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Abstract: MicroRNAs (miRNAs) are potent post-transcriptional regulators of gene 

expression. In mammalian cells, miRNAs typically suppress mRNA stability and/or 

translation through partial complementarity with target mRNAs. Each miRNA can regulate 

a wide range of mRNAs, and a single mRNA can be regulated by multiple miRNAs. 

Through these complex regulatory interactions, miRNAs participate in many cellular 

processes, including carcinogenesis. By altering gene expression patterns, cancer cells can 

develop specific phenotypes that allow them to proliferate, survive, secure oxygen and 

nutrients, evade immune recognition, invade other tissues and metastasize. At the same 

time, cancer cells acquire miRNA signature patterns distinct from those of normal cells; 

the differentially expressed miRNAs contribute to enabling the cancer traits. Over the past 

decade, several miRNAs have been identified, which functioned as oncogenic miRNAs 

(oncomiRs) or tumor-suppressive miRNAs (TS-miRNAs). In this review, we focus 

specifically on TS-miRNAs and their effects on well-established cancer traits. We also 

discuss the rising interest in TS-miRNAs in cancer therapy.  
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1. Introduction 

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression  

post-transcriptionally. In mammalian cells, miRNAs suppress the expression of proteins encoded by 

target mRNAs with which miRNAs interact with incomplete complementarity; typically occurring 

with the 3'-untranslated region (UTR) of the target mRNA and leading to its degradation and/or its 

translational suppression [1,2]. The target mRNAs of a given miRNA can be predicted with a 

relatively high degree of success using sequence algorithms that identify homologies between the 

“seed” region of the miRNA and the complementary site on the target mRNA. These interactions 

typically occur between the miRNA seed region and a complementary sequence in the 3'-untranslated 

region (UTR) of the target mRNA, but they may also take place with the mRNA coding region or 

5'UTR, as well as with seedless miRNAs [3,4]. Through their influence on subsets of target mRNAs, 

miRNAs have emerged as critical regulators of numerous cellular processes, including cell division, 

differentiation, senescence and apoptosis [5–7]. Thus, dysregulated miRNA expression can have a 

profound impact upon the cell fate and can lead to the development of pathologies like cancer [8]. 

Cancer cells typically display special miRNA signatures distinct from those of normal cells; 

accordingly, some miRNAs are currently used as cancer biomarkers [9–13]. There is strong interest in 

studying the patterns of miRNAs in cancer, since they can directly influence the production of tumor 

suppressor proteins and oncoproteins and hence affect tumor development and response to therapy. 

Some miRNAs are selectively increased in cancer cells, but more often, miRNAs show decreased 

expression in cancer cells [14–16]. Considering their influence on the cancer cell phenotype,  

some miRNAs are considered to be oncogenic (oncomiRs), and other miRNAs are considered to be  

tumor-suppressive (TS-miRNAs).  

As proposed by Hanahan and Weinberg, normal cells acquire a number of characteristics as they 

transform into cancerous cells [17]. For cancer cells to thrive, they must remain in a proliferative state, 

survive despite adverse surrounding conditions, elicit local angiogenesis, invade other tissues, 

metastasize and evade recognition by the body’s immune system. Numerous TS-miRNAs are 

downregulated in cancer tissues; upon re-expression, they suppress various processes relevant to 

tumorigenesis, including proliferation, apoptosis and migration. In this review, we focus on the 

influence of TS-miRNAs on the hallmark traits acquired by cancer cells. We consider TS-miRNAs 

broadly as miRNAs targeting mRNAs that encode proteins, which enable cancer traits. We also 

discuss the growing efforts to exploit TS-miRNAs in cancer therapy. 

2. TS-miRNAs that Suppress Cell Growth and Proliferation 

For cells to become a tumor, they must proliferate in order to augment the size of the transformed 

cell population. Sustained cancer cell proliferation normally requires a continuous supply of 

proliferative signals. For example, the levels and/or function of proteins that promote cell cycle 

progression, such as cyclins and cyclin-dependent kinases (cdks), are commonly elevated in cancer 

cells and result in shorter division periods [18]. In addition, there is increased expression of several 

other proteins that promote cancer cell growth and proliferation, including those required to sustain 

proliferative signals, like B cell CLL/lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), 
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sirtuin 1 (SirT1), high-motility group AT-hook gene 1 (HMGA1) and other factors discussed below. 

