Next Article in Journal
Biological Significance of Calbindin-D9k within Duodenal Epithelium
Previous Article in Journal
The Effect of Carbon Monoxide Co-Adsorption on Ni-Catalysed Water Dissociation
Previous Article in Special Issue
Size-Dependent Cytotoxicity of Nanocarbon Blacks
Int. J. Mol. Sci. 2013, 14(12), 23315-23329; doi:10.3390/ijms141223315
Article

Self/Co-Assembling Peptide, EAR8-II, as a Potential Carrier for a Hydrophobic Anticancer Drug Pirarubicin (THP)—Characterization and in-Vitro Delivery

 and
*
Department of Chemical Engineering and Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
* Author to whom correspondence should be addressed.
Received: 17 October 2013 / Revised: 13 November 2013 / Accepted: 14 November 2013 / Published: 26 November 2013
(This article belongs to the Special Issue Bioactive Nanoparticles 2013)
View Full-Text   |   Download PDF [839 KB, uploaded 19 June 2014]   |   Browse Figures

Abstract

A short ionic-complementary peptide, EAR8-II, was employed to encapsulate the hydrophobic anticancer drug pirarubicin (THP). EAR8-II was designed to inherit advantages from two previously introduced peptides, AAP8 and EAK16-II, in their self/co-assembly. This peptide is short, simple, and inexpensive to synthesize, while possessing a low critical assembly concentration (CAC). The choice of alanine (A) residues in the peptide sequence provides moderate hydrophobic interactions, causing a minimal degree of aggregation, compared with other more hydrophobic residues. EAR8-II is an ionic-complementary peptide, similar to EAK16-II, can self/co-assemble with hydrophobic compounds such as THP, and forms a stable fibular nanostructure in aqueous solution. Physiochemical properties and cellular activities of the EAR8-II and THP complexes were evaluated and show dependency on the peptide-to-drug ratio. The complex at the peptide-to-drug mass ratio of 5:1 provides a stable solution, uniform nanostructure, and highly effective anticancer activity against various cancer cell lines. This work forms the basis for detailed studies on EAR8-II and THP formulations in vitro and in vivo, for future development of peptide-based delivery systems for hydrophobic anticancer drugs.
Keywords: ionic-complementary; self/co-assembly; encapsulation; stability; anticancer activity ionic-complementary; self/co-assembly; encapsulation; stability; anticancer activity
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).
SciFeed

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
RIS
MDPI and ACS Style

Sadatmousavi, P.; Chen, P. Self/Co-Assembling Peptide, EAR8-II, as a Potential Carrier for a Hydrophobic Anticancer Drug Pirarubicin (THP)—Characterization and in-Vitro Delivery. Int. J. Mol. Sci. 2013, 14, 23315-23329.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert