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Abstract: The paper presents a detailed study of the biological effects of two amino acid 
hydroxyurea derivatives that showed selective antiproliferative effects in vitro on the 
growth of human tumor cell line SW620. Tested compounds induced cell cycle perturbations 
and apoptosis. Proteins were identified by proteomics analyses using two-dimensional gel 
electrophoresis coupled to mass spectrometry, which provided a complete insight into the 
most probable mechanism of action on the protein level. Molecular targets for tested 
compounds were analyzed by cheminformatics tools. Zinc-dependent histone deacetylases 
were identified as potential targets responsible for the observed antiproliferative effect.  
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1. Introduction 

Colorectal cancer (CRC) is among the three most common malignancies worldwide, including 
breast and lung cancers. Late diagnosis, often accompanied by metastases, is a general problem for the 
treatment of this condition. Besides surgical intervention, the modern approach to CRC treatment 
strongly relies on the use of chemotherapeutics [1] and monoclonal antibodies [2]. Although 
combination and targeted therapy improved the therapy outcomes for CRC patients, high recurrence 
rates still pose a major lethality problem [3]. It is now accepted that a subpopulation(s) of malignant 
cells with stem cell properties may give rise to a hierarchy of proliferative and progressively 
differentiating cells and might account for invasiveness of tumors and decreased survival rates [4]. 
Current drugs do not target this particular subset of cells and novel therapeutic approaches, including 
novel drug entities, are thus interesting for advancements in CRC treatment. 

Figure 1. (A) Hydroxyurea (HU) and its derivatives N'-benzyloxycarbamoyl-D-
phenylglycine benzhydrylamide (BOU) and N'-methyl-N'-hydroxycarbamoyl-L-
phenylalanine benzhydrylamide (MHCU); (B) Concentration-dependent antiproliferative 
effect of BOU and MHCU on the SW620 cell line. Marginal means of survival were 
estimated as percentages of growth (PG); (C) Representative blots of SW620 cells treated 
with BOU and MHCU, probed with antibodies against human procaspase-3, procaspase-7 
and procaspase-9. Treatments are as follows: 1: control 24 h, 2: BOU at 1 μM 24 h,  
3: BOU at 50 μM after 24 h, 4: MHCU at 1 μM after 24 h, 5: MHCU at 50 μM after 24 h, 
6: control after 72 h, 7: BOU at 1 μM after 72 h, 8: BOU at 50 μM after 72 h, 9: MHCU at 
1 μM after 72 h, 10: MHCU at 50 μM after 72 h.  

(A)  (B)  

(C)  
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Hydroxyurea (HU) is a common antimetabolic cytostatic compound used to treat some types of 
cancer (Figure 1A) and a number of its derivatives exerting stronger antitumor potency and lower 
general cytotoxicity have been synthesized [5]. Similarly, Perkovic et al. [6] synthesized a series of 
novel L- and D-amino acid amide HU derivatives and evaluated their antiviral and cytostatic activity 
against malignant tumor cell lines, including leukemia and normal human fibroblasts [6]. In this paper, 
we report the biological mechanisms of action in vitro, in silico and in vivo of two compounds 
showing favorable, specific and concentration-dependent antiproliferative effects. The selected 
compounds, N'-benzyloxycarbamoyl-D-phenylglycine benzhydrylamide (BOU) and N'-methyl- 
N'-hydroxycarbamoyl-L-phenylalanine benzhydrylamide (MHCU), shown in Figure 1A, acted 
selectively on the colon tumor cell line SW620 in comparison with other tested tumor cell lines and 
normal human fibroblasts.  

2. Results and Discussion 

2.1. Amino Acid Hydroxyurea Derivatives BOU and MHCU Inhibit Proliferation of the Colon Cancer 
Cell Line SW620 

We have previously shown that BOU and MHCU exerted the strongest antiproliferative effect upon 
a panel of tested cell lines, including the metastatic colon cancer cell line SW620 [6,7]. Tested 
compounds are both amino acid derivatives of HU, with the same amide moiety and a different amino 
acid part: BOU is a D-phenylglycine and MHCU is a L-phenylalanine derivative. In addition, they 
differ in the HU section: MHCU has a free hydroxy group, while the hydroxy group in BOU is 
protected by the benzyl residue. The presented study focused only on BOU and MHCU mechanistic 
analysis of metastatic SW620 cells, since metastases represent a major problem in cancer therapy.  
The antiproliferative assay results confirmed the previously observed concentration-dependent 
antiproliferative effects of these compounds on the growth of the SW620 cell line where BOU exerted 
a stronger cytotoxic effect while MHCU acted only as an antiproliferative agent (Figure 1B). The 
obtained IC50 values were 17.0 μM for BOU and 67.1 μM for MHCU.  

