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Abstract:

 The phase behaviors of ionic liquids (ILs) confined in nanospace and adsorbed on outer surface of nanoparticles are expected to be different from those of the bulk. Anomalous phase behaviors of room temperature ionic liquid tributylhexadecylphosphonium bromide (P44416Br) confined in ordered mesoporous silica nanoparticles with average pore size 3.7 nm and adsorbed on outer surface of the same silica nanoparticles were reported. It was revealed that the melting points (Tm) of confined and adsorbed ILs depressed significantly in comparison with the bulk one. The Tm depressions for confined and adsorbed ILs are 8 °C and 14 °C, respectively. For comparison with the phase behavior of confined P44416Br, 1-butyl-3-methylimidazolium bromide (BmimBr) was entrapped within silica nanopores, we observed an enhancement of 50 °C in Tm under otherwise similar conditions. The XRD analysis indicates the formation of crystalline-like phase under confinement, in contrast to the amorphous phase in adsorbed IL. It was confirmed that the behavior of IL has clear difference. Moreover, the complex π-π stacking and H-bonding do not exist in the newly proposed phosphonium-based IL in comparison with the widely studied imidazolium-based IL. The opposite change in melting point of P44416Br@SiO2 and BmimBr@SiO2 indicates that the cationic species plays an important role in the variation of melting point.
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1. Introduction

Room temperature ionic liquids (ILs), solely composed of organic cations and inorganic/organic anions of varying sizes, have received considerable attention in past years due to a wide range of applications and scientific research interests [1–3]. The tunable cations and anions lead to their peculiar chemical and physical properties, for example, negligible volatility, thermal stability, nonflammability, and high ionic conductivity and so forth. In recent years, many researchers focused on developing ILs for certain application and synthesizing a series of promising hybrid ionogel material [4–7], in which the ILs exist under the confinement or immobilization environment. As a matter of fact, several reports including theoretical and experimental work have found the anomalous phase behavior of ILs and other liquid confined in nanospace or immobilized on the surface of nanoparticles. The obvious difference between confined or adsorbed ILs and the bulk is the dramatic change in melting point (Tm). Kanakubo et al. [8] found that Tm was depressed as 30 °C in comparison with the bulk when (Bmim)(CF3SO3) and (Bmim)((CF3SO3)2N) were confined within CPGs (controlled-pore glasses). Kim et al. [9] reported the melting point enhancement of imidazolium-based ILs confined in GMLs (graphene multilayers). Recently, our group found [10] that the interfacial effects and hydrogen-bonding networks between ILs and nano-SiOx are responsible for the decrease of melting point of ILs. Moreover, we elucidated [11] that compressed gas within nanopores plays an important role in changing the melting point of confined ILs. The previous works have shown that nanoconfinement procedures as well as different nanoporous materials all contribute to the change in phase behavior of ILs. Furthermore, mesoporous materials with well-defined pore structures which could be easily synthesized and modified have great potential for separation, catalysis, semiconductive materials and so on [12]. Design for confined nanospaces incorporating with special guest molecules and atoms in metallocages and metal-organic frameworks also move on the development of functional materials [13,14].

With the combination of our continuous efforts to investigate the phase behavior of imidazolium-based ILs on the surface of mica [15], polystyrene submicrospheres [16], inside of multiwalled carbon nanotubes [17] and SiO2 nanopores [18], in this study, new proposed phosphonium-based IL P44416Br was filled into SiO2 nanopore under conditions of ultrahigh vacuum and adsorbed onto the outer surface of SiO2 by stirring the IL and SiO2 in a vessel, respectively. The difference between the newly proposed IL P44416Br and the widely used imidazolium-based IL is the distinct cationic species: the former consists of an atom phosphorus center and a hydrocarbon skeleton. Thus, the complex π-π stacking and H–bonding do not exist in P44416Br. For comparison, we also entrapped imidazolium-based IL BmimBr within the same type of SiO2 nanopores. Differential scanning calorimetry (DSC) was employed to detect the phase behaviors of confined and adsorbed ILs. We observed a significant Tm depression for both confined and adsorbed P44416Br, but the depression is more pronounced for the adsorbed one; however, the contrast experiment indicated the enhancement Tm of BmimBr confined in SiO2 nanopore. X-ray diffraction analysis was performed to investigate the property variation of ILs existing in two independent circumstances.



2. Results and Discussion

The ionic liquids in this study have different cations and their models are shown in Figure 1. The new proposed phosphonium-based IL tributylhexadecylphosphonium bromide (P44416Br) is entrapped within ordered mesoporous SiO2 with pore size 3.7 nm at 100 °C under conditions of ultrahigh vacumm (1 × 10−5 Pa). By this procedure, as illustrated in our previous work [11], the air in the cavities of SiO2 particles could be completely removed and the IL could be easily entrapped in cavities of SiO2. The IL-filled samples will hereafter be referred to as P44416Br@SiO2. The TGA analysis shows that the loading amount of IL in P44416Br@SiO2 is 39 wt%. Surface adsorption experiment for P44416Br and SiO2 in a mass ratio of 39:100 was also carried out, and the sample was abbreviated to P44416Br/SiO2. Transmission electron microscopy (TEM) was conducted to characterize the morphology of SiO2, P44416Br/SiO2 and P44416Br@SiO2. As shown in Figure 2, the confined IL in the P44416Br@SiO2 reveals clearly that some IL is entrapped in the channel of SiO2 (as indicated by arrows in Figure 2c), while the surface adsorption experiment shows that the SiO2 is covered with IL (as shown in Figure 2b). The morphology of confined IL is consistent with the work by Ji et al. [19], who reported the tungsten carbide confined in the channels of SBA-15 mesoporous silica.

Figure 1. Two types of ionic liquids with various cations and the same anion.
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Figure 2. TEM images and the corresponding EDX spectra of SiO2 nanoparticles (a,d), P44416Br/SiO2 (b,e), and P44416Br@SiO2 (c,f). The scale bar in (a) applies to all three images. The arrows show the existence of ILs in nanopores.
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To investigate the phase behavior change of ILs, DSC experiments were carried out. Figure 3A shows DSC curves for P44416Br/SiO2, bulk P44416Br, and P44416Br@SiO2. The melting point of P44416Br/SiO2 is observed to be 55 °C, being 14 °C lower than that of the bulk P44416Br. Our result is in good agreement with the literature [20] in which a remarkable depression Tm is also observed when imidazolium-based IL is immobilized on the surface of SiO2. The reduction of Tm in our results is mainly attributed to the interaction between IL and SiO2. As illustrated in the literature [21], the intermolecular interactions between IL and surface will decrease the mobility of cations near the interface, the cations trend to absorb onto the surface, and thus the cations are trapped in a higher entropic state, leading to a depression in Tm[22]. The H–bonding between IL and hydroxyl of surface will possibly lead to an increase in Tm, but the overall effect observed is the depression in Tm. However, a novel depression in melting point of confined ILs was observed when P44416Br was entrapped in SiO2. The melting point of P44416Br@SiO2 is 61 °C, which is 8 °C lower than that of pristine P44416Br (Figure 3A). As reported in previous works [9,17,18], the nanoconfinement can lead to the enhancement of Tm, while, in this case, the depression in Tm of confined ILs P44416Br is mostly due to the choice of different cationic species. For comparison, imidazolium-based IL BmimBr was entrapped within SiO2, an elevation of Tm was observed (Figure 3B). In nanoconfinement, IL will be compressed leading to a reduction in distance between anion and cation [18]. We supposed that the reduction in distance between anion and cation will result in the compression of C–H···Br hydrogen bonding that exists in imidazolium-based IL, this as well as strengthened coulomb force resulting from compression play important roles leading to an increased melting point of confined ILs. Konstantin [23] also reported an increased melting point originating from the presence of extremely short C–H···F contacts in the crystal and atomistic molecular dynamics simulation illustrated that imidazolium-based IL formed the dramatic hydrogen-bonded network structure under confinement [24,25]. The compression of confined IL ought to be a general phenomenon. In sample P44416Br@SiO2 the compression will strengthen the coulomb force and enhance the melting point of confined IL, the absence of C–H···Br hydrogen bonding and the IL-wall interaction should all contribute to the change in melting point; thus, the integrative effects depressed the melting point. This is the reason that the melting point of P44416Br@SiO2 is higher than that of P44416Br/SiO2. In other words, the cationic species, which would result in the different interaction between cation and anion, plays a non-negligible role in changing the melting point of confined ILs.

Figure 3. Differential scanning calorimetry (DSC) heating curves for (A) P44416Br/SiO2; P44416Br; P44416Br@SiO2; (B) BmimBr; BmimBr@SiO2.
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It is generally believed that the confinement effect can lead to the structural vibration of IL. Molecular dynamics simulations reported that 1,3-dimethylimidazolium chloride undergoes a liquid-to-solid transition under the confinement of graphite walls and 1-butyl-3-methylimidazolium hexafluorophosphate possesses long-range crystalline order at 300 K in carbon nanopore [26,27]. To further understand the structural variation of confined and adsorbed ILs, the X-ray diffraction measurement was employed. Figure 4A implies the formation of crystalline state of the confined ILs, some new peaks appear in comparison with the bulk P44416Br. However, as illustrated in Figure 4B, the P44416Br/SiO2 is speculated to be amorphous, the wide-bound peak between 15° and 30° is due to the amorphous peak of SiO2. It is noted that the bulk P44416Br has crystal-like structure and the XRD analysis indicates that the conformation or stacking of ILs under confinement or adsorption has critical change. The influence of silica nanoparticles on the behavior of P44416Br is further proved from the enthalpy of fusion for bulk P44416Br, P44416Br@SiO2 and P44416Br/SiO2, shown in Table 1. Different enthalpy of fusions between P44416Br@SiO2 and P44416Br/SiO2 indicate the difference in structure for confined and adsorbed ILs. The interfacial effect and hydroxyl of surface most likely disarrange the structure of the adsorbed IL and confinement may result in “compact stacking” (Scheme 1).

Figure 4. XRD patterns of the bulk P44416Br and the sample P44416Br @SiO2. Inset: XRD pattern of sample P44416Br/SiO2.
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Scheme 1. Schematic diagram of the influence of silica nanoparticles on ionic liquid behavior.
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Table 1. Enthalpy of fusion for bulk P44416Br, P44416Br@SiO2 and P44416Br/SiO2.








	
	P44416Br
	P44416Br@SiO2
	P44416Br/SiO2





	Enthalpy of fusion/J·g−1
	73.02
	21.67
	17.90










3. Experimental Section


3.1. Materials

P44416Br, BmimBr ionic liquids, silica nanoparticles and methanol were obtained from Sigma-Aldrich® (Shanghai, China). The average pore diameter of silica is 3.7 nm. All the materials were reagent grade and used as purchased.



3.2. Experimental Details

Exactly 214.6 mg SiO2 was put into a two-necked flask (one of the necks was connect with a high-vacuum line and the others was sealed). The flask was heated 100 °C for 6 h under vacuum (1 × 10−5 Pa) to remove the gas and water in the cavities of SiO2 nanopores. Then 436.2 mg P44416Br ionic liquids dissolved in methanol was transferred into the flask through a syringe and the mixture was subsequently heated at 100 °C for 6 h. The P44416Br ionic liquid filled into the cavities of SiO2. The as-prepared product was cooled to room temperature and washed with methanol to remove the P44416Br adsorbed on the outer surface of SiO2 and then dried at 50 °C in an oven for 12 h to remove any volatiles to obtain the final sample P44416Br@SiO2. The same procedure was employed for the preparation of BmimBr@SiO2.

Exactly 430.3 mg SiO2 and 168.2 mg P44416Br ionic liquid (mass ratio = 100:39) were added to an appropriate amount of methanol solution in a glass beaker. The solution was stirred for 24 h and then dried at 50 °C in an oven for 12 h to remove any volatiles to obtain the final sample P44416Br/SiO2.



3.3. Characterizations

Phase behaviors of the bulk P44416Br, the sample P44416Br@SiO2 and P44416Br/SiO2 were determined by differential scanning calorimetry (DSC-822e, Mettler-Toledo Corp.). The programmed heating rate is 10 °C/min, the sample about 12 mg was placed in an aluminum pans with pierced lids.

X-ray diffraction (XRD) measurement patterns were recorded with a Philips X-ray diffractometer (PW-1710) using Cu Kα radiation ranging from 5° to 50°.

Transmission electron microscopy (TEM) was performed on a Zeiss EM 912 operated at 120 kV.




4. Conclusions

In summary, we studied the phase behavior of phosphonium-based IL P44416Br in two independent circumstances (adsorption and confinement). We observed a remarkable depression in Tm, the melting point of adsorbed IL, P44416Br/SiO2, was lower than that of confined IL, P44416Br@SiO2, and all two samples have a depressed melting point in comparison with the bulk one. The XRD measurement further illustrated different structural variation of P44416Br in two independent circumstances. In the context of previous work and the phase behavior of imidazolium-based IL confined in silica, BmimBr@SiO2, our results indicated that the cationic species plays an important role in changing the melting point. It was assumed that the interfacial effect and hydroxyl of surface are responsible for depression in melting point of the adsorbed P44416Br and that the confinement effect and interaction of IL contributed to the change in the melting point of confined P44416Br.
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