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Abstract: A new approach for encoding DNA sequences as input for DNA sequence 

analysis is proposed using the error correction coding theory of communication 

engineering. The encoder was designed as a convolutional code model whose generator 

matrix is designed based on the degeneracy of codons, with a codon treated in the model as 

an informational unit. The utility of the proposed model was demonstrated through the 

analysis of twelve prokaryote and nine eukaryote DNA sequences having different GC 

contents. Distinct differences in code distances were observed near the initiation and 

termination sites in the open reading frame, which provided a well-regulated 

characterization of the DNA sequences. Clearly distinguished period-3 features appeared in 

the coding regions, and the characteristic average code distances of the analyzed sequences 

were approximately proportional to their GC contents, particularly in the selected 

prokaryotic organisms, presenting the potential utility as an added taxonomic characteristic 

for use in studying the relationships of living organisms. 

Keywords: convolutional code; degeneracy; codon; informational unit; code distance; 

characteristic average code distance; GC content; taxonomy 

 

1. Introduction 

Biological science appears to be independent of communication engineering in the traditional sense, 

but both systems involve information transmission that requires efficiency and anti-jamming 
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capability. As both systems have error-correction mechanisms, similarities between biological 

mechanisms and modern communication theory, especially in the area of error correction, has attracted 

the interest of many scholars to the study of the combined fields [1–9]. 

Until now, some models based on communication theory have been established to parallel DNA 

processes, such as a model based on the error control coding theory and the central dogma of  

genetics [4], a model for gene expression based on the assumption that the ribosome decodes mRNA 

sequences using the 3'-end of the 16S rRNA molecule as a one-dimensional codebook [10] and a 

mathematical model of genetic information storage and transmission between proteins [11]. Further 

research on living systems has also been emphasized, such as the concept of robustness of living 

systems [12] and the similarity of DNA sequences [13]. Research results have been used to improve 

the work in related fields, such as in the error control coding theory applied in microarray data  

analysis [14], biology and biomolecular computing [15], biodetection and classification [16], 

multiclass classification in cancer diagnosis [17] and transcription factor classification [18]. These 

results illustrate the significance and need for the study of biological problems in terms of the error 

control coding theory. 

May et al. [4] applied a block code model to the analysis of mRNA translation initiation, such that 

the last 13 bases of the 16S rRNA of Escherichia coli K-12 were used as a template to generate parity 

bits and then a set of code words obtained to decode the genetic sequence. A genetic algorithm-based 

method was used with considerable success in constructing convolutional code models for ribosomal 

binding site recognition [3]. Following their study, Ponnala et al. [19] applied analytical methods to 

identify good generators for a convolutional code model for studying translation initiation in 

Escherichia coli K-12; 16S rRNA was also used for designing a generator. Nevertheless, there are 

several remaining questions worthy of further discussion: 

(i) The work of Ponnala et al. [19] produced a better result using a block code model, but a 

convolutional code model is another model that provides better performance in many cases in a 

coding system of communication engineering. This observation indicates that a convolutional 

code model approach should be studied more extensively. 

(ii) Researchers have discovered the effect of codon context on the expression and efficiency of the 

translation of some codons [20,21], but the effect of the adjacent nucleotides is not considered 

sufficiently in these models. Thus, a convolutional code model, which contains the effect of 

adjacent symbols, should be more suitable for studying DNA encoding than a block code 

model, which only considers the effect of the present symbols. 

(iii) A nucleotide in a DNA sequence is usually treated as an independent informational unit in the 

traditional methods, but codon functions in the process of translation imply that a codon itself 

could be treated as an informational unit [22]. 

(iv) In addition, the degeneracy of the codons is quite interesting, as the existence of degeneracy 

provides more stability in genetic processes, such that a gene mutation of one nucleotide may 

result in another codon of the same amino acid. Thus, this feature of codon should be an 

important feature or consideration in designing an analytical model. 

In this article, a convolutional code-based model for DNA sequences is proposed, in which a codon 

is treated as an informational unit and the generator matrix is designed based on codon degeneracy. 
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Without consideration of a specific segment of a genetic sequence, such as 16S rRNA, the proposed 

model is species-independent, as it addresses a universal biological feature. 

2. Results and Discussion 

The average code distances of 12 prokaryotic and nine eukaryotic DNA sequences near the initiation 

and termination site were calculated and plotted (Figures 1–4). Their characteristic average code 

distances (CACD; see analysis Step 5 in Section 3.2) were calculated, as were CACDs based on  

May et al.’s (5, 2) block code and both sets of results listed for comparison in Tables 1 and 2, 

respectively (see analysis Step 3 in Section 3.2 for a basic definition of code distance.) 

