut − ∆Gwt). 
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3. Experimental Section  

3.1. System Preparation 

The four inhibitors of TPH1, which inhibitory activities were measured in vitro as the IC50 values, 

were obtained from previous work [7,8]. The chemical structures along with the experimental 

biological activities are shown in Figure 1. The crystal structure of TPH1 in complex with  

compound 1c (PDB entry: 3HF6, with the resolution of 1.8 Ǻ) was retrieved from the RCSB 

Brookhaven Protein Data Bank (PDB) [22]. The inhibitors 1a, 1b and 1d were constructed using the 

SYBYL-X 2.0 [23] molecular modeling software and were energy minimized with the Tripos force 

field. The missing hydrogen atoms of the inhibitors were added using SYBYL-X 2.0 while the missing 

atoms of 3HF6 were added using the tleap program in AMBER 12.0 [18]. The inhibitors were 

minimized using the Hartree–Fock (HF)/6-31G* optimi-zation in Gaussian09 [24], and the atom 

partial charges were obtained by fitting the electrostatic potentials derived by Gaussian via the RESP 

fitting technique in AMBER 12.0. The generations of the partial charges and the force field parameters 

for the inhibitors were accomplished by the antechamber program in AMBER 12.0. In the following 

molecular mechanics (MM) minimizations and MD simulations, the AMBER99 force field and the 

general AMBER force field (gaff) were used to establish the potential of proteins and inhibitors, 

respectively [25]. An appropriate number of chloride counter ions were placed around four  

TPH1–inhibitor complexes to neutralize the charges of the systems. Finally, the whole system was 

solvated in a cubic periodic box of TIP3P water molecules, and the distance between the edges of the 

water box and the closest atom of the solutes was at least 10 Å [26–28]. To avoid edge effects, periodic 

boundary conditions were applied during the whole molecular dynamics (MD) simulation. 
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3.2. Molecular Dymanics Simulation 

For each system, energy minimization and MD simulation were performed by using the Sander 

module of the Amber 12. Prior to MD simulations, the entire system was subject to energy 

minimization in two stages to remove bad contacts between the complex and the solvent molecules. 

Firstly, the water molecules and counterions were minimized by freezing the solute using a harmonic 

constraint of a strength of 100 kcal·mol−1Å−2. Secondly, the entire system was minimized without 

restriction. Each stage consisted of a 5000-step steepest descent and a 2500-step conjugate  

gradient minimization. 

In MD simulations, Particle Mesh Ewald (PME) was employed to deal with the long-range 

electrostatic interactions [29]. The cutoff distances for the long-range electrostatic and van der Waals 

energy interaction were set to 10 Å. The systems were gradually heated in the NVT ensemble from  

0 to 300 K over 100 ps. Finally, 10 ns MD simulations were carried out for each system in an 

isothermal isobaric ensemble (NPT) with periodic boundary conditions. The SHAKE method [30], 

with a tolerance of 10−5 Å, was applied to constrain all covalent bonds involving hydrogen atoms. 

Each simulation was coupled to a 300 K thermal bath at 1.0 atm (1 atm = 101.3 kPa) by applying the 

Langevin algorithm [31]. The temperature and pressure coupling parameters were set as 1.0 ps. During 

the sampling process, the coordinates were saved every 0.1 ps and the conformations generated from 

the simulations were used for further binding free energy calculations and decomposition analysis. 

3.3. MM/GBSA Calculation 

Based on previous successful studies [32–34], we extracted a total number of 150 snapshots from 

the last 3 ns trajectory with an interval of 20 ps for binding free energy calculations. The MM/GBSA 

method and nmod module included in the Amber 12 were applied to compute the binding free energies 

of four inhibitors to TPH1 according to the following equation: 

∆Gb = MMΔE  + ∆Gsol − TΔS (1) 

where (∆EMM is the difference in molecular mechanics energy between the complex and each binding 

partner in the gas phase, ∆Gsol is the solvation free energy contribution to binding and TΔS is the 

contribution of entropy changes to the binding free energy. (∆EMM is further divided into two parts: 

MMΔE  = ele
intΔE  + vdw

intΔE  (2) 

where ele
intΔE  and vdw

intΔE are described as the electrostatic interaction and van der Waals energy in the 

gas phase, respectively. The solvation free energy is expressed as: 

∆Gsol = ele
solΔG  + nopol

solΔG  (3) 

The electrostatic contribution to the solvation free energy ( ele
solΔG ) was calculated using the generalized 

Born (GB) model of Onufriev et al. [30]. The hydrophobic contribution to the solvation free energy 
( nopol

solΔG ) was determined with a function of the solvent-accessible surface area: 

nopol
solΔG  = γSASA + β (4) 
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in which SASA is the solvent-accessible surface area and was calculated with the MSMS program [35]. 

In our calculations, the values for γ and β were set to 0.0072 kcal·mol−2 and 0 kcal·mol−1, respectively. 

The normal-mode analysis was performed to estimate the change of the conformational entropy upon 

the ligand binding (–TΔS) via the nmode program in AMBER 12.0. The protein–ligand binding free 

energy was calculated based on 300 snapshots taken from 7 to 10 ns MD simulation trajectories of the 

complex. Considering the high computational demand, only 50 snapshots for each complex were used 

to estimate the binding entropy.  

3.4. Free Energy Decomposition Analysis 

The interaction between inhibitors and each residue were computed using the MM/GBSA 

decomposition process by the mm_pbsa program in AMBER 12.0 [36]. The binding interaction of 

each inhibitor–residue pair includes three energy terms: van der Waals contribution (∆Evdw), 

electrostatic contribution (∆Eele), and solvation contribution (∆GGB + ∆GSA), in which ∆Evdw and ∆Eele 

are van der Waals and electrostatic interactions between the inhibitor and each protein residue that 

could be computed by the Sander program in AMBER 12.0 (University of California: San Francisco, 

CA, USA). The polar contribution of desolvation (∆GGB) was calculated using the generalized Born 

(GB) model, whereby the parameters were developed by Onufriev et al. The nonpolar contribution of 

desolvation (∆GSA) was computed based on SASA determined with the ICOSA method [18]. All 

energy components were calculated using 300 snapshots extracted from the MD trajectory from 7 to 10 ns. 

3.5. Computational Alanine Scanning 

To study the detailed mechanisms of the inhibitor–residue interaction at the energetic and atomic 

levels, computational alanine scanning was carried out on TPH1, and the binding free energies of the 

inhibitors to the protein mutants were calculated by using the MM/GBSA method. For alanine scanning, 

snapshots were generated every 10 ps from 7 to 10 ns in the wild type trajectory. Mutations to alanine 

were performed only on selected residues in the active site. Alanine mutations were generated by 

truncation of residues after the Cβ and adding a hydrogen atom in the same direction as the Cγ. Partial 

charges for the mutated residue were then changed to those of alanine. None of the residues mutated in 

this study were glycines. The binding free energy difference between the mutant and wild-type 

complexes is defined as 

∆∆Gbind = ∆Gmut − ∆Gwt (5) 

The polar contribution (∆GGB) of ele
solΔG  was computed using the generalized Born model, and the 

parameters for GB calculations were developed by Onufriev et al. The charges used in GB calculations 

were taken from the AMBER parameter set. All energy components in Equation (5) were calculated 

using 300 snapshots taken from 7 to 10 ns of MD trajectory with the time interval of 10 ps. The key 

residues of TPH1: Met124, Tyr125, Tyr235, Arg257, Thr265, Glu267, Asp269, Thr370, Cys271, 

His272, Glu317, Ser336 and Ile369 were chosen for mutating. However, due to the significant 

difference in backbone conformations between proline and alanine, the Pro238 from the active site of 

TPH1 was not selected [37–39]. 
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4. Conclusions  

Ten nanoseconds of MD simulations and MM/GBSA calculations had been successfully run on four 

phenylalanine derivative inhibitor–TPH1 complexes. The analyses of dynamics properties involving 

RMSD, RMSF and structural superimposition show the stability of the complex during MD 

simulation. The calculation of binding free energy based on the MM/PBSA method was made, and the 

results prove that both van der Waals and electrostatics interactions drive the binding of four inhibitors 

to TPH1. We had performed the alanine scanning on four inhibitor–TPH1 complexes and computed 

their inhibitor–residue interactions. The results confirm that the hydrogen bond and hydrophobic 

interaction govern the inhibitor binding and six common residues located in the hot spot of the surface 

between the inhibitors and TPH1. Based on the free energy decomposition and structure analysis, the 

difference of the binding free energy is primarily determined by Tyr235, Arg257, His272, Glu317, 

Ser336 and Ile369. Additionally, it can be seen that the different configurations of the naphthalene 

group could form different binding patterns but result in similar binding affinity of compounds 1c and 

1d. Thus, optimization of the hydrogen bond and van der Waals interactions between the hydrophobic 

groups of the inhibitors and the protein residues may lead to novel small molecule inhibitors that target 

the TPH1 protein. The results obtained from this study will be valuable for future rational design of 

novel and potent TPH1 inhibitors.  
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