Factors that stimulate cancer cell growth include the epidermal growth factor (EGF), vascular 

endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) [19]. In this section, we 

review examples of TS-miRNAs that block or reduce cancer cell proliferation and growth.  

Several TS-miRNAs suppress the expression of one or more of these proliferation enhancers and 

thus block the growth of different cancers. For example, miR-34a represses the production of Bcl-2 

and SirT1, two proteins displaying high levels of expression in cancer cells and implicated in 

promoting proliferation and cell survival [20–22], although miR-34a does not affect Bcl-2 expression 

levels in all cell systems [23]. In agreement with the finding that transgenic mice overexpressing AIB1 

(Amplified In Breast Cancer 1) developed mammary epithelial cell proliferation, hyperplasia and 

tumorigenesis, low levels of miR-17-5p in breast cancer correlated with increased expression of the 

mRNA encoding AIB1, and conversely, miR-17-5p overexpression suppressed cell proliferation [24–26]. 

Also in breast cancer cells, miR-125a was shown to target the RNA-binding protein HuR, which is 

essential for proliferation and broadly enhances cancer traits [27,28]. Another miRNA targeting HuR, 

miR-519 suppresses cell proliferation and inhibits tumorigenesis [29,30]. The effect of miR-519 on 

cell proliferation was extended to ovarian, lung and kidney tumors, where the low abundance of  

miR-519 correlated inversely with HuR protein levels [30]. In breast cancer, the promoter of miR-125b 

was methylated and silenced, which allowed the levels of the miR-125b target oncoprotein (Ets1) to 

rise. In agreement with the finding that restoring miR-125b expression inhibited breast cancer cell 

proliferation by blocking Ets1, high levels of Ets1 correlated with poor patient prognosis [31].  

miR-125b was also able to block cell proliferation in hepatocellular carcinoma (HCC) by targeting the 

anti-apoptotic protein Bcl-2 [32]. The influence of miR-125b on tumorigenesis may be cell- and  

tissue-specific, since it promoted malignant transformation of different hematopoietic lineages in mice 

and was upregulated in acute megakaryoblastic leukemia [33,34]. By contrast, the levels of miR-1 

were drastically low in thyroid adenomas and carcinomas, and in these cells, miR-1 levels were 

inversely correlated with those of cyclin D1, required for G1/S transition [35].  

miR-1 is epigenetically silenced in primary and distant metastatic human prostate tumors. 

Overexpression of miR-1 disrupted cell cycle progression, which subsequently led to growth inhibition 

and suppression of prostate cancer xenograft growth [36]. miR-1 expression levels are also reduced in 

primary human HCC compared with normal liver tissues, and ectopic expression of miR-1 in HCC 

cells inhibited cell growth and reduced replication potential and clonogenic survival. These effects 

were associated with inhibition of cell cycle progression and induction of apoptosis [37]. In addition, 

miR-1 is downregulated in human primary lung cancer tissues and cell lines, and its overexpression in 

lung carcinoma cell lines A549 and H1299 reduced cell growth and tumor formation in nude mice. 

These effects were associated with reduced expression of oncogenes, including the receptor tyrosine 

kinase MET and serine/threonine-protein kinase Pim-1, which are often upregulated in lung cancer and 

are involved in cell growth and proliferation [38]. 

miR-28 expression was lower in colorectal cancer than in normal colon, and its restoration led to an 

inhibition of cell proliferation [39]. Expression of miR-205 was silenced in prostate cancer; since  

miR-205 transcriptionally activated the expression of tumor suppressors interleukin (IL)-24 and IL-32, 

miR-205 reintroduction led to the re-expression of IL-24 and IL-32, triggering apoptosis and growth 

arrest [40]. miR-296 downregulated HMGA1 expression in prostate cancer cells, in turn reducing cell 
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proliferation [41]. In gastric cancer, miR-148b inhibited cell proliferation in vitro and in vivo by 

lowering the levels of cholecystokinin-B receptor (CCKBR), a protein that promotes tumorigenesis [42].  

miR-135a suppressed gastric cell proliferation at least partly by reducing the production of the 

cytoplasmic tyrosine kinase JAK2 (Janus kinase 2), which influences cell proliferation through its 

downstream signaling effectors STAT3, cyclin D1 and Bcl-XL [43]. miR-146a suppressed cell 

proliferation in extranodal NK/T cell lymphoma (NKTL) and was proposed to function as a general 

TS-miRNA by targeting genes involved in cell proliferation (reviewed in [44,45]). In colon and breast 

cancer cells, miR-145 suppressed tumor growth indirectly by targeting p70S6K1 (required for 

expression of VEGF and hypoxia-inducible factor 1 (HIF-1)) and directly by targeting  

VEGF-A [46,47]. In glioma cells, miR-128 suppressed tumor growth by targeting EGF and PDGF 

receptors, thus inhibiting mitogenic growth signals [48].  

Other proposed TS-miRNAs include miR-101, miR-143, miR-24, miR-133a, miR-133b, miR-138, 

miR-216b, miR-155, miR-138, miR-508-3p and miR-509-3p, since they suppressed cell proliferation 

and growth in different cancers, such as bladder transitional cell carcinoma (TCC), laryngeal squamous 

cell carcinoma (LSCC), esophageal squamous cell carcinoma (ESCC) and melanoma [49–54]. In sum, 

altered miRNA levels in cancer cells can help to promote cancer progression by increasing cell 

proliferation. In some instances, the restoration or overexpression of these miRNAs was effective in 

suppressing cancer proliferation both in vitro and in vivo. 

3. TS-miRNAs that Enhance Cell Death 

The survival of cancer cells can be enhanced through the accumulation of genetic mutations that 

lower the levels of some tumor suppressors, like p53 (which triggers growth arrest, senescence and 

apoptosis), or by altering the expression of tumor suppressor-regulatory proteins, like Mdm2, which 

enhances p53 degradation [55–58]. In addition, cancer cell survival can be improved by the expression 

of anti-apoptotic proteins, such as members of the Bcl-2 family. Thus, TS-miRNAs can enhance 

cancer cell death by regulating anti-apoptotic factors. For example, p53 is induced in response to 

DNA-damaging agents, such as ionizing radiation, in turn transcriptionally enhancing miR-34a 

expression. Indeed, irradiated chronic lymphocytic leukemia (CLL) showed higher levels of miR-34a, 

leading to the induction of Bax and p21, but not Puma. These findings suggest that functional p53 

increases miR-34a expression upon DNA damage and that, in turn, miR-34a may block cancer cell 

growth by triggering cell cycle arrest or apoptosis through the suppression of target proteins, like 

SirT1, Bcl-2 or cyclin D1 [59]. Since miR-34a targets include the anti-apoptotic protein Bcl-2, 

baculoviral IAP repeat-containing 3 (BIRC3) and decoy receptor 3 (DcR3), the combined effects of 

upregulating p53 and downregulating miR-34a targets strongly enhance cancer cell death [20,60–62]. 

While Bcl-2 inhibits the formation of the apoptosome by blocking the release of cytochrome c from 

mitochondria, BIRC3 inhibits apoptosis by interacting with the tumor necrosis factor (TNF)  

receptor-associated factors TRAF1 and TRAF2 [63]. DcR3 is highly expressed in many tumors and 

suppresses apoptosis by acting as a decoy receptor for ligands that would otherwise trigger cell death 

by binding to proteins, such as Fas receptor [64]. In cultured brain tumor (glioma) stem cells, miR-34a 

induced apoptosis through the inhibition of the oncogenic, pro-survival factors c-Met, Notch-1 and 

Notch-2, which are important for cell survival [65]. miR-34a also targets mRNAs encoding cell cycle 
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regulators necessary for cell division, such as Cyclin D1, Cyclin E2, Cdk4, Cdk6 and E2F [66,67], 

indicating that cell cycle arrest is also a powerful mechanism through which miR-34a suppresses 

tumorigenesis. In HCC, miR-125b inhibits cell proliferation, as explained above, and promotes 

apoptosis by lowering Bcl-2 expression [32], while miR-1 promotes apoptosis, as mentioned  

above [37]. In glioma cell lines, miR-181d suppressed tumor growth by lowering the levels of both  

K-Ras and Bcl-2, while in glioblastoma cells, miR-451 reduced the levels of Cyclin D1 and Bcl-2, 

causing growth arrest and enhancing cell death [68,69]. In cervical cancer cells, miR-519 increased the 

levels of p53 and p21, causing cell cycle arrest and cellular senescence, and it induced DNA damage 

by lowering the abundance of several DNA repair enzymes [70,71]. In conclusion, reducing  

TS-miRNA activity in cancer cells can enable cancer progression by inducing cell survival and 

reducing apoptosis. Conversely, overexpression of these TS-miRNAs can restore the sensitivity of 

cancer cells to death signals; in some cases, it can enhance cellular senescence. 

4. TS-miRNAs that Suppress Angiogenesis 

Cancer cells need to secure a constant supply of nutrients in order to thrive and expand. Growth of 

the tumor requires enhanced angiogenesis, a process that generates new blood vessels to deliver 

nutrients and oxygen. This cancer trait is elicited by major angiogenesis factors: vascular endothelial 

growth factor (VEGF), fibroblast growth factor 2 (FGF-2) and platelet-derived growth factors 

(PDGF)-B and C [72,73]. The transcription factor HIF-1α is highly expressed in hypoxic conditions 

and transcriptionally increases VEGF expression in adaptive and neoplastic angiogenesis [74]. In 

addition, matrix metalloproteinases (MMPs) facilitate angiogenesis by assisting in the degradation of 

the extracellular matrix (ECM), a process that releases pro-angiogenic growth factors like VEGF and 

FGF-2 [75,76].  

Several TS-microRNAs inhibit this tumor trait. miR-145 suppresses tumor angiogenesis, growth 

and invasion by lowering the production of the oncogene VEGF-A and by suppressing the expression 

of the serine/threonine kinase p70S6K1, which promotes HIF-1α and VEGF activities in colon cancer 

cells [46,47]. Similarly, suppression of p70S6K1 by miR-128 in glioma cell lines led to the 

downregulation of HIF-1α and VEGF and to the subsequent inhibition of angiogenesis in vivo [77]. In 

glioma cell lines and tumors, miR-205 was further identified as a direct repressor of VEGF-A and, 

hence, a suppressor of angiogenesis [78]. miR-519c reduced HIF-1α levels, suppressing tumor 

formation and angiogenesis in lung and breast cancer cell lines, while it also inhibited the biosynthesis 

of HuR, which regulates numerous cancer traits, including angiogenesis [27,29,30,70,71,79,80]. In 

breast cancer cells, miR-340 suppressed tumor cell migration and invasion by lowering the abundance 

of c-Met, a factor that promotes expression of MMP-2 and MMP-9; MMP-2 was additionally 

repressed by miR-29b in HCC cells, attenuating HCC cell invasiveness and angiogenic  

activity [81,82]. Finally, miR-9 lowered MMP-14 in neuroblastoma cells, causing an attenuation of 

tumor growth, metastasis and angiogenesis in vivo [83]. In sum, downregulation of several  

TS-miRNAs in cancer cells can augment angiogenesis by promoting the expression of pro-angiogenic 

factors and enzymes that degrade the ECM. Together, they facilitate the generation of new blood 

vessels that support the cancer tissue with nutrients and oxygen. Restoration of some of these miRNAs 

has been shown to suppress the expression of these factors and to attenuate angiogenesis. 
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5. TS-miRNAs that Enhance Immune Recognition 

The immune system is a vital barrier against tumor formation and progression. Constant 

surveillance by the immune cells leads to eradication of virus-induced and some forms of  

non-virus-induced tumors. Immunodeficient mice, particularly mice lacking natural killer cells, CD4+ 

Th1 helper T-cells or CD8+ cytotoxic T-lymphocytes, developed tumors more frequently and faster 

than control animals [84,85]. A number of tumor-suppressive mechanisms have been identified that 

enable cancer cells to escape immune system surveillance and render them refractory to immune 

attack. Tumors can evade immune recognition by overproducing inhibitors of T-cell responses, such as 

galectins (small proteins involved in immune response, inflammation and tumorigenesis [86]) and 

indoleamine 2,3-dioxygenase (IDO) [87,88], as well as by increasing the production of  

immune suppressive cytokines, like transforming growth factor beta (TGF-β) and interleukin 10  

(IL-10) [89,90]. Tumors can also suppress proinflammatory signals by activating the signal transducer 

and activator of the transcription 3 (STAT3) pathway, thereby blocking tumor-specific T-cell 

responses [91]. Other immune-suppressive mechanisms involve the downregulation of natural killer 

cell receptor protein G2D (NKG2D) to reduce lymphocyte-mediated cytotoxicity and the generation of 

active immune-suppressive cells, such as myeloid-derived suppressor cells (MDSCs) [92,93].  

TS-miRNAs can inhibit this tumor trait by facilitating the immune response, diminishing  

immune-suppressive mechanisms and/or suppress the STAT3 pathway. In this regard, miR-322 

suppressed the expression of galectin-3 [94], while miR-181a blocked the biosynthesis of TGF-β 

receptor 1 (TGFBR1) and TGF-β receptor associated protein 1 (TGFBRAP1), suggesting that  

miR-181a may enhance immune recognition by attenuating the immunosuppressive TGF-β  

pathway [95]. In neuroblastoma cells, miR-335 inhibited the non-canonical TGF-β pathway by 

targeting mitogen-activated protein kinase 1 (MAPK1) and Rho-associated coiled-coil-containing 

protein (ROCK1), leading to the suppression of cell migration and invasion [96]. miR-148a also 

reduced ROCK1 expression in gastric cancer and suppressed tumor cell invasion and metastasis [97]. 

Whether these TS-miRNAs increase immune recognition of cancer cells in vivo awaits further study. 

IL-10 expression is regulated by miR-106a in the T-cell leukemia Jurkat cell line [98]. Although it has 

not been tested in vivo if miR-106a enhances immune recognition, miR-106a suppressed the growth of 

glioma cells lines U87 and SHG44 and correlated inversely with glioma tumor grade [99]. Several 

additional lines of evidence support the notion that TS-miRNAs can target the STAT3 pathway to 

alleviate immune suppression: (i) let-7a overexpression in hepatoma cells suppressed cell proliferation 

through STAT3, (ii) miR-17-5p and miR-20a abrogated the immune-suppressive effects of MDSCs  

in vivo through the regulation of STAT3 and (iii) miR-93 inhibited tumor development and metastasis 

in mouse xenografts, at least in part by attenuating the TGF-β and/or STAT3 pathways [100–102]. 

Collectively, these findings indicate that altered miRNA expression is associated with failure of the 

immune system to recognize and eradicate cancer cells at an early time. Accordingly, increased 

expression of TS-miRNAs that enhance immune-suppressive mechanisms could strengthen the 

immune system to recognize cancer cells and eliminate them. 



Int. J. Mol. Sci. 2013, 14 1828 

 

6. TS-miRNAs that Suppress Invasion and Metastasis 

Metastasis is often associated with changes in cell morphology and adherence to other cells in the 

ECM. For instance, during epithelial-to-mesenchymal transition (EMT) or transformation, cancer cells 

can lose E-cadherin, a protein that strongly represses transformation [103]. This transition is 

accompanied by increased expression of N-, P- and T-cadherins in cancer cells, which can promote 

tumor cell invasion, even if E-cadherin function is unaltered [104]. Elevated levels of transcriptional 

repressors of E-cadherin, such as Snail, Twist and zinc finger E-box binding homeobox (ZEB1/2), are 

also responsible for EMT [105]. MMPs also facilitate or enhance tumor invasion and metastasis by 

degrading the extracellular matrix [75,106]. Concurrent inhibition of c-Met and VEGF signaling was 

recently shown to suppress tumor invasion and metastasis [107]. In addition, factors, such as HMGA1, 

Bcl-2, SirT1, N-Ras, K-RAS, Ezrin, Mucin 4, E2F and metastasis-associated gene (MTA1), are also 

involved in tumor invasion and metastasis [108–116]. These factors enhance invasion and metastasis, 

although they can also play roles in other steps of tumorigenesis.  

