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Abstract: Arsenic trioxide has been reported to inhibit cell growth and induce apoptotic 

cell death in many human cancer cells including breast cancer. However, the precise 

molecular mechanisms underlying the anti-tumor activity of arsenic trioxide are still 

largely unknown. In the present study, we assessed the effects of arsenic trioxide on cell 

viability and apoptosis in breast cancer cells. For mechanistic studies, we used multiple 

cellular and molecular approaches such as MTT assay, apoptosis ELISA assay, gene 
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transfection, RT-PCR, Western blotting, and invasion assays. For the first time, we found a 

significant reduction in cell viability in arsenic trioxide-treated cells in a dose-dependent 

manner, which was consistent with induction of apoptosis and also associated with  

down-regulation of Notch-1 and its target genes. Taken together, our findings provide 

evidence showing that the down-regulation of Notch-1 by arsenic trioxide could be an 

effective approach, to cause down-regulation of Bcl-2, and NF-κB, resulting in the 

inhibition of cell growth and invasion as well as induction of apoptosis. These results 

suggest that the anti-tumor activity of arsenic trioxide is in part mediated through a novel 

mechanism involving inactivation of Notch-1 and its target genes. We also suggest that 

arsenic trioxide could be further developed as a potential therapeutic agent for the 

treatment of breast cancer. 
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1. Introduction 

Breast cancer is the most common malignancy in women, and the second leading cause of  

cancer-related mortality in women in the United States [1]. According to cancer statistics for 2012 by 

the American Cancer Society, approximately 226,870 women will be expected to have breast cancer 

and around 39,510 will die from it in 2012 [1]. Currently, the therapies for breast cancer include 

surgery, chemotherapy, radiation, hormonal therapy or combined modalities [2]. Although these 

treatments have improved the five-year survival rate for breast cancer patients, breast cancer still 

suffers from long term survival, which could be due to late diagnosis, tumor metastasis, chemo- and  

radio-resistance, and tumor recurrence, resulting in patient death [2]. This worst outcome in a  

sub-group of patients suggests that it is important to identify newer and novel therapeutic agents for 

improving the treatment outcome with better long term survival of patients diagnosed with breast cancer. 

In recent years, it has been documented that Notch signaling pathway is involved in the 

development and progression of breast cancer [3–6]. It is known that Notch pathway is a conserved 

ligand-receptor signaling pathway that plays critical roles in cell proliferation, apoptotic cell death, 

differentiation, invasion, angiogenesis, tumor metastasis and breast cancer stem cell self-renewal in 

human breast cancer [3,5]. Notch genes encode transmembrance proteins that can be activated upon 

ligand binding. To date, four Notch receptors (Notch-1, 2, 3, 4) and five ligands (Dll-1, Dll-3, Dll-4, 

Jagged-1, and Jagged-2) have been identified [7]. Emerging evidence has shown that activated Notch 

signaling pathway, and over-expression of Notch target genes are commonly observed in breast cancer [8]. 

Moreover, high expression of Notch receptors and ligands has been found to correlate with poor 

prognosis in this deadly disease. Specifically, high-level expression of Jagged-1, Notch-1 and Notch-2 

has been found to be associated with poor overall survival in human breast cancer [9,10]. Moreover, 

Jagged-1 expression was found to correlate with recurrence of lymph node-negative breast cancer [11]. 

Recently, it has been reported that Notch-1 and Notch-4 could serve as prognostic markers in breast 

cancer [12,13]. Furthermore, multiple studies have demonstrated that Notch signaling pathway plays 
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an important role in chemo-resistance of breast cancer [14]. Therefore, targeting Notch signaling 

pathway could be a promising strategy to achieve better treatment outcome for breast cancer. 

Recent studies have shown that arsenic trioxide (As2O3), a clinically effective reagent for APL 

(acute promyelocytic leukemia), inhibited cell growth and induced apoptosis in a variety of human 

cancers including breast cancer [15–19]. For example, As2O3 was shown to dramatically reduce the 

survival of MCF-7 and T47D breast cancer cells via inhibition of estrogen receptor [20]. Another study 

showed that As2O3 exhibited inhibitory effects on the proliferation of MCF-7 cells through  

up-regulation of p53 tumor suppressor protein and down-regulation of Bcl-2 protein level [17]. 