Figure 1. Curves of average code distance of the 12 prokaryotes near initiation site. 
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Figure 2. Curves of average code distance of the 12 prokaryotes near termination site. 
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Figure 3. Curves of average code distance of the nine eukaryotes near initiation site. 
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Figure 4. Curves of average code distance of the nine eukaryotes near termination site. 
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Table 1. Selected prokaryotes and their features. 

NCBI Ref. Seq. 

Access Number  
Selected Prokaryotes a 

GC Content 

(%) 
CACD b CACD c 

NC_006349 Burkholderia mallei ATCC 23344 chromosome 2 68 2.3504 1.9076 

NC_009434 Pseudomonas stutzeri A1501 63 2.3062 1.9455 

NC_003197 Salmonella typhimurium LT2 52 2.2336 1.8721 

NC_000913 Escherichia coli str. K-12 substr. MG1655 50 2.2330 1.8712 

NC_004088 Yersinia pestis KIM 47 2.2195 1.8624 

NC_003098 Streptococcus pneumoniae R6 39 2.1547 1.7943 

NC_004070 Streptococcus pyogenes MGAS315 38 2.1529 1.8028 

NC_004350 Streptococcus mutans UA159 36 2.1524 1.7987 
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Table 1. Cont. 

NCBI Ref. Seq. 

Access Number  
Selected Prokaryotes a 

GC Content 

(%) 
CACD b CACD c 

NC_002662 Lactococcus lactis subsp. lactis Il1403 35 2.1184 1.7827 

NC_004461 Staphylococcus epidermidis ATCC 12228 32 2.1149 1.7699 

NC_002758 Staphylococcus aureus subsp. aureus Mu50 32 2.1139 1.7658 

NC_010163 Acholeplasma laidlawii PG-8A 

31 

2.1135  

max − min 

= 0.2369 

1.7632  

max − min 

= 0.1823 
a All sequences are complete genome; b CACD of the (6,3,2) convolutional code near initiation site; c CACD of  

May et al.’s (5, 2) block code near initiation site. CACD, characteristic average code distances. 

Table 2. Selected eukaryotes and their features. 

NCBI Ref. Seq. 

Access Number 
Selected Eukaryotes a 

GC Content 

(%) 
CACD b CACD c 

NC_006070 Yarrowia lipolytica CLIB122 chromosome D 49 2.2267 1.9182 

NW_045720 Anopheles gambiae str. PEST chromosome X 45 2.2350 1.8954 

NC_008403 Oryza sativa (japonica cultivar-group) genomic DNA, 

chromosome 10 

44 2.2777 1.8945 

NT_011512 Homo sapiens chromosome 21, reference assembly 39 2.1900 1.8594 

NC_001147 Saccharomyces cerevisiae chromosome XV 38 2.1537 1.8303 

NC_001148 Saccharomyces cerevisiae chromosome XVI 38 2.1504 1.8347 

NC_003075 Arabidopsis thaliana chromosome 4 36 2.2015 1.8409 

NC_004353 Drosophila melanogaster chromosome 4 36 2.1966 1.8501 

NC_003421 Schizosaccharomyces pombe 972h chromosome III 36 2.1814  

max − min 

= 0.1273 

1.8328  

max − min  

= 0.0879 
a These sequences are complete sequences, with the exception of NW_045720, commented as whole genome shotgun 

sequence, and NT_011512, commented as reference assembly complete sequence; b CACD of the (6,3,2) convolutional 

code near initiation site; c CACD of May et al.’s (5, 2) block code near initiation site. 

2.1. Region near the Initiation Site 

For the prokaryotic DNA sequences, a significant trough appeared at site −2 and crests appeared 

near the initiation site at site −1 and 0 in every curve (Figure 1). Furthermore, a clear upward heave 

appeared near site −11 for most of the prokaryotic DNA sequences, and curves with lower average 

code distance displayed stronger changes. However, two sequences, from Pseudomonas stutzeri A1501 

and Burkholderia mallei ATCC 23344, which showed higher average code distance than the other 

sequences, displayed slight downward changes (Figure 1, two red curves). The fluctuation near  

site −11 was attributed to the existence of a Shine-Dalgarno (SD) sequence, whose location was in  

the range of 5–13 nucleotides before the initiation site and with a relatively high purine (G and A) 

content [23]. This feature was essentially similar to the use of a preamble in a communication system. 

Similar results were observed in the results from eukaryotic DNA sequences, with significant 

troughs appearing at site −2 and crests at site −1 in each curve (Figure 3). However, changes near the 
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site −11, as observed in the analyzed prokaryotic DNA sequences, were not present. This was 

attributed to the absence of SD sequences in eukaryotes. 

Finally, these results exhibited the efficiency of this method for identifying translation initiation 

sites and the location of SD sequences. 

2.2. Region near the Termination Site 

For the prokaryotic DNA sequences, significant troughs appeared at site −2 and crests appeared at 

site 0 in each curve near the termination site (Figure 2). The location of the change was closely 

associated with the location of the stop codon. 

This was similar to the results from the eukaryotic DNA sequences, whose curves also included 

remarkable troughs at the site −2 and crests at site 0 (Figure 4). 

2.3. Period-3 Feature in Coding Region 

A period-3 feature is remarkable in the coding regions of all of the sequences, especially the 

prokaryotic DNA sequences with higher average code distance. Some curves of the eukaryotic DNA 

sequences showed weak periodicity after the start codon and more obviously before the stop codon, 

such as in Saccharomyces cerevisiae (Figures 3 and 4). 

This proposed model provided a clearer result in detecting periodicity in the coding regions than did 

the existing models. 

2.4. Separating the Derived Curves into Groups 

The curves derived from the prokaryotic and eukaryotic DNA were separated into groups, with the 

prokaryotic DNA sequences distinguished by differences in GC content. As CACD values were 

approximately proportional to the corresponding GC contents (see Table 1) and GC content is used as 

a basic feature for microorganism taxonomy (i.e., similar GC content indicates a higher possibility of 

being close relatives) [24,25], it was attempted here to link CACD to taxonomy. 

Positive examples here of GC content and CACD values indicating relatedness were  

Pseudomonas stutzeri A1501 and Burkholderia mallei ATCC 23344. Their corresponding curves group 

together with GC contents of 63% and 68% and CACDs of 2.3031 and 2.3179, respectively. Their full 

lineage listed in the National Center for Biotechnology Information (NCBI) are “cellular organisms, 

Bacteria, Proteobacteria, Gammaproteobacteria, Pseudomonadales, Pseudomonadaceae, 

Pseudomonas, Pseudomonas stutzeri group, Pseudomonas stutzeri” and “cellular organisms, Bacteria, 

Proteobacteria, Betaproteobacteria, Burkholderiales, Burkholderiaceae, Burkholderia, Burkholderia 

mallei”, respectively. Yabuuchi et al. [26] transferred seven species, including Burkholderia mallei, to 

a new genus, Pseudomonas, based on 16S rRNA sequences, DNA–DNA homology values, cellular 

lipid and fatty acid composition and phenotypic characteristics. A synonym of Burkholderia mallei is 

defined as Pseudomonas mallei in the UniProt website. This pairing of species suggested that this new 

method could provide clues in identifying misclassified organisms and for grouping them together 

using these coding calculations. 
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Negative examples were also found, such that the green curves representing  

Staphylococcus epidermidis ATCC 12228 and Staphylococcus aureus subsp. aureus Mu50 (GC content 

of 32% in both) overlapped the curve representing Acholeplasma laidlawii PG-8A (GC content of 

31%) because of their similar GC contents (Figure 1). Their CACDs were also very close, but the 

division of the first two species is Firmicutes and the third one Tenericutes, indicating that they are 

clearly different species. 

For the eukaryotic DNA sequences, the derived curves separated into groups of various distances, 

but the relationship between CACD and GC content was a little irregular (Figure 3). One reason for 

this may have been that it was insufficient to attempt to reflect the complexity of eukaryotes simply in 

terms of the narrow range of their GC content (~30%–50%). 

The positive examples of detecting relatedness by GC content and CACD values were 

Saccharomyces cerevisiae and Schizosaccharomyces pombe. Although the two yeasts are contained in 

Ascomycota, Saccharomyces cerevisiae is a primitive eukaryote. The CACD of Schizosaccharomyces 

pombe (GC content of 36%) was clearly higher than that of Saccharomyces cerevisiae (GC content of 

38%, Table 2) and closer to that of the advanced eukaryotes, according to the present method. Both 

yeasts have been shown to be distant relatives, differing from each other in systematic classification, 

cell cycle, rRNA biosynthesis, gene structure and gene expression regulation. Furthermore, 

Schizosaccharomyces pombe is more similar to advanced eukaryotes in some aspects than the  

other yeast [27]. 