Several TS-miRNAs have been identified as having an anti-metastatic and anti-invasion influence. 

miR-9 upregulated E-cadherin and downregulated Snail through its direct effect on NF-κB, leading to 

inhibition of melanoma growth and metastasis in vivo [117]. miR-200c inhibited EMT and cancer cell 

migration by suppressing ZEB1 and ZEB2, two suppressors of E-cadherin, as explained above [118]. 

In breast cancer and melanoma cells, miR-340 and miR-34a lowered c-Met (an inducer of MMP-2 and 

MMP-9) and, thus, suppressed tumor cell migration and invasion [81,119]. miR-29b inhibited MMP-2 

expression, leading to an attenuation of the invasive capacity of HCC cells in vitro [73], while in 

glioma cell lines and tumors, miR-205 was found to inhibit invasion by targeting VEGF-A [78,82]. In 

breast cancer cells, miR-145 suppressed growth and invasion through VEGF and N-Ras, while 

overexpression of miR-183 resulted in reduced migration and invasion, an effect that was attributed in 

part to the downregulation of villin 2 (Ezrin) [46,120]. Repression of HMGA1 by miR-296 suppressed 

invasion of prostate cancer [41], while expression of K-Ras, a promoter of migration and invasion, was 

blocked by miR-96 in pancreatic cancer cells and by miR-216 in nasopharyngeal carcinoma [52,121]. 

In glioma cells, overexpression of miR-195, a repressor of E2F3 and Cyclin D3, induced cell cycle 

arrest and inhibited cell invasion, while in endometrial cancer cells, miR-30c repressed MTA1 

production and blocked cell proliferation, migration and invasion [122,123]. In pancreatic cancer, 

miR-150 was identified as a potential tumor suppressor and correlated inversely with the levels of 

Mucin 4, a factor that promotes growth, invasion and metastasis of cancer cells [124]. miR-1 was 

found to target the oncogene purine nucleoside phosphorylase (PNP) in prostate cancer, thus 

suppressing cell migration and invasion, in agreement with the effects of PNP silencing in prostate 

cancer lines PC3 and DU145 [125].  

Taken together, suppression of TS-miRNAs in cancer cells promotes the expression of many  

pro-invasion and pro-metastatic proteins. Overexpression of some of these miRNAs in cancer cells has 

shown that they are capable of suppressing tumor invasion and metastasis in vivo. 
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7. TS-miRNAs in Cancer Therapeutics 

As highlighted above and listed in Table 1, several miRNAs were identified as tumor suppressors, 

because they inhibit one or more cancer traits. These miRNAs are often dysregulated in cancers, and 

several studies demonstrated that their restoration attenuates tumorigenesis both in cultured cells and 

in vivo. The discovery of TS-miRNAs has prompted researchers, clinicians and pharmaceutical 

companies to consider TS-miRNA-based approaches in cancer therapy. Although interventions to 

modulate a single miRNA or sets of miRNAs alone are unlikely to cure cancer, they are being actively 

considered in combination with other treatment regimens, including chemotherapy and radiotherapy. 

