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Abstract: NG,NG-dimethyl-L-arginine (ADMA) and NG-methyl-L-arginine (NMMA) are 

endogenous inhibitors of nitric oxide synthase (NOS). In contrast, NG,N'G-dimethyl-L-

arginine (SDMA) possesses only a weak inhibitory potency towards neuronal NOS and it is 

known to limit nitric oxide (NO) production by competing with L-arginine for cellular 

uptake. The inhibition of NOS is associated with endothelial dysfunction in cardiovascular 

diseases as well in chronic renal failure. L-Homoarginine (HArg), a structural analog of  

L-arginine (Arg), is an alternative but less efficient substrate for NOS. Besides, it inhibits 

arginase, leading to an increased availability of L-arginine for NOS to produce NO. 

However, its relation with cardiovascular disease remains unclear. To date, several 

analytical methods for the quantitative determination of Arg, HArg, NMMA, AMDA, and 

SDMA in biological samples have been described. Here, we present a simple, fast, and 

accurate HPLC-ESI-MS/MS method which allows both the simultaneous determination 

and quantification of these compounds without needing derivatization, and the possibility 

to easily modulate the chromatographic separation between HArg and NMMA (or between 

SDMA and ADMA). Data on biological samples revealed the feasibility of the method, the 

minimal sample preparation, and the fast run time which make this method very suitable 

and accurate for analysis in the basic and clinical settings. 
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1. Introduction 

The methylarginines, NG-methyl-L-arginine (monomethylarginine; NMMA), NG,NG-dimethyl-L-

arginine (asymmetric dimethylarginine, ADMA), and NG,N'G-dimethyl-L-arginine (symmetric 

dimethylarginine; SDMA) as well as L-arginine (Arg) and L-homoarginine (HArg) are important 

players of the nitric oxide (NO) metabolism [1]. NO, an important regulator of vascular homeostasis, is 

synthesized from L-arginine by NO synthase (NOS) [2,3]. The reduction of its synthesis promotes 

endothelial dysfunction and correlates with risk factors for cardiovascular disease (CVD) [2,3]. 

Circulating ADMA and NMMA are inhibitors of NOS activity [1,4,5]. SDMA, considered not to 

inhibit NOS, has been shown to possess a weak inhibitory potency towards neuronal NOS [6].  

Free ADMA, SDMA, and NMMA are supposed to be produced in the human body through the 

methylation of protein arginine residues by protein arginine methyltransferases (PRMT) and released 

during proteolysis of the methylated proteins [4]. To maintain a steady pool size, free methylarginines 

are metabolized by dimethylarginine dimethylaminohydrolase (DDAH) enzymes. An imbalance in this 

pool, due to PRMT or DDAH dysfunction, might increase cardiovascular risk. Indeed, elevated levels 

of ADMA, which is considered a risk factor for CVD, have been detected in a large number of 

diseases associated with an impaired endothelial L-arginine-NO pathway, such as atherosclerosis, 

hypertension, hypercholesterolemia, chronic heart failure, type 2 diabetes mellitus, stroke, and 

hyperhomocysteinemia [7–10].  

Notably, we recently showed that these three methylarginines, in addition to being produced 

endogenously, can also be taken daily in conspicuous amounts through the diet [11]. Indeed, ADMA, 

SDMA, and NMMA are ubiquitous in vegetables which represent an important part of the human daily 

diet. Among vegetables, soybean, rye, sweet pepper, broad bean, and potato contain considerable 

amounts of ADMA, SDMA, and NMMA [11]. The highest mean content of NMMA has been detected 

in sweet pepper and potato (7.6 and 7.2 µmoles/kg, respectively) which also contain about 9.6 and  

4.1 µmoles/kg of ADMA and 0.8 and 0.6 µmoles/kg of SDMA, respectively. 

Homoarginine (HArg) interferes with the regular NO production as it competes with arginine for 

the NO synthesis although it is a less efficient NOS substrate than arginine [12]. However, studies on 

the relationship between HArg levels and CVD had seemingly contradicting outcomes. Indeed, both 

high and low HArg levels have been linked to cardiovascular detrimental effects. High HArg levels 

have been found to induce increased vascular resistance, whereas prospective studies showed that low 

HArg levels were associated with cardiovascular mortality and stroke [13–15]. 

The development of rapid and feasible methods for the combined determination of Arg and  

its metabolites and analogs is still challenging as it might have an impact on NO metabolic  

studies. Actually, several methods for the determination of Arg and related metabolites in biological 

fluids, usually associated with numerous difficulties due to the extraction and derivatization steps,  

are available [16–20]. We recently reported an original chromatographic procedure that can be 

employed to analyze ADMA, SDMA, and NMMA with ESI-mass spectrometry detection without 
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needing derivatization [11]. This method, performed with a short silica column (Supelcosil™ LC-Si  

3.3 cm × 4.6 mm i.d., 3 μm particle size) utilizes isocratic elution conditions which represent a 

noticeable advantage in terms of baseline stability during the chromatography with MS detection and 

spare time for skipping column re-equilibration after each analysis [11]. The use of the Supelcosil™ 

LC-Si column, usually employed with normal phase elution mode, allows the separation of NMMA, 

SDMA, and ADMA using a purely aqueous mobile phase and with retention times of 7, 9, and  

10.5 min, respectively. However, the elution conditions utilized in that work [11] although allowing 

short analysis time result in poor resolution between HArg and NMMA, which was unimportant in the 

particular case as HArg was absent in the vegetal samples analyzed in that research. 

Taking into account the emerging role of HArg as a risk factor in CVD, there is increasing interest 

in measuring HArg levels in human subjects and cell culture. Here, we report a novel and feasible 

application of the HPLC-ESI-mass spectrometry detection using the Supelcosil™ LC-Si column which 

allows an accurate and combined determination of NMMA, SDMA, ADMA, Arg, and HArg in 

biological fluids such as plasma and urine.  

2. Results and Discussion 

The chromatography was performed with a short silica column (Supelcosil™ LC-Si 3.3 cm × 4.6 mm 

i.d., 3 µm particle size), employing isocratic elution conditions. This procedure, proven to be suitable 

for polar substance analysis with ESI-MS/MS detection (Table 1), does not require sample 

derivatization. Importantly, the minimal sample preparation, i.e., resuspension in 0.1% solution of 

formic acid in water after protein precipitation makes this step inexpensive and no time-consuming. 

The effect of the deproteinization step was evaluated by adding NMMA as internal standard in some 

samples in which this substance was found absent. The recoveries resulted in the range of 94%–98%. 

In order to assess linearity, five aqueous solutions of the standards at various concentrations were 

prepared as reported in the experimental section. The correlation coefficients (R2) of the calibration 

curves resulted in the range 0.988–0.998. The limit of quantification in plasma (LOQ), which was 

practically the same for all the five substances, was 0.06 µM. The linear range and the LOQ are similar 

to previously described methods.  

Table 1. Mass spectrometric conditions. The HPLC Agilent 1100 series was equipped  

with on line degasser and automatic injector coupled on-line with an  

Agilent 1100 LC/MSD SL quadrupole ion trap. 

Agilent LC–MSD SL quadrupole ion trap settings 

MS acquisition ESI in positive ion mode 
Nebulizer pressure 30 psi 
Drying temperature 350 °C 

Drying gas 7 L/min 

 
Ion Charge Control (ICC), target set at 30,000, 

maximum accumulation time at 20 ms 

The chromatographic separation of Arg, HArg, NMMA, SDMA, and ADMA is shown in Figure 1. 
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Figure 1. Chromatographic separation of Arg, HArg, NMMA, SDMA, ADMA with  

full-scan detection. (A) Elution pattern of the chromatography performed utilizing 10% of 

Sol. B (100 mM ammonium formate in water titrated to pH 4.5 with formic acid) and 90% 

Sol. A (0.1% formic acid in water); (B) Elution pattern of the chromatography performed 

utilizing 20% of Sol. B and 80% Sol. A. The concentrations were 5.1 µM for Arg, 5.9 µM 

for HArg, 7.4 µM for NMMA, 8.6 µM for SDMA and 8.4 µM for ADMA. The retention 

times for the chromatography in panel A resulted 6.3 min, 7.4 min, 8.4 min, 12.3 min  

and 14.6 min for Arg, HArg, NMMA, SDMA and ADMA, respectively. The retention 

times for the chromatography in panel B resulted 5.4 min, 6.1 min, 7.0 min, 9.1 min and 

10.7 min for Arg, HArg, NMMA, SDMA and ADMA, respectively.  

 

Perhaps the most important feature of the reported chromatographic analyses is the noticeable 

dependence on the content of ammonium formate in the elution solvent of the retention times and, 

hence, of the resolution of those substances. In fact, when the chromatography is performed utilizing 

an eluent of 0.1% solution of formic acid in water (Sol. A), SDMA and ADMA elute at high retention 

times (above 60 min) as very broad peaks. Instead, the effect of ammonium formate addition to the 

eluent is clearly shown by the comparison of the two panels shown in Figure 1.  

In panel A, which reports the elution pattern of the chromatography performed utilizing 10% of  

Sol. B and 90% Sol. A, an almost complete resolution among Arg, HArg and NMMA can be observed. 

In contrast, in panel B, which reports the chromatography performed utilizing an eluent composition of 

20% Sol. B and 80% Sol. A, the peaks of HArg and NMMA are more poorly resolved. It is important 

to note that the MS/MS fragmentation pattern of NMMA and HArg are almost identical. Indeed, it is 

possible to quantify by MS/MS mass spectrometry NMMA also in the presence of HArg as NMMA 



Int. J. Mol. Sci. 2013, 14 20135 

 

 

shows an intense fragment at m/z 74 that is absent in the MS/MS fragmentation pattern of HArg. The 

converse does not hold as all the analytically important MS/MS fragments of HArg are common with 

NMMA. For this reason if one wants to quantify by mass spectrometry HArg in presence of NMMA, it 

is mandatory to obtain the chromatographic separation of the two substances and this can be obtained 

utilizing the chromatographic condition of panel A. Indeed, we found that a reasonably good 

separation can be obtained with molar ratios of HArg/NMMA up to 10:1.  

When determining the levels of Arg and its metabolites in samples of plasma from human healthy 

volunteers (n = 12), the results indicated that the concentrations we found were comparable to the 

mean values previously reported [16–20]. Specifically, the plasma mean concentrations detected with 

the method here described were 86 ± 12.5 µM for Arg, 2.3 ± 0.74 µM for HArg, 0.67 ± 0.04 µM for 

ADMA, 0.522 ± 0.08 µM for SDMA, and 0.11 ± 0.09 µM for NMMA. The urine mean concentrations 

were 12.1 ± 1.5 µM for Arg, 2.1 ± 0.31 µM for HArg, 45.2 ± 13.5 µM for ADMA, and 48.4 ± 12.1 µM 

for SDMA. The data reported are expressed as mean ± standard deviation (n = 12). 

3. Experimental Section  

3.1. Reagents 

ADMA (NG,NG-dimethyl-L-arginine dihydrochloride), SDMA (NG,N'G-dimethyl-L-arginine 

diphydroxyazobenzene-p'-sulfonate salt, NMMA (NG-methyl-L-arginine acetate salt), homoarginine, 

formic acid, ammonium formate and the 0.1% solution of formic acid in water used for the  

LC–ESI–MS analyses were from Sigma–Aldrich (Milan, Italy).  

3.2. Sample Preparation 

Plasma and urine samples were obtained from human healthy subjects. An aliquot (100 µL) was 

deproteinized by adding 300 µL of pure methanol. Samples were mixed for 10 s, stored at −20 °C for  

1 h, and then centrifuged at 10,000 × g for 10 min at 4 °C. Supernatants were recovered, evaporated 

and then dissolved in 100 µL of 0.1% solution of formic acid in water. An aliquot of 20 µL was used 

for HPLC-ESI-MS/MS analyses. 

3.3. HPLC–ESI–MS/MS Instrumental Conditions 

The HPLC-ESI-MS analyses were performed with some modification to the previously described 

method [11]. Briefly, analyses were performed with an HPLC Agilent 1100 series equipped with  

on line degasser and automatic injector coupled on-line with an Agilent LC-MSD SL quadrupole ion 

trap as described [11]. The measurements were performed from the peak area of the Extracted  

Ion Chromatogram (EIC). The quantification was achieved by comparison with the calibration  

curves obtained with standard solutions prepared at a concentration of 2000 mg/L. Additional 

calibration levels (25, 5, 2, 1 and 0.1 mg/L) were prepared by serial dilution with water containing 

0.1% formic acid and stored at 4 °C. The mass cut-off and the fragmentation amplitude were optimized 

in order to obtain the most efficient MS/MS transitions from the positively charged precursor ion  

[M + H+] to the fragment ions. Multiple reaction monitoring was used for analyte quantification, the 

MS/MS transitions utilized were 175.1→116 for Arg, 189.2→144 for HArg, 189.2→74 for NMMA, 
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203.2→172 for SDMA, 203.2→158 for ADMA. Successively, volumes of 10–20 µL of standard 

solutions or samples were analyzed by HPLC–ESI–MS/MS by using the silica column Supelcosil™ 

LC-Si 3.3 cm × 4.6 mm i.d., 3 μm particle size. The elution was performed isocratically at a flow rate 

of 100 μL/min with an eluent obtained by mixing in the due ratio a solution of 0.1% formic acid in 

water (Sol. A) and 100 mM ammonium formate in water titrated to pH 4.5 with formic acid (Sol. B). 

The retention times and peak areas of the monitored fragment ions were determined by the Agilent 

software Chemstation version 4.2. 

4. Conclusions 

Attractive features of the HPLC–ESI-MS/MS method described here for the determination of Arg, 

HArg, NMMA, ADMA, and SDMA in biological samples are: (i) the minimal sample preparation 

without the need of derivatization; (ii) the modulation of the analysis time by suitably modifying the 

content of ammonium formate in the eluent and, most of all; (iii) the feasibility which offers the 

opportunity to modulate, depending on the specific experimental requirements, the chromatographic 

separation between HArg and NMMA (or between SDMA and ADMA).  
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