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Abstract: Hyperglycemia and oxidative stress are conditions directly related to the 

metabolic syndrome (MetS), whose prevalence is increasing worldwide. This study aimed 

to evaluate the effectiveness of a new weight-loss dietary pattern on improving the 

oxidative stress status on patients suffering MetS with hyperglycemia. Seventy-nine 

volunteers were randomly assigned to two low-calorie diets (−30% Energy): the control 

diet based on the American Health Association criteria and the RESMENA diet based on a 

different macronutrient distribution (30% proteins, 30% lipids, 40% carbohydrates), which 

was characterized by an increase of the meal frequency (seven-times/day), low glycemic 

load, high antioxidant capacity (TAC) and high n-3 fatty acids content. Dietary records, 

anthropometrical measurements, biochemical parameters and oxidative stress biomarkers 

were analyzed before and after the six-month-long study. The RESMENA (Metabolic 

Syndrome Reduction in Navarra) diet specifically reduced the android fat mass and 

demonstrated more effectiveness on improving general oxidative stress through a greater 

OPEN ACCESS



Int. J. Mol. Sci. 2013, 14 6904 

 

decrease of oxidized LDL (oxLDL) values and protection against arylesterase depletion. 

Interestingly, oxLDL values were associated with dietary TAC and fruit consumption and 

with changes on body mass index (BMI), waist circumference, fat mass and 

triacilglyceride (TG) levels. In conclusion, the antioxidant properties of the RESMENA 

diet provide further benefits to those attributable to weight loss on patients suffering Mets 

with hyperglycemia. 
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1. Introduction 

The prevalence of metabolic syndrome (MetS), established as the combination of central obesity 

and different metabolic disturbances, such as insulin resistance, hypertension and dyslipidemia, is 

increasing worldwide [1,2]. Among the different metabolic abnormalities encompassing MetS, insulin 

resistance has been considered a common manifestation of the MetS, which leads to tissue damage and 

health features, involving cardiovascular diseases (CVD), atherosclerosis and hypertension [3–5]. 

Moreover, oxidative stress has been investigated as a potential contributor to the etiology of different 

pathophysiological complications, including MetS and type 2 diabetes [4,6]. Therefore, many 

scientific efforts are under way to detect, treat and prevent MetS, focusing on lowering the risk of type 

2 diabetes and oxidative stress development [7,8]. Thus, several studies have been designed and 

implemented to reduce these oxidative stress-related diseases based on different lifestyle modification 

strategies, such as giving up smoking, increasing physical activity, controlling alcohol intake, 

implementing healthy sleep habits, controlling anxiety and depression, losing weight and modifying 

unhealthy dietary patterns [7–9]. Since it has been demonstrated that central obesity is associated with 

increased risks of type 2 diabetes, hypertension, CVD [10,11], oxidative stress [12] and MetS 

manifestations in general [11], android fat mass reduction should be a main target in order to improve 

MetS related diseases. Concerning nutritional strategies, most of the studies have examined the effects 

of single dietary factors, such as the hypotriglyceridemic effect of n-3 fatty acids consumption [13], 

the protection against oxidative damage of the dietary total antioxidant capacity (TAC) [14,15], the 

control of blood glucose levels of low glycemic load (GL) diets [16] or the meal frequency related 

appetite control [17]. However, the role of a complete dietary pattern on oxidative stress and its related 

diseases remains unclear [18]. Thus, it was hypothesized that the combination of all these components 

(n-3 fatty acids, TAC, GL, meal frequency) may be effective when included in an integrated adequate 

dietary pattern. Therefore, in the present work, the effectiveness of a new dietary strategy involving 

different nutritional elements is studied in order to improve oxidative stress markers, as well as 

biochemical and body composition measurements on a population suffering MetS with hyperglycemia. 

The RESMENA-S (Metabolic Syndrome Reduction in Navarra-Spain) project [19,20]. 
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2. Results and Discussion 

2.1. Anthropometrical, Body Composition and Blood Pressure Parameters 

After the six-month trial, both control and RESMENA dietary strategies proved to be effective on 

improving anthropometric, body composition and blood pressure parameters (Table 1). Both groups 

significantly reduced the body weight, body mass index (BMI), waist circumference, waist to hip ratio 

(WHR), total fat mass, lean mass, fat-free mass, systolic blood pressure (SBP) and diastolic blood 

pressure (DBP). However, regarding the android fat mass and related waist circumference 

measurement, the RESMENA diet demonstrated more benefits than the control, as volunteers of the 

RESMENA group presented a bigger waist circumference decrease, leading to a trend towards a 

marginally significance between groups (p = 0.060). Indeed, the RESMENA subjects were the only 

group that significantly reduced android fat mass values (p < 0.001), which resulted in significant 

differences between groups (p < 0.044). As it has been previously described, central obesity is 

associated with increased risks of type 2 diabetes mellitus [21], hypertension, cardiovascular diseases 

and MetS manifestations in general [10,11]. Moreover, only the individuals belonging to RESMENA 

group showed a significantly decrease in their heart rate (p < 0.001). Therefore, although both 

strategies were effective on improving general anthropometric and body composition measurements, 

the RESMENA diet showed additional benefits that should be taken into account in future nutritional 

intervention research.  

Table 1. Changes in anthropometric parameters, body composition, blood pressure and 

activity level in both experimental groups (control and Metabolic Syndrome Reduction in 

Navarra (RESMENA)). 

 
Control   RESMENA   P† 

Difference Day 0  Day 180  Day 0  Day 180  

Weight (kg) 103.1 ± 2.9  95.35 ± 2.9 ***  106.0 ± 3.2  96.7 ± 3.0 ***  0.281 

BMI (kg/m2) 36.4 ± 0.7  33.7 ± 0.8 ***  37.41 ± 0.8  34.12 ± 0.8 ***  0.206 

Waist circumference (cm) 114.6 ± 2.0  107.4 ± 2.0 ***  117.2 ± 2.1  107.1 ± 2.0 ***  0.060 

WHR 1.00 ± 0.02  0.97 ± 0.02 ***  0.99 ± 0.02  0.95 ± 0.02 ***  0.098 

Total fat Mass (kg) 42.3 ± 1.5 

 

36.4 ± 1.6 ***  45.4 ± 1.9 

 

37.9 ± 1.8 *** 

 

0.139 

Android Fat Mass (kg) 4.7 ± 0.2 4.3 ± 0.3  5.3 ± 0.2 4.0 ± 0.2 *** 0.044 

Lean mass (kg) 58.0 ± 2.2 55.6 ± 2.1 ***  57.1 ± 2.1 55.5 ± 2.0 ** 0.197 

Fat-free mass (kg) 60.9 ± 2.3 58.6 ± 2.2 ***  60.0 ± 2.1 58.4 ± 2.1 ** 0.220 

SBP (mmHg) 152.9 ± 3.3  138.7 ± 2.2 **  154.2 ± 4.4  137.1 ± 3.1 **  0.637 

DBP (mmHg) 86.3 ± 1.6 
 

79.2 ± 1.8 **  85.8 ± 1.8 
 

79.5 ± 2.0 * 
 

0.766 

Heart rate (bpm) 75 ± 3 72 ± 3  82.3 ± 2.6 72.1 ± 2.5 *** 0.587 

Activity level 1 1.59 ± 0.04  1.54 ± 0.04  1.54 ± 0.03  1.55 ± 0.03  0.191 

Abbreviations: BMI, body mass index; WHR, waist to hip ratio; SBP, systolic blood pressure; DBP, diastolic blood 

pressure; Symbols: ** p < 0.005; *** p < 0.001 (comparison between day 0 and day 180 in each group); P†, comparison 

between dietary group differences. 1 Average daily exercise calculated by twenty forth physical activity questionnaire. 

Regarding physical activity, as designed, volunteers of both dietary patterns maintained their 

activity levels along the study, with no significant differences between groups (Table 1). Therefore, the 
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effects on anthropometric and biochemical parameters cannot be related to changes in physical 

activity, but to the different dietary patterns.  

2.2. General Biochemical Parameters 

Regarding biochemical values (Table 2), both, control and RESMENA diets, proved to be effective 

on ameliorating the plasma biochemical profile. As it was mentioned before, insulin resistance has 

been postulated as a major risk condition for the MetS development [3]. Volunteers of both groups 

significantly reduced their insulin and Homeostasis Model Assessment Index (HOMA-IR) values, 

although only those under RESMENA dietary patterns ended with significantly lower glucose levels. 

These results agree with the review and meta-analysis carried out by Santos et al. [22], where it was 

described that caloric restriction, despite the type of diet, leads to an improvement on insulin,  

HOMA-IR and plasma glucose levels, but the intake of a low-carbohydrate diet demonstrated a 

markedly bigger effect on decreasing fasting plasma glucose levels. Since volunteers included in this 

study presented hyperglycemia, the fact that the RESMENA group were the only that significantly 

decreased the glucose values has to be highlighted and might be considered in future dietary treatments 

of hyperglycemic patients.  

Table 2. Changes in biochemical parameters in both experimental groups (control and RESMENA). 

 
Control  RESMENA  P† 

Difference Day 0  Day 180  Day 0  Day 180  

Total Cholesterol (mmol/L) 5.56 ± 0.19  5.66 ± 0.19  5.44 ± 0.21  5.44 ± 0.20  0.397 

HDL-c (mmol/L) 1.14 ± 0.05  1.28 ± 0.06 ***  1.11 ± 0.04  1.15 ± 0.04  0.057 

LDL-c (mmol/L) 3.47 ± 0.18  4.38 ± 0.17 ***  3.34 ± 0.17  4.29 ± 0.19 ***  0.884 

LDL-c/ApoB 1.43 ± 0.04  1.91 ± 0.04 ***  1.50 ± 0.11  1.92 ± 0.03 **  0.593 

TG (mmol/L) 2.06 ± 0.21  1.67 ± 0.21 *  2.17 ± 0.21  1.72 ± 0.20 **  0.574 

Apo A-I (mg/dL) 134.3 ± 4.3  139.2 ± 4.1  126.3 ± 3.5  131.2 ± 4.3  0.978 

Apo B (mg/dL) 93.4 ± 3.7  88.7 ± 3.4  90.3 ± 4.6  86.9 ± 4.1  0.737 

FFA (mmol/L) 0.55 ± 0.04  0.48 ± 0.04  0.60 ± 0.18  0.50 ± 0.23 *  0.349 

Glucose (mmol/L) 7.14 ± 0.36  6.68 ± 0.28  7.59 ± 0.43  6.49 ± 0.35 **  0.118 

Insulin (μU/mL) 15.22 ± 1.56  10.01 ± 1.54 ***  15.36 ± 1.53  9.41 ± 1.21 ***  0.685 

HOMA-IR 4.92 ± 0.55  3.25 ± 0.61 **  5.24 ± 0.56  2.80 ± 0.37 ***  0.475 

Uric Acid (mg/dL) 6.08 ± 0.21  6.29 ± 0.22  6.19 ± 0.28  6.23 ± 0.22  0.310 

Total Proteins (mg/dL) 73.01 ± 0.94  76.30 ± 1.19 ***  71.48 ± 0.79  73.51 ± 0.97 *  0.186 

eGFRs (mL/min/1.73 m2) 83.97 ± 2.92  79.85 ± 2.60  79.07 ± 2.72  81.46 ± 3.08  0.080 

ALT (U/L) 41.59 ± 4.29  27.16 ± 1.56 **  28.90 ± 2.13  22.54 ± 1.60 **  0.172 

AST (U/L) 27.73 ± 2.26  22.86 ± 1.15*   22.68 ± 1.08  20.38 ± 1.00  0.685 

Abbreviations: HDL-c, high density lipoprotein cholesterol; LDL-c, low density lipoprotein cholesterol; TG, 

triacilglycerides; Apo A-I, apolipoprotein A-I; Apo B, apolipoprotein B; FFA, free fatty acids; HOMA-IR, homeostasis 

model assessment of insulin resistance; eGFRs, estimated glomerular filtration rates; ALT, alanine aminotranferase; AST, 

aspartate aminotransferase. Symbols: * p < 0.05; ** p < 0.005; *** p < 0.001 (comparison between day zero and day 180 in 

each group); P†, comparison between dietary group differences. 