Here, the obtained results based on CACD values were better than those based on May et al.’s 

model [4], i.e., our model provided a more linear relationship for prokaryotic DNA sequences and 

larger CACD distances. This difference in the results between these two models may have been caused 

by the fact that the other model was designed on the 16S rRNA of Escherichia coli K-12 and was, thus, 

species-dependent. 

3. Experimental Section  

On receiving an input of k bits, a convolutional encoder produces an output of n (n > k) bits, which 

associates with not only the present k bits input, but also the previous L-1 group(s) of k bits input, 

where L is called the constraint length of this convolutional code [28]. A convolutional encoder 

contains a memory array, where each memory cell provides one output to be linearly combined.  

In fact, the coefficients of the linear combination determine whether a certain output is used. In a 

binary system, a coefficient of 1 means the output of one memory cell is used in the linear combination 

and 0 means it is not. In practice, the coefficients are brought together into a generator matrix. 

3.1. Designing the (6,3,2) Convolutional Code Model 

Luo et al. [29] showed the existence of the strong short-range correlation of adjacent bases.  

Cohen et al. [30] found that adjacent genes, in any orientation, are more likely to be co-expressed than 

non-adjacent genes. Kruglyak and Tang [31] showed that the expression patterns of adjacent genes are 

more often highly correlated than the expression patterns of randomly selected gene pairs. Marin et al. [32] 

found that short-range correlation phenomena in the yeast genome are related to the transcriptional 

orientation of nearest neighbor open reading frames (ORFs). Taken together, these studies stressed the 
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effect of an informational unit from the nearest informational unit. Furthermore, according to the 

effects of codon context, it was supposed that a codon carried not only the genetic information of itself, 

but also a part of the genetic and error correcting information of its adjacent codons. 

From these considerations, two new viewpoints were developed: 

(i) A codon is treated as an informational unit, as a codon in the coding region is translated into an 

amino acid, which is different from using a single nucleotide. Thus, 3 or multiples of 3 should be 

used as the basic code length, and based on the short-range dominance of bases correlation [29], 

2 was selected as the universal constraint length (i.e., L = 2), and the length of convolutional 

code was defined as 6. In other words, the encoder output depends on two contiguous codons, 

and the selected code is a (6,3,2) convolutional code. Every 3 nucleotides were used as a group 

of input and 6 symbols generated as outputs, which were simultaneously affected by both the 

present and previous inputs. 

(ii) The design of the coefficients in the generator matrix was based on codon degeneracy, i.e., the 

translated amino acid may be the same even for different codons (this is largely, but not 

entirely, confined to the third position of a codon, known as the wobble position). The wobble 

feature of synonymous codons reduces the influence of mutation on living systems, as a gene 

mutation of one nucleotide may result in another codon of the same amino acid. This 

phenomenon was considered an important feature in the design. We supposed that the first two 

codon nucleotides were affected by the original information directly and, therefore, a higher 

weight used; and the third nucleotide wobble feature was determined by certain natural choice 

mechanisms in evolutionary processes, indicating that this should be given a lower weight. 

The designed encoder is shown in Figure 5, where Ci 
j  is the j-th bit of the output at time i. The 

output bits with a dotted arrow mean that they are determined by certain natural choice mechanism, 

according to the present hypothesis. The binary generator matrix was defined as: 

1 2

1 1 0 1 1 0

1 1 0 1 1 0

1 1 0 1 1 0

 
    
  

g g  (1)

where gl 
k,n denoted whether the input data of the k-th row (k = 1,2,3) and the l-th column (l = 1,…,6) 

acted on the output Ci 
n (n = 1,…,6) at time i. When gl 

k,n = 1, an influence existed (a solid line exists 

between mi 
k and operator  ), and when 0, no direct influence was present (no solid line). 

The output of encoder was: 
2 1 1 2[ ]C m m g g  (2)

where m2 is the present 3 input symbols and m1 the previous 3 input symbols. The operation rules are 

listed in Table 3 [7]. 
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Figure 5. Designed (6,3,2) convolutional encoder. 

 

Table 3. Operation for addition and multiplication. 

Addition Multiplication 

+ 0 1 2 3    0 1 2 3 

0 0 1 2 3  0 0 0 0 0 

1 1 0 3 2  1 0 1 2 3 
2 2 3 0 1  2 0 2 3 1 

3 3 2 1 0  3 0 3 1 2 

3.2. Analysis Method 

Considering model organisms, 12 prokaryote and 9 eukaryote DNA sequences were chosen, which 

possessed different GC contents, the latter chosen with the help of a taxonomic outline of the 

prokaryotes, Bergey’s Manual of Systematic Bacteriology [33] (Tables 1 and 2, respectively). 