2.2. Effects of BOU and MHCU on the Cell Cycle and Induction of Apoptosis  

Tested compounds exerted weak cell cycle perturbations, but a strong cell death response, which 
was evidenced by a significant increase of the subG1 SW620 cell population (Table 1), indicative of 
apoptosis [8]. BOU caused a 31.2% increase in the subG1 phase after 24 h and a 7.8% increase after 
72 h at higher concentration. MHCU induced only a 2.1% increase in the subG1 phase after 24 h and a 
4.3% increase after 72 h at higher concentration. Interestingly, only BOU induced S phase arrest after 
72 h at higher concentration.  

Both compounds caused cell death evidenced by an increase of treated cells in the subG1 phase and 
by increased fraction of apoptotic cells (Table S1 in Supplementary Information). This effect was also 
stronger for BOU, probably partially attributable to its cytotoxicity. BOU caused a 6.8% increase of 
cells in the early stage of apoptosis after 24 h and a 9.2% increase of cells in the late stage of 
apoptosis/necrosis after 24 h in comparison with untreated cells. However, a lower rate of apoptosis 
induction was visible upon 72 h, which might be attributable to some other cell death mechanism, i.e., 
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senescence. MHCU increased the number of cells in the late stage of apoptosis at both tested 
concentrations after 24 and 72 h. Major apoptosis effectors, caspases 3 and 9, were expected to be 
activated by tested compounds since they are usually triggered in response to anticancer chemotherapy 
either through the extrinsic death receptor pathway [9] or the intrinsic mitochondria pathway [10]. 
Caspases 3 and 9, however, were not activated upon treatment of SW620 cells with BOU and MHCU 
(Figure 1C). Small amounts of cleaved/activated caspase 9 were detected in all treatments but were not 
significantly different in comparison with controls. Only caspase 7, tested due to a high degree of 
redundancy with caspase 3 and often activated instead of it [11], was cleaved/activated upon treatment 
with both compounds after 72 h.  

Table 1. Flow cytometric analysis of SW620 cells treated with BOU and MHCU at 
concentrations of 1 and 50 μM for 24 and 72 h. 

Treatment 
Cell percentage (%) ± standard deviation 

subG1 G1 S G2/M 

24 h 

Control 5.4 ± 0.7 37.0 ± 0.5 45.6 ± 1.2 17.4 ± 0.9 
BOU, 1 μM 5.3 ± 0.6 34.6 ± 0.7 * 48.7 ± 1.4 16.7 ± 1.0 

BOU, 50 μM 36.6 ± 8.8 * 36.5 ± 0.7 47.3 ±2.4 16.2 ± 2.0 
MHCU, 1 μM 5.0 ± 0.7 35.9 ± 0.7 48.5 ± 0.9 15.5 ± 0.6 
MHCU, 50 μM 7.5 ± 0.3 * 35.6 ± 1.7 47.6 ± 1.5 16.8 ± 0.5 

72 h 

Control 5.5 ± 2.0 56.4 ± 1.7 28.5 ± 1.1 15.1 ± 1.5 
BOU, 1 μM 5.5 ± 2.0 57.2 ± 2.0 25.9 ± 1.3 15.4 ± 2.0 

BOU, 50 μM 13.3 ± 1.5 * 53.7 ± 2.3 * 34.2 ± 2.2 * 12.1 ± 0.8 
MHCU, 1 μM 4.3 ± 0.5 57.1 ± 2.7 29.7 ± 2.2 13.2 ± 1.7 
MHCU, 50 μM 9.8 ± 0.8 * 58.6 ± 1.6 24.5 ± 1.8 16.9 ± 1.1 

* statistically significant. 

The proportion of apoptotic cells assessed by the Annexin V assay was lower than the subG1 
fraction measured by a flow cytometer. This might be explained by other cell death mechanisms 
occurring upon the treatment with tested compounds [12,13]. Indeed, only activation of caspase 7 was 
detected upon the treatment of cells with BOU and MHCU (Figure 1C), which may activate downstream 
targets in the absence of caspase 3 or act as a downstream effector for caspase-1-dependent  
pro-inflammatory effects or in the endoplasmic reticulum stress-induced death [11,14]. It has been 
shown that HDAC inhibitors (HDACi) might trigger oxidative stress [15] but reactive oxygen species 
(ROS) seem to be induced as an early post-treatment event rather than act as a persistent mechanism of 
action [16]. Even though a similar concentration-dependent antiproliferative pattern and caspase 7 
activation (Figure 1B) were observed for both compounds, the cell cycle dynamics (Table 1) and 
percentage of apoptotic cell distribution (Table S1 in Supplementary Information) were somewhat 
different. The possibility of tested derivatives acting differently in the same cell line was thus studied 
in detail by global proteomic profiling, which proved successful in elucidating the molecular 
mechanisms triggered by novel antitumor compounds [17]. 
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2.3. Protein Alterations in SW620 Cells Treated with BOU and MHCU  

Global protein profiling of SW620 cells treated with BOU and MHCU showed significant 
alterations in qualitative and quantitative total proteome profiles after 24 and 72 h (Tables S2 and S3 in 
Supplementary Information). Identified differentially expressed proteins among control and  
treated cells are known to be involved in cell proliferation, apoptosis, regulation of the cell cycle,  
anti-inflammatory response, translation, transcription, structure of the cytoskeleton, oxidative stress, 
DNA repair, protein structure, tumor adhesion, invasion and metastasis as well as in cell metabolism. 

Upon treatment of SW620 cells with BOU, a number of differentially expressed proteins were 
identified (Table S2 in Supplementary Information). The majority of identified proteins were  
down-regulated in BOU-treated cells, in particular, proteins driving metabolic processes, i.e.,  
hnRNP proteins that were previously identified as overexpressed in colorectal carcinoma [18]. 
Moreover, proliferation-driving proteins were down-regulated as well, i.e., FUBP1, a known substrate 
of caspase 7 [19] that is probably degraded by caspase 7 in SW620 treated with BOU. Several other 
proteins that promote proliferation and/or block apoptosis were identified only in untreated SW620, 
i.e., the main marker for proliferation PCNA [20]. It seems therefore that an immediate cell cycle 
arrest occurs upon treatment with BOU that ends up with cell death. These processes are connected to 
down-regulation of colorectal cancer malignancy biomarkers TAGLN2 and Gal-3 [21,22] as well as 
the metastatic phenotype marker PAI-RBP1 [23]. In conclusion, down-regulation of specific CRC proteins 
involved in tumor progression and invasion might explain the selective activity of BOU on the metastatic 
SW620 cell line in comparison with other tested tumor cell lines derived from solid tumors [6]. 
Moreover, it seems that cell death mechanisms might be triggered by metabolic changes and oxidative 
stress through activation of caspase 7 and down-regulation of two crucial oxidative stress-protecting 
proteins, DJ-1 and PRDX3, in treated SW620 cells (Table S2 in Supplementary Information).  

A distinct protein pattern involving a number of inflammatory proteins was observed in SW620 
cells upon MHCU treatment (Table S3 in Supplementary Information). For example, ANX1, which 
was up-regulated by MCHU treatment, has been already found to be an inducible endogenous inhibitor 
of NF-κB in human cancer cells and to provide a basis for novel molecular mechanisms of action for  
anti-inflammatory agents [24]. The possible MHCU anti-inflammatory mechanism was also evidenced 
by down-regulation of several proteins that drive inflammation, including HMG-1, PRDX2 and CRT. 
This result is interesting in the light of previous data showing anti-inflammatory effects on the 
systemic level of several HU derivatives [25].  

Proteomic results showed that BOU increased oxidative stress while MHCU altered expression of 
proteins involved in the inflammatory response.  

2.4. Docking of BOU and MHCU within HDAC Enzymes and the HDAC Inhibition Assay 

A dozen substances similar to the studied compounds (Figure 1A) were found by PubChem search 
(similarity score ≥ 0.95). However, their biological effects were not described in scientific literature, 
with the exception of our previous report on cell growth inhibition activities [6]. Class I HDAC 
isoforms are highly expressed in colorectal carcinomas, particularly in the proliferating,  
de-differentiated tumors [26]. Hence, we tried to dock BOU and MHCU within deacetylase binding 
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sites with solved X-ray structures. HU possesses metal-chelating and reducing properties, allowing 
compounds of this group to interact with a variety of metallo- and redox-active proteins [27]. The  
zinc-chelating enzymes that take part in cell proliferation are histone deacetylases (HDAC) of classes I 
and II [28]. Their most common competitive inhibitors are hydroxamate compounds. The common 
template of hydroxamate inhibitors of HDAC enzymes [29] contains a zinc-binding group (ZBG) and 
a CAP group interacting with surface residues of these proteins (Figure 2A) [30,31]. ZBG and CAP 
groups are usually connected by an extended linker containing hydrophobic fragments such as a 
phenyl ring. The hydroxamate group chelates Zn2+ in a bidentate fashion through its C=O and OH 
groups. According to the reported quantum-mechanical modeling, the potential isosteric ZBG for 
hydroxamate may be the HU group [30]. HU can be a satisfactory hydroxamate replacement if the rest 
of the molecule can compensate for the unfavorable desolvation effect on the binding affinity of 
hydrophilic HU [30]. This might be the case of lipophilic BOU (XlogP = 5.1) and MHCU  
(XlogP = 3.4) [32]. Higher lipophilic character of BOU may also account for its increased cellular 
uptake and thus more pronounced in vitro effects compared to MHCU. Herein, the binding site of the 
3MAX structure of HDAC2 complexed with the inhibitor N-(4-aminobiphenyl-3-yl) benzamide (LLX) 
was used for BOU and MHCU docking (Figure 2B). This benzamide is more similar to the studied 
compounds than hydroxymates, most of which have unbranched alkyl linkers. While the Zn2+ ion,  
in the catalytic site of HDAC2, is coordinated by His141, His142, Asp177 and Asp265 [31], in the 
3MAX complex it is coordinated by the ligand LXX and the residues Asp177, His179 and Asp265 
demonstrating some kind of metal-binding flexibility (Figure 2B) [33]. Analogously, in the binding of 
BOU [6], the N'-hydroxyurea moiety should be oriented in such a way as to interact with the Zn2+ ion 
(Figure 2B). In that case, the benzyl substituent enters the lipophilic “foot” pocket adjacent to the 
catalytic place, while the freely rotating phenyl and biphenyl CAP groups can interact with the 
conserved lipophilic residues at the protein surface such as Tyr205 and Phe206 of HDAC2 
(UniprotKB Q92769). Most amino acid residues around the binding site, particularly those at the 
protein surface, are positioned at the loops (Figure 2B), indicating that some degree of structural 
flexibility can be tolerated upon ligand binding. The other studied derivative, MHCU with an 
unsubstituted OH group (Figure 1A), has not shown significant inhibition of HDAC enzymes  
(Figure 2D), which indicates the importance of occupying the “foot” pocket and of hydrophobic 
interactions similarly to the case of LXX [33]. The previous observation that O-benzylhydroxyurea 
derivatives were generally more cytotoxic than their hydroxy pairs [6] is in accord with the HDAC 
inhibition activity of the studied derivatives. Stereochemistry has not been found to have a substantial 
impact on the cytostatic activity [6]. Similarly, it may be expected to be of minor significance for the 
inhibition of HDAC enzymes due to the flexible binding site. This assumption must be further 
confirmed by automated molecular docking and co-crystallization experiments.  

Similarly as in HDAC 2, in HDAC 1 and 3 enzymes (based on protein sequence alignment since 
there are no crystal structures for these isoforms), there is also a “foot” pocket. However, in the 
HDAC4 and HDAC8 isoforms there are Pro (PDB 2VQJ) and Trp residues, respectively, at that place, 
preventing the use of ligands (Figure 2C). Thus, like benzamides, O-benzylhydroxyurea derivates can 
be inhibitors specific for HDACs 1–3 of class I [31].  
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Figure 2. (A) The zinc-binding group (ZBG) and the CAP group of HDAC inhibitors;  
(B) Suggested binding mode of N'-benzyloxyureido derivative BOU (yellow) within the 
crystal structure 3MAX of HDAC2 complexed with the benzamide LXX (green);  
(C) Alignments of crystal structures of HDAC2 (3MAX, green), HDAC4 (2VQJ, pink) and 
HDAC8 (2V5X, cyan) complexed with the corresponding inhibitors; (D) HDAC enzymes 
(class I and/or II) activity in SW620 cells treated with BOU and MHCU for 24 and 72 h. 
Significant changes are marked with an asterisk (*). 

 

In silico results pointed to HDACs of class I as potential molecular targets for compound BOU. The 
significant decrease of activity of HDAC of classes I and/or II, in the entire SW620 cell lysate treated 
with BOU at 50 µM concentration (Figure 2D), supported this finding. The HDAC enzymes of class I 
are overexpressed in CRC [26] and it has been reported that HDAC inhibitors might induce cell cycle 
arrest in SW620 cells in dependence on the inhibitor concentration [34]. We found that BOU induced 
cell cycle arrest in SW620 cells as well, suggesting that its inhibition of cancer cell growth might be 
mediated, at least in part, by arrest of the cell cycle progression caused by inhibition of HDAC of  
class I and/or II.  

According to the in silico docking analysis, BOU probably inhibits class I HDACs 1–3 due to 
favorable occupancy of an available “foot” pocket near the zinc binding place by its O-benzyl 
substituent (Figure 2B). HDAC inhibitors (HDACi) are used clinically to treat malignancies because of 
their effects on apoptosis or cell death activation through anti-inflammatory effects caused by 
acetylation of non-histone proteins [35]. The effects of HDACi on inflammatory gene expression, 
however, may vary according to the cell type and the stimulus and might involve anti-inflammatory 
mechanisms such as down-regulation of IL-12, IL-1 and IL-6 [36] or induce a systemic  
pro-inflammatory effect [37]. Altered histone acetylation patterns have been reported in many cancers 
and HDACi may readily induce cell-cycle arrest or apoptosis although the exact cell death mechanism 
varies among different cells [38]. The mechanisms of BOU action might thus involve early oxidative 
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stress, probably through induction of ROS, modulation of histone and non-histone acetylation pattern 
through inhibition of HDACs and cell death.  

In contrast, the in silico docking analysis showed that interaction with the “foot” pocket near the 
zinc binding place of HDACs was not possible for MHCU. This result was substantiated by the HDAC 
colorimetric assay kit results as well (Figure 2D). HDAC assay demonstrated a stimulating activity of 
MHCU on the activity of HDAC enzymes. Induction of HDACs activity is in agreement with the 
altered regulation of several inflammatory proteins (Table S3 in Supplementary Information). It was 
already reported that anti-inflammatory effects of some drugs might be attributed to the activation of 
HDACs and specific acetylation/deacetylation patterns in cells [39,40] (ultimately leading to 
suppression of the inflammatory response). 

The obtained information on the envisaged molecular interaction with cellular targets may provide a 
good basis for further optimization for improved amino acid hydroxyurea derivatives binding to 
HDACs and development of lead compounds. 

2.5. In Vivo Activity of BOU 

BOU exerted stronger antiproliferative effect compared to MHCU and was detected as a potential 
HDAC inhibitor. Therefore, its effect was evaluated in vivo on Balb/C mice inoculated with the colon 
carcinoma cell line CT26.WT. Rather high cytotoxicity observed in vitro and in the pilot experiment  
in vivo (data not shown) prompted us to diminish BOU dosages compared to the standard hydroxyurea 
doses used for studies in mice [41,42]. The mean survival time in the control group of Balb/C mice 
inoculated with the colon carcinoma cell line CT26.WT was 40 days, while it increased to 45.5 days in 
BOU; ILS % was 13.757% (data not shown). The overall survival period and tumor size after 45 days 
was not significantly different for mice treated with BOU (Figure 3). However, the treatment of 
animals showed a death reduction between 30 and 35 days upon treatment with BOU even though the 
tumor mass remained the same.  

Figure 3. (A) Kaplan-Meyer survival graph for Balb/C mice inoculated intramuscularly 
with CT26WT tumor cells (1 × 106 cells/mice) and treated with BOU at 1 mM/kg given 
intraperitoneally on days 1, 5, 10, 15 and 20. No statistical differences in overall survival 
growth of treated mice was observed in comparison with control mice (p = 0.1915;  
log-Rank test); (B) Tumor size in Balb/C mice inoculated intramuscularly with CT26WT 
cells (1 × 106 cells/mice) and treated with BOU at 1 mM/kg given intraperitoneally on days 
1, 5, 10, 15 and 20. 
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The absence of an overall effect on animal survival might be partially attributed to the low doses 
used for the in vivo experiments. This raises the question of toxicity and substantiates the need for 
further chemical optimization of BOU in relation to in vivo toxicity. Nevertheless, the therapeutic 
potential for BOU might be seen in combination with other small molecules with a complementary 
mechanism of action [43] or in chronic or autoimmune inflammatory disorders [44].  

3. Experimental Section 

3.1. Tested Compounds 

Synthesis and antiproliferative effect of N'-benzyloxycarbamoyl-D-phenylglycine benzhydrylamide 
(BOU) and N'-methyl-N'-hydroxycarbamoyl-L-phenylalanine benzhydrylamide (MHCU) (Figure 1A) 
were described by Perković [6].  

3.2. In Vitro Analyses 

3.2.1. Cell Culturing  

The SW620 cells (colon carcinoma, metastasis) were purchased from American Type Culture 
Collection (ATCC, Manassas, VA, USA), cultured as monolayers and maintained in Dulbecco’s 
modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mM  
L-glutamine, 100 U/mL penicillin and 100 μg/mL streptomycin in a humidified atmosphere with 5% 
CO2 at 37 °C. 

3.2.2. Cell Viability Assay  

Viability of cells was assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide) assay. Briefly, the cells were plated into 96-well tissue culture plates (BD Bioscience, 
Franklin Lakes, NJ, USA) at a density of 3000 cells/well. After 24 h, BOU, MHCU and the solvent 
DMSO used for preparation of BOU and MHCU stock solutions were added into wells at freshly 
prepared 10-fold dilutions (0.01 to 100 µM) and incubated for 72 h. Absorbance was measured at  
570 nm (ThermoLabsystems Multiskan EX, Beverly, MA, USA). Each point was performed in 
quadruplicate in three individual experiments. Measured absorbance values were transformed into cell 
percentage growth (PG) using the formulas proposed by NIH [45].  

3.2.3. Cell Cycle Analyses  

A total of 2.5 × 105 cells/well were seeded in 6-well plates (BD Bioscience, Franklin Lakes, NJ, 
USA). After 24 h, the cells were treated with BOU and MHCU at concentrations of 1 and 50 μM. 
After 24 and 72 h, the attached cells were trypsinized, combined with floating cells, washed with PBS 
and fixed with 70% ethanol. The cells were stained with 1 µg/mL of propidium iodide (PI) with 
addition of 0.2 µg/mL of RNAse A and analyzed using a Becton Dickinson FACScalibur flow 
cytometer (BD Bioscience, Franklin Lakes, NJ, USA) (20,000 counts). Each test point was performed 
in duplicate in three individual experiments. The results are shown as mean percentages from three 
separate experiments for each tested group. The percentage of cells in each cell cycle phase was based 
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on the obtained DNA histograms and determined using WinMDI 2.9 software (freeware designed by 
Joe Troter, Purdue University, West Lafayette, IN, USA).  