Furthermore, both dietary groups significantly reduced triglyceride (TG) values, a feature that has 

been associated with an amelioration of coronary heart disease risks [23]. However, concerning low 
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density lipoprotein-cholesterol (LDL-c), unexpectedly, the two groups increased their values, results 

that agree with Clifton et al. [24], who described that in some cases, LDL-c may raise despite weight 

loss. However, this significant increase was not observed on apolipoprotein B (Apo B) concentrations, 

which has been considered a better predictor of cardiovascular disease than any other lipid 

measurement [25]. Moreover, according to the LDL/Apo B ratio that predicts the LDL-particle size, 

the values being significantly raised in both groups, it indicates an increase in LDL-particle size and a 

lower risk of ischemic cardiac events [26,27]. With regards to high density lipoprotein-cholesterol 

(HDL-c) concentrations, they rose in both groups, but this increase was statistically significant only in 

the control group, although apolipoprotein A-I (Apo A-I), a major protein component of HDL-c [28], 

did not show any changes in any of the dietary groups.  

Some studies associate the rise of uric acid with gout, uric acid kidney stones, diabetes and 

hypertension, among other diseases [29], but it also has been proposed to have a protective role and to 

be able to function as an antioxidant [30]. In the present study, uric acid levels slightly raised in both 

groups; however, no significant differences were found, neither between day zero and 180, nor 

between dietary groups. 

Interestingly, free fatty acids (FFA), which are known to impair aortic elastic function [31], were 

only significantly decreased in the RESMENA group.  

Concerning renal function, low levels of estimated glomerular filtration rates (eGFRs) have been 

positively correlated to cardiovascular disease [32]. In the present study, the control group slightly 

decreased these values, whereas the RESMENA group mildly increased them, leading to a trend 

towards significance between groups. Although decreases in protein intake has been associated to 

increases of eGFRs [33], our results agree with other studies where protein intake was not associated 

with renal function [34,35].  

Transaminases, mainly alanine aminotransferase (ALT), are markers of hepatocyte injury that have 

shown a correlation with insulin resistance and later development of diabetes [36]. Dietary weight loss 

has been associated with a depletion of this liver enzyme [37] irrespective of the type of diet [38], 

which agrees with the present study, where both control and RESMENA group volunteers significantly 

decreased their ALT levels. The control group lowered aspartate aminotransferase (AST) values,  

as well. 

2.3. Oxidative Stress Biomarkers 

Oxidative stress, defined as an imbalance between production and degradation of reactive oxygen 

species, is a potential biochemical mechanism involved in the pathogenesis of MetS and  

diabetes [39–41]. Therefore, the study of oxidative stress-related markers on people suffering MetS  

and/or diabetes is important to be approached in their treatment. 

High levels of plasma malondialdehyde (MDA), a biomarker of lipid peroxidation [42], have been 

associated with type 2 diabetes [43]. Moreover, energy-restricted dietary strategies have demonstrated 

to be able to decrease MDA levels [44]. At the end of the study, both dietary treatments had reduced 

these biomarker levels; the control group showed statistically significant changes (p = 0.007), and the 

RESMENA group showed a trend towards significance (p = 0.079). When comparing both groups, no 

statistically significant differences were found (Table 3).  
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Table 3. Changes in oxidative stress parameters in both experimental groups  

(control and RESMENA). 

 Control  RESMENA  P† 

Difference  Day 0  Day 180  Day 0  Day 180  

MDA (µM) 0.86 ± 0.07  0.75 ± 0.07 *  0.83 ± 0.07  0.76 ± 0.05  0.449 

MPO (µg/L) 71.69 ± 7.36  65.39 ± 7.65  69.53 ± 8.39  66.48 ± 7.42  0.723 

ARE (U/L) 458 ± 44  442 ± 43  370 ± 31  361 ± 28  0.778 

ARE:HDL-c (U/mmol) 413.6 ± 0.1  366.8 ± 0.1 *  343.8 ± 0.1  327.1 ± 0.1  0.227 

ARE:Apo A-I (U/mg) 0.347 ± 0.030  0.319 ± 0.027 *  0.295 ± 0.024  0.281 ± 0.022  0.424 

oxLDL (U/L) 35.36 ± 1.80 

 

36.39 ± 2.60 

 

46.53 ± 4.46 

 

41.03 ± 3.22 * 

 

0.025 

oxLDL:LDL-c (U/mmol) 10.34 ± 0.52 8.25 ± 0.62 ** 14.88 ± 1.80 9.52 ± 0.58 ** 0.046 

oxLDL:HDL-c (U/mmol) 30.89 ± 1.52 28.46 ± 1.76 42.78 ± 4.19 4.19 ± 2.64 * 0.186 

oxLDL:Apo B (U/mg) 0.038 ± 0.002  0.043 ± 0.004  0.051 ± 0.004  0.048 ± 0.003  0.040 

Abbreviations: MDA, malondialdehyde; MPO, myeloperoxidase; ARE, arylesterase; HDL-c, high density  

lipoprotein-cholesterol; ApoA1, apolipoprotein A1; oxLDL, oxidized low density lipoprotein; LDL-c, low density 

lipoprotein-cholesterol; ApoB, apolipoprotein B. Symbols: * p < 0.05; ** p < 0.005; *** p < 0.001 (comparison between 

day zero and day 180 in each group); P†, comparison between dietary group differences. 

Regarding myeloperoxidase (MPO), a leucocyte-derived enzyme that catalyzes the formation of a 

number of reactive oxidant species and that is known to oxidize the HDL-c [45], it has been described 

that energy restriction diets let to depletions on its levels [46]. In the present study, both diets slightly 

decreased their MPO values, but no significant differences were found, neither between day zero and 

day 180 in each group, nor between both dietary groups (Table 3).  

Arylesterase (ARE) activity, one of the three functions of the paraoxonase enzyme (PON1), is 

associated with HDL-c and has been shown to protect LDL-c and HDL-c against oxidation [47]. In 

diabetic patients, PON1 ARE activity dissociates from HDL-c [48]. Studies focusing on the effect of 

the diet on the ARE activity are scarce, but it has been reported that flavonoids, fish oil, nori algae and 

pomegranate-rich based diets are positively associated with PON1 ARE activity in diabetic  

patients [49–52]. In the present study, volunteers of the control diet decreased ARE:HDL-c (p = 0.006) 

and ARE:Apo A-I (p = 0.029) ratio values, while they remained almost unchanged in the RESMENA 

group. Therefore, the RESMENA diet showed a specific protection effect against ARE depletion  

(Table 3). 

Oxidation of LDL-c is considered an important cardiovascular risk factor, since it lets to foam cell 

formation induction, alongside propagation of atherosclerosis [53]. Moreover, oxidized-LDL (oxLDL) 

has been found to be a biomarker increased in type 2 diabetic patients [54]. Our results evidenced that 

between both dietary patterns, RESMENA is significantly more effective on reducing oxLDL  

(p = 0.025), oxLDL:LDL-c, (p = 0.046) and oxLDL:Apo B (p = 0.040) than the control diet. 

Moreover, the RESMENA group was the only that significantly reduced oxLDL:HDL-c values  

(p = 0.025) (Table 3). These results agree with previous studies, where an inverse relationship between 

high TAC dietary patterns and MetS related-oxidative stress was established [15]. Moreover, when the 

correlation between TAC and changes on oxLDL was studied, taking into account the entire sample, 

that is volunteers of both control and RESMENA groups, a significant positive relationship between 

oxLDL reduction and TAC values was found (Figure 1). Furthermore, the same association was 
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observed when studying the relationship between oxLDL and consumed energy (kcal) from fruits 

(Figure 2). Finally, BMI, waist circumference, fat mass and TG value reductions are associated with 

decreases of oxLDL circulating concentration levels, taking again into account the entire sample 

(Figure 2). These results correlate with other studies, where a diet-induced weight loss resulted in 

significant reductions of oxLDL levels [46,55]. 

Figure 1. Relationship between changes on oxLDL and fruits and TAC dietary records. 

Abbreviations: oxLDL, oxidized low density lipoprotein; TAC, total antioxidant capacity. 

r = ‐ 0.304
p = 0.028

‐40

‐30

‐20

‐10

0

10

20

30

40

0 200 400 600 800

Δ
ox

L
D

L
 (U

/L
)

Fruits (Kcal)

r = ‐ 0.310
p = 0.032

‐40

‐30

‐20

‐10

0

10

20

30

40

0 5 10 15 20

Δ
ox

L
D

L
 (U

/L
)

TAC (mmol)  

Figure 2. Correlations between changes on oxLDL and changes on adiposity parameters. 

Abbreviations: BMI, body mass index; TG, triglycerides. 
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2.4. Dietary Records 

The dietary records at the end of the study showed that the designed differences between the two 

dietary patterns composition were met, although no statistically significant differences were found for 

fiber, GL or EPA + DHA (Table 4). This outcome could be explained by the fact that the dietary 

records analyzed in this study were collected at the endpoint, once volunteers had completed four 

months of autonomy and after the six months that lasted the study. Therefore, volunteers may not 

complete them with the thoroughness required or might not followed the diet as strictly as at the 

beginning of the study. However, it was achieved that the RESMENA individuals had a higher meal 

frequency (p < 0.001), protein (p = 0.001) and TAC (p = 0.031) intake than the control group ones. 

Furthermore, the fruit consumption was also higher in the RESMENA group (p = 0.049). Moreover, 

both groups declared to consume the same amount of energy (Table 4), as designed. In the RESMENA 

group, a higher number of drop-outs than in the control group appeared, which may be a limitation of 

the study, although the difference was not statistically significant (p > 0.10). 

Table 4. Comparison of control and RESMENA dietary records at the endpoint. 

 Control  RESMENA p 

Energy (kcal/day) 1513 ± 54 1569 ± 77 0.542 

Meal Frequency (meals/day) 4.3 ± 0.2 5.8 ± 0.2 <0.001 

Proteins (% TCV/day) 16.9 ± 0.4 20.4 ± 0.9 0.001 

Lipids (% TCV/day) 40.8 ± 1.5 37.7 ± 1.0 0.108 

CHO (% TCV/day) 37.1 ± 1.5 36.9 ± 1.1 0.940 

Fiber (% TCHO/day) 11.4 ± 0.8 12.0 ± 0.6 0.573 

GL (U/day) 73.4 ± 5.9 70.0 ± 5.5 0.682 

EPA+DHA (g/day) 0.30 ± 0.08 0.39 ± 0.17  0.617 

TAC (mmol/day) 6.1 ± 0.6 8.5 ± 0.9 0.031 

Fruits (kcal/day) 117 ± 21 185 ± 27 0.049 

Abbreviations: TCV, total caloric value; CHO, carbohydrates (without fiber); TCHO, total carbohydrates 

(included fiber); GL, glycemic load; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; TAC, total 

antioxidant capacity. 

3. Experimental Section  

3.1. Subjects  

A subsample of 79 hyperglycemic adults diagnosed of MetS according to the IDF criteria [56] were 

selected from the 109 volunteers with Mets symptoms enrolled to participate in the RESMENA-S 

project. During the 6-month-study, 21 volunteers dropped out. Therefore, 58 individuals of the 

subsample completed the study and were included in the final statistical analysis (Figure 3a).  

This study was conducted according to the guidelines laid down in the Declaration of Helsinki, and 

all procedures involving human subjects were approved by the Ethics Committee of the University of 

Navarra (065/2009). Written informed consent to participate in the intervention trial [20] was obtained 

from all subjects.  
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Figure 3. Flow diagram of participants during the study (a) and ratio RESMENA/control 

of energy and specific dietary components of the scheduled diet (b). Abbreviations: MetS, 

metabolic syndrome; IDF, International Diabetes Association; MF, meal frequency; TCV, 

total caloric value; CH, carbohydrates; EPA, eicosapentaenoic acid; DHA, docosahexaenoic 

acid; GL, glycemic load; TAC, total antioxidant capacity. Symbols: *** p < 0.001 

differences between control and RESMENA scheduled diets; N.A, not applicable. 
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3.2. Study Protocol 

The study was designed as a randomized, controlled trial to compare the effects of two dietary 

strategies (Figure 3b) on improving body composition, biochemical and oxidative stress parameters in 

a MetS population with hyperglycemia. Participants were randomly assigned to the control or the 

experimental diet (control and RESMENA groups, respectively). The study lasted a total of six months 

implemented in two sequential stages: an initial 8-week nutritional learning intervention period, during 

which the study participants received nutritional assessment every fifteen days, and a follow-up  



Int. J. Mol. Sci. 2013, 14 6912 

 

4-month self-control period, in which they applied on their own the previously acquired nutritional 

habits. The CONSORT 2010 guidelines [57] were followed by taking into account the design of the 

present study as two-groups longitudinal intervention, except for blinding.  

Participants were asked to maintain their normal physical activity during the study, which was 

checked by a 24-h physical activity questionnaire [58] at the beginning and at the end of the study. For 

assessing physical activity, all participants were asked about their occupation, sleeping hours and 

additional activities at work and during the rest of the day. The physical activity questionnaire included 

representative values expressed as multiples of Resting Energy Expenditure. Average daily physical 

activity level was calculated taking into account the intensity and time spent on each activity. 

Activities were divided in 5 categories (resting, very light, light, moderate and heavy) [58]. 

At baseline and at the end point of the 6-month study, trained nutritionists performed 

anthropometrical measurements and body composition analyses by Dual-energy X-ray Absorptiometry 

(DXA) following validated protocols [19]. Moreover, fasting blood samples for biochemical analyses 

were collected. 

3.3. Diets 

Two energy-restricted diets (−30% energy of the studied requirements) were prescribed and 

compared (Figure 3b). Thus, the control diet was based on the AHA guidelines [59], including 3–5 

meals per day, a macronutrient distribution of 55% total caloric value (TCV) from carbohydrates, 15% 

proteins and 30% lipids, a healthy fatty acids (FA) profile and a cholesterol consumption lower than 

300 mg/day. The RESMENA diet was characterized by a higher meal frequency, consisting of seven 

meals per day and by a different macronutrient distribution, 40% TCV from carbohydrates, 30% 

proteins and 30% lipids [19]. Furthermore, this pattern tried to reinforce the high n-3 polyunsaturated 

FA (n-3 PUFAs) and high natural antioxidant foods consumption and promoted low GL carbohydrates 

intake. It also maintained a healthy FA profile and a cholesterol content of less than 300 mg/day as the 

control diet.  

RESMENA participants were prescribed a 7-day menu plan, while in the control group, a 

previously described [60] food exchange system plan was provided to volunteers. A 48-hour weighed 

food record was collected at the beginning and at the end of both the nutritional-learning and the 

autonomous periods, in order to assess the volunteer’s adherence to the prescribed nutritional patterns. 

The designed diets composition, as well as the different dietary records, were analyzed by the DIAL 

software (Alce Ingenieria, Madrid, Spain) [61]. The sum of eicosapentaenoic and docosahexaenoic 

fatty acid (EPA+DHA) obtained by the DIAL program [61] was used to estimate n-3 PUFAs 

consumption. TAC was calculated using the validated data, considering raw or cooked preparations [62]. 

Finally, the GL was obtained from the international updated website database based in the Human 

Nutrition Unit, School of Molecular Biosciences from the University of Sydney [63]. 

3.4. Clinical and Biochemical Assessments 

Anthropometric measurements were performed in fasting conditions, as previously described [64]. 

Body weight was assessed to the nearest 0.1 kg by using a bioimpedance (TANITA SC-330, Tanita, 

Corporation, Tokyo, Japan). BMI was calculated as the body weight divided by the squared height 
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(kg/m²). Waist and hip circumferences were measured with a commercial tap following validated 

protocols, as previously described [19]. Total body fat mass android fat mass, lean mass and fat-free 

mass were evaluated by DXA (Lunar iDXA™, software version 6.0, Madison, WI, USA). 

Measurements of SBP, DBP and heart rate were assessed using a digital monitor (Medisana, MTC, 

Düsseldorf, Germany) in the right arm, with the patient seated and relaxed, with an appropriate cuff for 

the arm size of each patient. Measurements were taken three times after a five-minute resting period, 

following World Health Organization (WHO) criteria [65]. 

Total cholesterol, HDL-c, TG, FFA, glucose, uric acid, total proteins, creatinine, ALT and AST 

serum concentrations were measured in an autoanalyzer Pentra C-200 (HORIBA ABX, Madrid, Spain) 

with specific kits. Insulin concentrations were determined by an enzyme-linked immunosorbent  

assay (ELISA) kit (Mercodia, Uppsala, Sweden) in a Triturus autoanalyzer (Grifols SA,  

Barcelona, Spain). Insulin resistance was estimated by the Homeostasis Model Assessment  

Index (HOMA-IR), which was calculated as stated in the following formula:  

HOMA-IR = [glucose (mmol/L) × insulin (μU/mL)]/22.5, as described elsewhere [66]. LDL-c levels 

were calculated following the Friedewald formula: LDL-c = Total cholesterol − HDL-c − TG/5 [67]. 

Apo A-I and Apo B were measured with specific kits (Tina-quant Apolipoprotein A-I ver.2 and  

Tina-quant Apolipoprotein B ver.2, Mannheim, Germany) using a Roche/Hitachi autoanalyzer 

(Mod.904 Modular, Tokio, Japan). Estimated glomerular filtration rates (eGFRs) were calculated from 

serum creatinine values using the equation CKD-EPI, which takes into account sex, age and race [68]. 

Plasma MDA was colorimetrically determined with a commercial kit (BIOXYTECH® LPO-586™, 

Oxis Research™, Portland, OR, USA). Each sample (200 μL of serum) was mixed with 650 μL of  

N-methyl-2-phenylindole in acetonitrile and 150 μL of 37% (12 N) HCl. Tubes were capped, mixed 

and incubated at 45 °C for 60 min. Samples were centrifuged at 15,000 × g for 10 min, and the 

supernatant was read on a spectrophotometer at 586 nm (Multiskan Spectrum, Thermo Electron 

Corporation, Vantaa, Finland). The assay included a six-point standard curve, the measurement was 

performed in replicate and the mean value was computed.  

Plasma ox-LDL and MPO were measured using capture ELISA assay kits from Mercodia (Uppsala, 

Sweden). ARE activity was measured with simulated body fluid (SBF) as buffer and phenylacetate as 

substrate at pH 7.34–7.4 and 37 °C, as described elsewhere [48]. Reaction rates of ARE were followed 

at 270 nm in thermostatically controlled 10-mm Lightpath quartz cuvettes using a Shimadzu  

UV-2401PC spectrophotometer (Tokio, Japan). The final reaction volume in the cuvettes was 2.0 mL, and 

the total time was 3 min. One unit of ARE activity is equal to 1 mol of phenylacetate hydrolyzed/(L min) 

3.5. Statistical Analyses 

Mean values and standard errors were reported for the measured variables. Differences between the 

beginning and the end of the complete study were analyzed by a paired t-test. The analysis between 

both groups (RESMENA vs. Control) was performed through an independent measures t-test. 

Correlation analyses were applied to assess the potential relationships and associations, between some 

components of the diet and anthropometrical and biochemical parameters variation. For drop-out 

analysis, the χ² test was applied. The SPSS 15.1 software for Windows (SPSS Inc., Chicago, USA) 

was used for all statistical analyses. Values of p < 0.05 were considered as statistically significant. 
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4. Conclusions 

Both energy-restricted dietary patterns, AHA guidelines-based diet and the RESMENA diet were 

successful on improving anthropometrical measurements, body composition, blood pressure levels and 

biochemical markers on patients suffering MetS with hyperglycemia. However, the RESMENA diet 

showed greater benefits regarding android fat mass reduction and improvement of the general 

oxidative stress status, specifically oxLDL related markers. Interestingly, dietary TAC and fruit 

consumption were apparently the nutritional components that potentially contributed most to the 

oxLDL depletion. Moreover, the decrease on BMI, waist circumference, fat mass and TG levels were 

also directly associated with the oxLDL decrease levels. For all of this, the prescription of the 

RESMENA diet is a good antioxidant dietary treatment for people suffering MetS with hyperglycemia 

to further improve the benefits associated to weight loss. 
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