Int. J. Mol. Sci. 2013, 14(10), 20845-20876; doi:10.3390/ijms141020845

Protein Glutathionylation in Cardiovascular Diseases

1 Laboratory of Biochemistry, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy 2 Unit of Neuromuscular and Neurodegenerative Diseases, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
* Author to whom correspondence should be addressed.
Received: 29 August 2013; in revised form: 2 October 2013 / Accepted: 8 October 2013 / Published: 17 October 2013
(This article belongs to the Special Issue Oxidative Stress in Cardiovascular Disease)
PDF Full-text Download PDF Full-Text [586 KB, uploaded 17 October 2013 13:27 CEST]
Abstract: The perturbation of thiol-disulfide homeostasis is an important consequence of many diseases, with redox signals implicated in several physio-pathological processes. A prevalent form of cysteine modification is the reversible formation of protein mixed disulfides with glutathione (S-glutathionylation). The abundance of glutathione in cells and the ready conversion of sulfenic acids to S-glutathione mixed disulfides supports the reversible protein S-glutathionylation as a common feature of redox signal transduction, able to regulate the activities of several redox sensitive proteins. In particular, protein S-glutathionylation is emerging as a critical signaling mechanism in cardiovascular diseases, because it regulates numerous physiological processes involved in cardiovascular homeostasis, including myocyte contraction, oxidative phosphorylation, protein synthesis, vasodilation, glycolytic metabolism and response to insulin. Thus, perturbations in protein glutathionylation status may contribute to the etiology of many cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy and atherosclerosis. Various reports show the importance of oxidative cysteine modifications in modulating cardiovascular function. In this review, we illustrate tools and strategies to monitor protein S-glutathionylation and describe the proteins so far identified as glutathionylated in myocardial contraction, hypertrophy and inflammation.
Keywords: glutathione; S-glutathionylation; myocardial; contraction; metabolism; hypertrophy; inflammation; cardiovascular diseases; atherosclerosis

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Pastore, A.; Piemonte, F. Protein Glutathionylation in Cardiovascular Diseases. Int. J. Mol. Sci. 2013, 14, 20845-20876.

AMA Style

Pastore A, Piemonte F. Protein Glutathionylation in Cardiovascular Diseases. International Journal of Molecular Sciences. 2013; 14(10):20845-20876.

Chicago/Turabian Style

Pastore, Anna; Piemonte, Fiorella. 2013. "Protein Glutathionylation in Cardiovascular Diseases." Int. J. Mol. Sci. 14, no. 10: 20845-20876.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert