Supplementary Information

Figure S1. SPR shifts for all the ligands and **T4** measured in 70% ethanol and in air with the SPR-Navi instrument.

Figure S2. Goodness of fit $(1/\chi(n, d)^2)$ contour plots of *n vs. d* (**A**) in air (**B**) in 70% ethanol, and (**C**) combined $(1/[(1/\chi(n, d)_{air}^2) + (1/\chi(n, d)_{EtOH}^2)])$. The parameters used were: $\lambda = 670$ nm, glass: n = 1.5315, air: n = 1.0005, 70% ethanol: n = 1.361, gold: d = 53.16 nm, n = 0.22, k = 3.909. The global solution of fitting for the self-assembled film was: n = 1.494, d = 3.403 nm.

Figure S3. SPR shift of two injections of T4 and 4-Pyr-Lipa, mixed in the molar ratio 1:2 measured on the SPR-Navi instrument in 70% EtOH. A duplicate measurement of the same mixture was recorded in two flow channels (ch1 and ch2) simultaneously. Arrows indicated the injection time point. ΔR is the change in angle measured at the end of the injections (shown only for Channel 1).

Figure S4. SPR shifts measured with the Biacore 3000 in PBS buffer upon **T4** binding (blue bars) and regeneration with high pH buffer (pH = 9.5, green bars) and low pH buffer (pH = 2.0, red bars). Results are shown for four surfaces prepared by self-assembly of **T4** with **4** and **5** in different molar ratios (e.g., 1:3 = 1 mM T4 and 3 mM ligand). The response of the regeneration solutions was always negative, but shown positive to enable comparison with the **T4**-binding.

Imprinting compounds and ratio

Figure S5. Titration curves for **T4** after sequential elution steps with 0.1 M NaOH of (**A**) A binary layer of compound **5** and **T4** deposited at concentrations of 2 mM and 0.5 mM respectively. (**B**) A ternary layer of compounds **4**, **5** and **T4** deposited at concentrations of 1 mM, 1 mM and 0.5 mM respectively. The depositions were performed by spotting on clean gold in 70% ethanol, and the binding curves were studied in HBS buffer with the Biacore 3000 instrument.

 \bigcirc 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).