Just as miRNA antagonists are being developed to target oncomiRs elevated in cancer, the 

development of mimics for the downregulated TS-miRNAs is also underway [126,127]. Moreover, 

interventions to restore lost TS-miRNA activity may hold greater promise than efforts to antagonize 

endogenous miRNAs, since mimics resemble the native molecules and can control the same range of 

genes and pathways as those depleted in cancer cells. Mimics of the widely known TS-miRNA  

miR-34a were investigated for their therapeutic potential in multiple myeloma; the study concluded 

that miR-34a has therapeutic activity in preclinical models and prompted the development of  

miR-34a-based treatment in multiple myeloma patients [128]. Another study found that low expression 

of miR-148a was associated with poor survival rates in patients with advanced colorectal cancer, 

suggesting that miR-148a may be used to improve colorectal cancer therapy [129]. Pharmaceutical 

companies, such as Rosetta Genomics, Mirna Therapeutics, Alnylam and Santaris Pharma, have 

programs dedicated to the development and improvement of miRNA-based cancer diagnosis and 

therapy [130]. Future clinical and pharmaceutical studies will likely expand miRNA-based therapy to 

include many more miRNA candidates, not only for cancer treatments, but for other diseases as well. 

Table 1. Tumor-suppressive miRNAs (TS-miRNAs) involved in oncogenic traits. The 

table lists the TS-miRNAs discussed in this review, categorized by cancer trait (column 1), 

the oncogenic proteins encoded by TS-miRNA target mRNAs (column 2), the tumors in 

which TS-miRNAs have been characterized (column 3) and representatively referenced  

(column 4).  

TS-miRNAs 
Cancer-related proteins 
encoded by mRNAs that 
are TS-miRNA targets 

Cancer models implicating  
TS-miRNAs 

References 

Cell growth and proliferation  
miR-34a Bcl-2, SirT1 breast cancer, glioma stem cells (GSCs) [20] 

miR-17-5p AIB1 breast cancer [24] 
miR-125a HuR breast carcinoma cell lines [27,28] 
miR-519 HuR cervical, colon, ovarian, lung, kidney 

cancer 
[29,30] 

miR-125b Ets1, Bcl-2 breast cancer, hepatocellular carcinoma [31,32] 
miR-28 Cyclin D1 colorectal cancer [39] 

miR-296 HMGA1 prostate cancer [41] 
miR-148b CCKBR gastric cancer [42] 
miR-135a JAK2 gastric cancer [43] 
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Table 1. Cont. 

TS-miRNAs 
Cancer-related proteins 
encoded by mRNAs that 
are TS-miRNA targets 

Cancer models implicating  
TS-miRNAs 

References 

miR-146a FADD, EGFR, ROCK1, 
NOTCH1, CXCR4, 

TRAF6 

glioblastoma and breast, pancreatic, 
gastric, prostate cancer glioblastoma 

[44,45] 

miR-145 VEGF-A, N-Ras, 
70S6K1, FSCN1 

Kaposi’s sarcoma, T lymphocyte Jurkat 
cells, leukemia, extranodal NK/T cell 

lymphoma 

[46,47] 

miR-128 EGFR, PDGFRα colon and breast cancer, esophageal 
squamous cell carcinoma 

[48] 

miR-101 EZH2 glioma [49] 
miR-143,  
miR-145 

Bcl-2, Top2A, PRC1, 
Plk1 

bladder transitional cell carcinoma [50] 

miR-24 S100A8 liposarcoma [51] 
miR-216b K-Ras laryngeal squamous cell carcinoma [52] 

Cell survival 
miR-34a Bcl2, SirT1, BIRC3, 

DcR3, c-Met, Notch-1, 
Notch-2, Cyclin D1, 

Cyclin E2, Cdk4, Cdk6, 
E2F 

brain tumors, glioma stem cell lines, 
breast, colon, pancreatic cancer 

[20,61,62, 
65–67] 

miR-181d K-Ras, Bcl-2 glioma [68] 
miR-451 Cyclin D1, Bcl-2, Akt1, 

MMP-2, MMP-9 
glioblastoma 

[69] 