GeneMark was used to analyze these sequences, downloaded from the NCBI, and coding strands 

picked out for further analysis. The first nucleotide of the start codon of an open reading frame (ORF) 

is defined as site 0, and before and after the initiation site, M nucleotides were taken out to obtain a 

sequence with a length of 2M. 

The sequences were analyzed using the following steps: 

Step 1: Digitizing the nucleotide sequences. The four nucleotides, A, G, C and T, were expressed as 

digital numbers, 0, 1, 2 and 3, respectively [7]. 

Step 2: Calculating the output of the convolutional code, using formula (2). 

Step 3: Calculating the code distance. Code distance or Hamming distance, between two strings with 

equal length, is the number of positions for which the corresponding symbols are different. 

The first 3 numbers of the present convolutional output were compared with previous input  
data, m1, to calculate the code distance. The first code distance is remarked by 

11
d . 

One nucleotide was right-shifted [34] on the nucleotide sequence, the second subsequence with 6 

nucleotides was taken out as the input to the encoder, and then, the operation is repeated. The code 

distance sequences of this nucleotide sequence can be described as: 
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1 2 2 51 1 1 1...
M

d d d d


：  (3)

For example, TTTAAG (333001) was first picked out from TTTAAGCAA; its convolutional code 

output is 220220. The previous input data, 333, was compared with the first 3 numbers of its 

corresponding convolutional output (220), and the code distance was 3. Next, TTAAGC is picked out 

one nucleotide to the right and TAAGCA follows and so on. 

Step 4: Calculating all ORFs of a DNA sequence. The same operation was performed for  

every ORF of an analyzed DNA sequence, and all code distance sequences of this DNA 

sequence were: 

1 2 2 5

1 2 2 5

1 1 1 1...

...

M

Mr r r r

d d d d

d d d d





 

：

：

 (4)

where r is the total number of coding strands of the analyzed DNA sequence. Last, the average value 

of each site was calculated, described as: 

1 2 (2 5):average average average k average M averaged d d d d    (5)

where 1 2( ) /
k k kk average rd d d d r    . 

Step 5: Calculating the characteristic average code distance (CACD) of a DNA sequence. The new 

parameter, CACD, is defined to quantify the feature of code distance of a DNA sequence: 

1 2 (2 5)( ) / (2 5)characteristic average average M averaged d d d M      (6)

In the same way, nucleotide sequences near a DNA sequence termination site were analyzed, where 

site 0 was associated with the first nucleotide of a stop codon. 

4. Conclusions 

In this article, error-correction coding theory and consideration of codon degeneracy were 

combined to design a species-independent generator matrix of a convolutional code. A codon was 

treated as an informational unit, and a (6,3,2) convolutional code was designed, with considerations 

regarding codon context and the short-range dominance of bases correlation. Such a species-independent 

model may be more suitable for the simultaneous analysis of multiple sequences.  

Twelve prokaryotic and nine eukaryotic DNA sequences were analyzed, and the translation 

initiation and termination sites and the SD sequence were identified and located. The effectiveness of 

the proposed model provided new proof of the value of codon context. In addition, the results also 

illustrated the relationship between a biological feature (GC content) and a code parameter (CACD), 

i.e., the CACD of the analyzed species was approximately proportional to its GC content, particularly 

in prokaryotes, and is a feature that has not been previously reported. GC content is used as a basic 

feature for microorganism taxonomy, with similar GC content indicating greater relatedness, but it 

does not exhibit the permutation of bases in a DNA sequence, which contained more sophisticated 

genetic information. Therefore, other methods, such as sequence alignment, are needed to further 

explore taxonomic relationships [35]. The present results from the application of this model highlight 
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its utility as an added taxonomic characteristic for use in studying the relationships of living 

organisms. Moreover, this new method provided the ability to reveal period-3 features in  

coding regions. 

In addition, the proposed model has been used for the analysis of the similarities/dissimilarities of 

DNA sequences [36]. The simulations suggest that a convolutional code model could be a promising 

model for further bioinformatics analysis and encourage continued study of biological systems in terms 

of communication engineering theory. 

It has also been noted that more research is required to address important remaining issues.  

(i) Attention should be paid to certain outside influences, such as horizontal gene transfer, which is a 

genetic exchange between different organisms or different organelles and which occurs frequently in 

prokaryotes and has recently also been identified in eukaryotes [37]. (ii) It is important to extend 

understanding of the differences among the CACDs of DNA sequences with similar GC content and, 

thus, improve the efficiency of this method. Investigations into these issues are underway. 
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