3.2.4. Annexin Test for Detection and Quantification of Apoptosis 

A total of 1 × 104 SW620 cells were seeded in 8-well glass slides (Nalgene, Nunc Int., Rochester, 
NY, USA). After 24 h, the cells were treated with BOU and MHCU at concentrations of 1 and 50 μM. 
After 24 and 72 h, adherent cells were stained with Annexin-V-fluorescein labeling reagent 
(Boehringer Mannheim, Indianapolis, IN, USA) and propidium iodide (PI) according to the 
manufacturer’s recommendations. Assessment of apoptotic cells was performed under a fluorescent 
microscope (OLYMPUS, Center Valley, PA, USA) by manual counting. At least 100 cells were 
counted per sample. Annexin-V (green fluorescent) cells were found to be early apoptotic and 
Annexin-V and PI cells (red fluorescent) were found to be late apoptotic/necrotic. Percentage of 
apoptotic cells was expressed as the number of fluorescent cells compared to the total cell number. 

3.2.5. Western Blot Analysis 

Untreated cells and cells treated with BOU and MHCU at concentrations of 1 and 50 μM, were 
lysed after 24 and 72 h in lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM EDTA,  
0.2 mM EGTA, 10% glycerol, 1% Triton X-100) and protease inhibitor cocktail (Roche, Basel, 
Switzerland). A total of 40 μg of proteins was resolved on 9% or 12% SDS-polyacrylamide gel at 
constant voltage (100 V) and subsequently transferred to a nitrocellulose membrane (BIO-RAD,  
Foster City, CA, USA) at constant electric current (200 mA) using a Mini-PROTEAN Cell (BIO-RAD, 
Foster City, CA, USA). Membranes were blocked with 4% non-fat dry milk in TBST (50 mM Tris 
base, 150 mM NaCl, 0.1% Tween 20, pH 7.5) and incubated overnight at 4 °C in 3% non-fat dry milk 
in TBST supplemented with primary antibodies against procaspase-3 (Santa Cruz Biotechnology, 
Dallas, TX, USA, diluted 1:250), procaspases 7 and 9 (monoclonal procaspase 7 and procaspase 9; 
Pharmingen BD, USA, diluted 1:200 and 1:1000, respectively), p21 (Pharmingen BD, Franklin Lakes, 
NJ, USA, diluted 1:200), p53 (Calbiochem, San Diego, CA, USA, diluted 1:150), and pJNK  
(Santa Cruz Biotechnology, Dallas, TX, USA, diluted 1:125). The membranes were then washed with 
TBST and incubated for 1 h at room temperature in TBST containing a secondary anti-mouse  
(GE Healthcare, Pittsburgh, PA, USA) or anti-rabbit (DakoCytomation, Glostrup, Denmark) antibody 
linked to horseradish peroxidase (diluted at 1:1000). The signal was visualized by the Western 
Lightning Chemiluminiscence Reagent Plus kit (PerkinElmer, Waltham, MS, USA) in the VersaDoc 
Imaging System 4000 (BIO-RAD, Foster City, CA, USA). Signal intensities of particular bands were 
measured and compared using Quantity One software (BIO-RAD, Foster City, CA, USA).  
Anti-β-tubulin (Sigma-Aldrich, Roedermark, Germany, monoclonal anti-β-tubulin mouse IgG, diluted 
1:1000) was used as a loading control. 

3.2.6. Global Proteomic Profiling by 2D-Gel Electrophoresis and Mass Spectrometry 

Untreated cells and cells treated with BOU or MHCU at a concentration of 50 μM were lysed after 
24 and 72 h in 2-DE lysis buffer (7 M urea, 2 M thiourea, 4% CHAPS and 1% DTT) supplemented 
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with 0.2% Bio-Lyte ampholyte, pH 3-10 (BIO-RAD, Foster City, CA, USA), nuclease mix  
(GE Healthcare, Pittsburgh, PA, USA) and protease inhibitor cocktail (Roche, Basel, Switzerland). 
2D-gel electrophoresis analysis was performed according to Sedić [17]. Differential image analysis 
was performed using PDQuest software version 7.0 (BIO-RAD, Foster City, CA, USA) and total 
density in gel image was used as the normalization method. The following criteria were employed for 
the differential profiling of the proteins. From the gel, spots present only in treatments and spots 
resulting in 3-fold change in intensities between treatments and controls were excised manually for 
mass spectrometry analysis. Excised spots were destained using 10% acetic acid/40% methanol/50% 
water, v/v/v. After destaining, excised spots were washed three times with: (1) 50 mM ammonium 
bicarbonate buffer (pH 7.8), (2) 50% acetonitrile/50% 50 mM ammonium bicarbonate buffer (pH 7.8) 
(v/v) and (3) acetonitrile. The solvent was removed each time after washing. Finally, gel pieces were 
dried with a SpeedVac concentrator (Eppendorf, Hamburg, Germany) and protein digestion was 
performed by the use of trypsin (Merck, Munchen, Germany, 20 ng/mL) in 25 mM ammonium 
bicarbonate buffer (pH 7.8) overnight at 37 °C. Tryptic peptide solution was removed and dried with a 
SpeedVac concentrator (Eppendorf, Hamburg, Germany). Peptides were removed from the excised gel 
by adding 10 µL of 50% acetonitrile/5% trifluoroacetic acid (v/v), dried with a SpeedVac concentrator 
(Eppendorf, Hamburg, Germany), resuspended in 10 µL of 0.1% trifluoroacetic acid and purified  
using ZipTipC4 (Millipore, Billerica, MA, USA). The peptides were finally eluted with 10 μL of  
80% acetonitrile/20% H2O/0.1% trifluoroacetic acid (v/v) and dried with a SpeedVac concentrator 
(Eppendorf, Hamburg, Germany). Tryptic peptides were resuspended in 5 µL of 5 mg/mL  
α-cyano-4-hydroxycinnamic acid (CHCA) in 50% acetonitrile/50% water (v/v), and spotted onto the 
MALDI plate.  

Mass spectra were obtained on a MALDI-TOF/TOF mass spectrometer (4800 Plus MALDI 
TOF/TOF analyzer, Applied Biosystems Inc., Foster City, CA, USA). For each spot, 1600 shots per 
spectrum were taken with a mass range of 800–4000 Da, focus mass 2000 Da and delay time 500 ns. 
Trypsin autolysis peaks were used for internal calibration of mass spectra, providing mass accuracy 
within 21 ppm of their theoretical masses. Interpretation method was set to select the four most intense 
peaks (limit S/N 200) for tandem mass spectrometry (MS/MS) analysis, with exclusion of peaks 
generated from trypsin autolysis, matrix or acrylamide. MS/MS was achieved by 1 kV  
collision-induced dissociation (CID). Protein identities were established by applying the Global 
Protein Server (GPS) Explorer software version 3.6 (Applied Biosystems Inc., Foster City, CA, USA) 
against SwissProt, NBCI and MSDB using the Mascot package (Matrix Science, London, UK). 
Monoisotopic peptide masses were used for combined MS and MS/MS database searches with the 
following parameters: maximum allowed peptide mass error of 21 ppm, fragment mass tolerance ± 0.3 Da, 
minimum 5 S/N and one incomplete cleavage per peptide. 

3.2.7. HDAC Colorimetric Activity Assay Kit for Screening HDAC Inhibitory Compounds 

HDAC Colorimetric Activity Assay Kit (BioVision, Milpitas, CA, USA) was used to measure 
HDAC activity in SW620 treated with BOU or MHCU at a concentration of 50 µM for 24 and 72 h 
and in untreated HeLa cells (positive control). Whole cell lysates were used for the analysis. All 
necessary reagents for the assessment of HDAC activity were supplied by the manufacturer. Briefly, 
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HDACs remove acetyl from DNA substrates as well as artificial substrates containing acetylated 
groups. Deacetylation of the substrate sensitizes the substrate and subsequent treatment with the lysine 
developer within the kit produces a chromophore. Chromophore intensity was analyzed using an 
absorbance plate reader at 400 nm. Measured values were proportional to the HDAC activity and were 
presented as percentages in comparison with the controls. Each test point was measured in triplicate.  

3.3. In Vivo Analyses 

3.3.1. Animals 

The present study was approved by the ethical committee (Faculty of Science, University of 
Zagreb, Zagreb, Croatia). Male BALB/c inbred mice of the same sex, weighing 20–25 g, 
approximately 2 months old, obtained from the Department of Animal Physiology, Faculty of Science, 
University of Zagreb, were used. The animals were kept not more than 5 per cage under a 12 h reverse 
light/dark cycle with lights off at 6 pm and were maintained on a pellet diet (Standard Diet 4RF 21 
GLP certificate, Mucedola, Italy) and water ad libitum. Animals were handled and weighed daily for a 
week to reduce any non-specific stress responses. Experimental groups comprised 8 mice each. The  
in vivo experimental protocol was modified according to the treatment of colon cancer recommended 
by the National Cancer Institute (NCI) [46]. Animal studies were performed in compliance with the 
guidelines in force in the Republic of Croatia (Law on the Welfare of Animals, Official Gazette #135, 
2006; Regulations for the Environmental Conditions of Experimental Animals, Special Conditions for 
the Facilities and Experiment Categories, Official Gazette #176, 2004 and according to the Guide for 
the Care and Use of Laboratory Animals, DHHS Publ. (NIH) 86–123, 1985. 

3.3.2. Tumor Cell Line and Culture Conditions 

The CT26 cell line is an N-nitroso-N-methylurethane induced undifferentiated adenocarcinoma of 
the colon, syngeneic with the BALB/c mouse [47,48]. For our studies, the CT26.WT cell line was 
grown in cell culture as monolayers in RPMI-1640 medium with 2 mM L-glutamine (Sigma Aldrich 
Chemie GmbH, Taufkirchen, Germany) supplemented with 10% fetal calf serum (FCS Gold, PAA 
Laboratories GmbH, Cölbe, Germany), 100 U/mL penicillin and 100 µg/mL streptomycin (PAA 
Laboratories GmbH, Cölbe, Germany). The cells were incubated at 37 °C in a humidified atmosphere 
containing 5% CO2. For the in vivo experiments, only CT26.WT cells of the first 3 serial passages after 
cryostorage were used. At the day of implantation, tumor cells were harvested from subconfluent 
cultures (70%–85%) by trypsinization (0.05% trypsin and 0.02% ethylendiamintetraessigsaure 
(EDTA), PAA Laboratories GmbH) and washed twice in a phosphate-buffered saline solution (PBS), 
and inoculated subcutaneously into BALB/c mice. Viability of cells was determined in a hemocytometer 
by observing the ability of intact cells to exclude Trypan blue dye and by phase contrast microscopy;  
it was found to be higher than 95%. 

3.3.3. Production of a Tumor in the Muscle Tissue of the Right Hind Leg 

Tumor in the muscle tissue of the right hind leg was generated by sc injection of 1 × 106 CT26.WT 
cells. Tumor was measured with a caliper every five days. Tumor volume was estimated from  
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two-dimensional measurements: tumor volume (mm3) = (a × b2)/2, where a and b are the tumor length 
and width (mm), respectively [49,50]. 

3.3.4. Survival Analysis 

Animal life span was evaluated by surveillance of spontaneous death or by selective killing of 
animals showing signs of pain or suffering according to the established criteria. Results were 
expressed as percent of mean survival time of the treated animals over mean survival time of the 
control group (treated vs. control, T/C%). The percentage of increased lifespan (ILS%) was  
calculated by the formula: ILS% = (T − C)/C × 100, where T represents the mean survival time of 
treated animals and C the mean survival time of the control group. According to the criteria of the 
National Cancer Institute, T/C above 125% and ILS above 25% means that treatment had a significant 
antitumor effect [51].  

3.3.5. Statistics 

Data were analyzed using the statistical software STATA 7.0 (Stata Press, College Station, TX, 
USA). Results were expressed as means ± S.D. Statistical significance was evaluated using ANOVA at 
p-value < 0.05 (normality of the distribution was assumed).Treatment-dose specific survival curves 
were calculated by the Kaplan-Meier method [52] and comparison between survival curves was made 
by the Mantel-Haenszel log-rank test (α = 5%) [53]. 

3.4. In Silico Analyses 

Two approaches were exploited in silico for the study of potential biological macromolecular 
targets: (1) the similarity and sub-structure searches through open access compound databases 
PubChem [54] and ChEMBLdb [55]; and (2) isosteric replacement consideration, which is based on 
the fact that substitution of atoms or fragments, which have similar size, shape or electrical density 
results in creation of molecules of the same or similar biological activity. Molecular docking was 
employed to study BOU and MHCU potential as HDAC competitive inhibitors. For this purpose, 
crystal structures of HDAC enzymes from the Protein Data Bank (PDB) [56] were analyzed and the 
studied small molecules were docked manually in pre-selected structures using the PyMOL program 
(The PyMOL Molecular Graphics System, Version 1.0r1, Schrödinger, LLC, Portland, OR, USA).  
The PDB codes of analyzed crystal structures of HDAC enzymes of classes I and II were: 3MAX 
(HDAC2), 2VQJ (HDAC4), 3C0Z (HDAC7) and 2V5X (HDAC8). The compound equilibrium 
geometries were determined at the semi-empirical PM3 level by the ArgusLab 4.0.1 program (Mark A. 
Thompson, Planaria Software LLC, Seattle, WA, USA, http://www.arguslab.com) [57]. Lipophilicity 
coefficients XlogP were read off from PubChem compound summaries. 

4. Conclusions  

In conclusion, two amino acid HU derivatives, BOU and MHCU (Figure 1A), have similar 
phenotypic antiproliferative profiles [6] but elicit different biological response at the molecular level, 
as shown here by in vitro, in silico and in vivo analyses. In vitro, O-protected hydroxyurea derivative 
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BOU showed somewhat stronger antiproliferative activity in comparison with N'-methyl-N'-hydroxy 
derivative MHCU on SW620 cells (Figure 1B). The cell-death mechanism observed for both tested 
compounds involves induction of apoptosis and probably oxidative stress that causes DNA damage for 
BOU (Table S2) and anti-inflammatory mechanisms for MHCU (Table S3). The benzyl substituted 
and free hydroxyl group of HU of BOU and MHCU, respectively, may account for their different 
biological response. This is illustrated by their inhibition of HDAC enzymes of classes I and II, as 
suggested by the in silico study and confirmed by in vitro testing (Figure 2). The observed HDAC 
inhibition activity of BOU points to the importance of occupying the “foot” pocket of class I HDAC 
enzymes and of hydrophobic interactions similarly to the case of benzamide inhibitors [33]. BOU 
exerted a significant short-term antitumor effect in vivo on the colon cancer mouse model (Figure 3A), 
which was attributed to alteration of inflammatory proteins and early oxidative stress mechanisms 
(Table S2) combined with HDAC inhibition. 
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