Angiogenesis 
miR-145 VEGF-A, N-Ras, 

p70S6K1 
colon and breast cancer 

[46,47] 

miR-128 p70S6K1 glioma [77] 
miR-205 VEGF-A glioma [78] 
miR-519c HIF-1α, HuR lung, breast, cervical, colon, ovarian 

cancer 
[27,29,30, 
70,71,80] 

miR-340 c-Met breast cancer [81] 
miR-29b MMP-2 hepatocellular carcinoma [82] 

miR-9 MMP-14 neuroblastoma [83] 
Suppressors of immune recognition 

miR-322 galectin-3 breast, lung, prostate, kidney cancer [94] 
miR-181a TGFBR1, TGFBRAP1 mesenchymal stem cells [95] 
miR-335 MAPK1, ROCK1 neuroblastoma [96] 
miR-148a ROCK1 gastric cancer [97] 
miR-106a IL-10, E2F1 T lymphocyte Jurkat cells, glioma [98,99] 

let-7a STAT3 hepatocellular carcinoma [100] 
miR-17-5p STAT3 MDSCs [101] 
miR-20a STAT3 MDSCs [101] 
miR-93 Genes of the TGF-β 

and/or STAT3 pathway 
breast cancer 

[102] 



Int. J. Mol. Sci. 2013, 14 1831 

 

Table 1. Cont. 

TS-miRNAs 
Cancer-related proteins 
encoded by mRNAs that 
are TS-miRNA targets 

Cancer models implicating  
TS-miRNAs 

References 

Invasion and metastasis 
miR-9  
miR-1 

NF-κB  
PNP 

Melanoma  
prostate cancer 

[117,125] 

miR-200 ZEB1 colorectal cancer [118] 
miR-340 c-Met breast cancer [81] 
miR-34a c-Met breast cancer, melanoma [119] 
miR-29b MMP-2 hepatocellular carcinoma [82] 
miR-145 VEGF, N-Ras breast cancer [46] 
miR-205 VEGF-A glioblastoma [78] 
miR-183 villin 2 (Ezrin), breast cancer [120] 
miR-296 HMGA1 prostate cancer [41] 
miR-96 KRAS pancreatic cancer [121] 

miR-216b KRAS nasopharyngeal carcinoma [52] 
miR-195 E2F3, CCND3 glioblastoma [122] 
miR-150 MUC4 pancreatic cancer [124] 
miR-30c MTA1 endometrial cancer [123] 

8. Concluding Remarks and Perspectives 

As shown in Figure 1, TS-miRNAs are capable of regulating multiple cancer traits. A few miRNAs 

have entered preclinical and clinical studies, but many more in vivo studies are needed in order to 

determine which TS-miRNAs are effective for inclusion in specific cancer treatments. The miRNAs 

studied thus far only comprise a small fraction of the miRNAs discovered by high-throughput 

approaches, such as RNA sequencing [131–133]. Studies that consider TS-miRNAs together with 

radiotherapy or chemotherapeutic drugs may also be beneficial in cancer treatments. In this regard, 

altered miRNA expression in cancer cells can also influence the mechanisms of drug resistance, as low 

miRNA levels in cancer cells reduced the sensitivity to chemotherapeutic agents, while miRNA 

restoration or overexpression increased it (as shown for let-7a, miR-34a and miR-200c, miR-128 and 

miR-125b, reviewed in reference [134]). In addition, studying miRNA signatures (oncomiRs and  

TS-miRs) linked to drug responses can enhance drug efficacy and minimize toxicity. Circulating 

cancer-related miRNAs, including TS-miRNAs, are gaining preclinical and clinical attention, and 

many of them originate from circulating tumor cells [135–138]. Circulating miRNAs can correlate 

with tumor progression, as shown in prostate cancer patients [139], and can help with the design of 

therapeutic regimes. A number of clinical studies are already underway (ClinicalTrials.gov) [140]. As 

our knowledge of TS-miRNAs continues to expand, we anticipate an escalation in interest in this class 

of microRNAs for cancer diagnosis and therapy. 
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Figure 1. TS-miRNAs and their target mRNAs encoding proteins that enable cancer traits. 

Boxes depict five major cancer traits: Growth and Proliferation (blue), Cell Survival (red), 

Angiogenesis (green), Suppression of Immune Recognition (brown) and Invasion and 

Metastasis (purple). For each cancer trait, TS-miRNAs are indicated in white, the  

pro-oncogenic proteins encoded by mRNAs that are targets of TS-miRNAs are indicated in 

yellow and the cancer traits in orange. 
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