Recently, it was found that As2O3 suppressed MCF-7 cell growth through induction of p21 and p27 

tumor suppressor proteins [21]. However, the comprehensive molecular mechanism(s) by which As2O3 

inhibits cell growth and induces apoptosis remains largely elusive. Thus, exploring the molecular 

physiological properties of As2O3 could lead to its novel therapeutic use for the treatment of breast cancer. 

2. Results 

2.1. As2O3 Inhibited Breast Cancer Cell Growth 

First, we tested the growth inhibitory effects of As2O3 using the MTT assay in three human breast 

cancer cell lines, MDA-MB-231, MCF-7, and SKBR-3. As expected, treatment of breast cancer cells 

for 72 h with 2, 4, 6, 8, 10, and 12 μM of As2O3 led to cell growth inhibition in a dose-dependent 

manner in all three breast cancer cell lines (Figure 1). The IC50 that caused 50% inhibition of cell 

growth for three breast cancer cell lines was found around 8 μM.  

Figure 1. Effect of As2O3 on breast cancer cell growth. Cells were seeded in 96-well plates 

at 5000 cells per well and treated with varied concentrations of As2O3 for 72 h. After 

treatment, MTT solution was added and incubated further for 2 h. MTT formazan formed 

by metabolically viable cells was dissolved in isopropanol, and absorbance was measured 

at 595 nm on a plate reader (TECAN). Each value represents the mean ± SD (n = 6) of 

three independent experiments. * p < 0.05, ** p < 0.01, compared to the control. 
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2.2. As2O3 Induced Apoptosis in Breast Cancer Cell Lines 

MDA-MB-231, MCF-7, and SKBR-3 cells were treated with 4, 8 and 12 μM As2O3 for 72 h. After 

treatment, the degree of apoptosis was measured in all three breast cancer cell lines. We found that the 

As2O3 treatment induced apoptosis in dose-dependent manner in all three breast cancer cells  

(Figure 2A–C). To further confirm the results from our histone/DNA ELISA data, we used Annexin 

V/PI staining. As demonstrated in Figure 2D,E, 8 μM As2O3 at 72 h induced apoptosis in breast cancer 

cell lines. These results clearly suggested that As2O3 treatment caused a statistically significant 

increase in the percentage of apoptotic cells in breast cancer cell lines.  

Figure 2. Effect of As2O3 on breast cancer cell apoptosis. Cell death assay for measuring 

apoptosis induced by As2O3 was done in MDA MB-231 (A), MCF-7 (B) and SKBR-3 (C) 

cells treated with different doses of As2O3 for 72 h. Apoptosis was measured by Histone-DNA 

ELISA method. Values are reported as mean ± SD. * p < 0.05, ** p < 0.01, compared to 

the control. (D, E) MDA MB-231 and MCF-7 cells were treated with 8 μM As2O3 for 72 h. 

Annexin V/PI staining was performed to detect the apoptosis. 

 

2.3. As2O3 Suppressed Breast Cancer Cell Invasion  

Consistent with the anti-invasive role of As2O3, we found that 8 μM As2O3 resulted in decreased 

penetration of breast cancer cells through the matrigel-coated membrane compared with the control 

cells. Further quantitation of the numbers of invaded breast cancer cells was significantly decreased 

after As2O3 treatment compared to control cells (Figure 3). It is important to note that 8 μM As2O3 did 
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not inhibit the cell growth at 24 h (data not shown), suggesting that the decrease in cell invasion is not 

due to a drop in cell numbers.  

Figure 3. Effect of As2O3 on breast cancer cell invasion. (A) Invasion assay showing that 

As2O3-treated cells resulted in low penetration through the Matrigel-coated membrane, 

compared with control cells. (B) Numbers of the invaded cells and these numbers indicate 

the ability of cell invasion. * p < 0.05 compared to the control. 

 

2.4. As2O3 Inhibited the Notch-1 Expression in Breast Cancer Cells 

Next, we investigated whether As2O3 exerts its anti-tumor activity through down-regulation of 

Notch signaling pathway. The expression of Notch-1 in As2O3-treated breast cancer cells was assessed 

by RT-PCR and Western blotting analysis, respectively. We found that both Notch-1 mRNA and 

protein levels were down-regulated after As2O3 treatment in all three breast cancer cell lines  

(Figure 4A,B). More importantly, we observed that As2O3 inhibited the Notch-1 expression at 48 h 

(Figure 4C), suggesting that Notch-1 decrease is probably causative for As2O3-induced apoptosis. 

2.5. As2O3 Inhibited the Expression of Notch-1 Downstream Genes 

Next, we investigated whether As2O3 treatment could cause down-regulation of Notch-1 

downstream genes. It has been well characterized that NF-κB and Bcl-2 are two key downstream 

targets of Notch-1 [22,23]. Therefore, we assessed the expression of NF-κB and Bcl-2 at both mRNA 

and protein levels. Our results showed that As2O3 suppressed the expression of NF-κB and Bcl-2 both 

at the mRNA and protein levels in three breast cancer cells (Figure 4).  
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Figure 4. Inhibition of Notch-1 signaling pathway by As2O3 in breast cancer cells. (A) The 

Notch-1, Bcl-2 and NF-κB mRNA were detected by RT-PCR in breast cancer cells treated 

with varied concentrations of As2O3 for 72 h; (B) The Notch-1, Bcl-2, and NF-κB proteins 

were measured by Western blotting analysis in breast cancer cells treated with varied 

concentrations of As2O3 for 72 h; (C) The Notch-1 expression was detected by Western 

blotting analysis in breast cancer cells treated with 8 μM As2O3 for different times. 

 

2.6. Down-Regulation of Notch-1 Expression by SiRNA and the Effect of As2O3 Treatment  

To study the functional relevance of As2O3-mediated alteration of Notch-1 expression in breast 

cancer cells, we used Notch-1 siRNA to deplete the endogenous expression of Notch-1 and 

subsequently examined the effect of Notch-1 siRNA on cell growth and apoptosis followed by 8 μM 

As2O3 treatment in SKBR-3 cells. The reason we selected SKBR-3 cell line for further study is that 

these cells have a higher expression, but not the highest, of Notch-1 in multiple breast cancer cell  

lines [24]. The efficacy of Notch-1 siRNA for depletion of Notch-1 mRNA and protein was validated 

by RT-PCR and Western blotting analysis, respectively (Figure 5). Moreover, consistent with this, we 

found that the expression of Notch-1 target gene NF-κB and Bcl-2 was also decreased after depletion 

of Notch-1 (Figure 5). Our results also showed that depletion of Notch-1 by siRNA transfection caused 

cell growth inhibition and apoptosis (Figure 6). More importantly, As2O3 treatment plus Notch-1 



Int. J. Mol. Sci. 2012, 13 9633 

 

siRNA retarded cell growth to a greater degree compared to As2O3 alone. Furthermore, breast cancer 

cells with Notch-1 siRNA treatment were more sensitive to As2O3-induced apoptosis (Figure 6).  

Figure 5. The efficacy of transfection by Notch-1 siRNA and Notch-1 cDNA in SKBR-3 

cells. (A–D) The expression of Notch-1 was detected by RT-PCR and Western blotting, 

respectively, to check the Notch-1 siRNA transfection efficacy. (E) The expression of 

Notch-1 was detected by Western blotting for assessing the Notch-1 cDNA plasmid 

transfection efficacy. 

 

2.7. Over-Expression of Notch-1 by cDNA Transfection Reduced As2O3-Induced Cell Growth 

Inhibition and Apoptosis 

Breast cancer cells were transfected with Notch-1 cDNA or empty vector control (pcDNA3). The 

expression of Notch-1 and its target genes was measured to confirm that Notch-1 cDNA transfection 

led to up-regulation of Notch-1 pathway (Figure 5). Moreover, over-expression of Notch-1 promoted 

cell growth and protected from apoptosis (Figure 6). Furthermore, over-expression of Notch-1 by 

cDNA transfection rescued As2O3-induced cell growth inhibition and reduced As2O3-induced 

apoptosis to 60%–70%.  
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Figure 6. Notch-1 siRNA promoted, but Notch-1 cDNA reduced, As2O3-induced cell 

growth inhibition and apoptosis in SKBR-3 breast cancer cells (A–B). Left panel,  

down-regulation of Notch-1 by siRNA significantly inhibited SKBR-3 breast cancer cell 

growth. 8 μM As2O3 plus Notch-1 siRNA inhibited cell growth to a greater degree 

compared to As2O3 alone. Right panel, down-regulation of Notch-1 expression 

significantly increased apoptosis induced by As2O3. Notch-1 siRNA transfected cells were 

significantly more sensitive to spontaneous and As2O3-induced apoptosis (C–D). Over-

expression of Notch-1 by cDNA transfection rescued As2O3-induced cell growth and 

abrogated As2O3-induced apoptosis to a certain degree. * p < 0.05, compared with the 

control; ** p < 0.05, compared with As2O3 treatment alone and Notch-1 siRNA 

transfection alone. # p <0.05, compared with As2O3 treatment alone and Notch-1 cDNA 

transfection alone. 

 

3. Discussion 

In the current study, we investigated the effects of As2O3 on cell proliferation and apoptosis in 

breast cancer cells. We found that As2O3 caused cell growth inhibition and induced apoptosis. 

Moreover, we found a significant down-regulation of Notch-1 expression and the expression of its 

downstream genes after As2O3 treatment. Furthermore, our results demonstrated that As2O3-induced 

down-regulation of Notch-1 is associated with As2O3-mediated cell growth inhibition and apoptosis. 

These results suggest that down-regulation of Notch-1 could be a novel strategy for the treatment of 

breast cancer by As2O3.  
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Recent studies have demonstrated that Notch signaling pathway is involved in the development and 

progression of breast cancer [3–6]. Several studies also suggested that Notch-1 signaling pathway is 

involved in drug resistance in a variety of human cancers including breast cancer [14]. For example, 

down-regulation of Notch-1 signaling pathway increased chemosensitivity to several chemotherapeutic 

drugs such as taxotere, doxorubicin, and tamoxifen, indicating that Notch signaling pathway could be a 

novel target for overcoming drug-resistance in breast cancer [25–28]. Moreover, it has been reported 

that the fate of breast cancer stem cells is controlled by Notch pathway in breast cancer [29–33]. Taken 

together, inactivation of Notch pathway could be a promising strategy for achieving better treatment 

for breast cancer. 

Since Notch signaling is activated via the activity of γ-secretase, development of γ-secretase 

inhibitors (GSIs) could be used for cancer therapy. Several GSIs have been reported to inhibit cell 

growth, increase apoptosis, and reduce cell invasion in breast cancer [25,28,34]. Moreover, it has been 

found that GSIs reduced the formation of brain metastasis from breast cancer through reduction of 

breast CSCs (Cancer stem cells) [32]. In a recent study, Rizzo et al. found that inactivating Notch-1 by 

GSIs could potentiate the effects of tamoxifen in breast cancer cell growth in vitro and in vivo [28].  

In addition, GSIs re-sensitized trastuzumab-resistant BT474 cells to trastuzumab, suggesting that 

Notch-1 might play a novel role in resistance to trastuzumab [25]. More importantly, Kondratyev et al. 

showed that GSIs could eliminate CSCs and inhibited the self-renewal and proliferation of breast 

CSCs [31]. Although GSIs have the advantage of relative ease of administration, oral bioavailability 

and low cost, GSIs have unwanted toxicity such as cytotoxicity in the gastrointestinal tract [35].  

In addition, GSIs are relatively nonselective drugs because they block the cleavage of all four Notch 

receptors and other multiple γ-secretase substrates [35]. Therefore, it is obvious that discovery of new 

compounds to target Notch signaling pathway is needed.  

In recent years, As2O3, a compound used in traditional Chinese medicine for many years, has been 

reported to improve standard care for APL [36]. Consistent with the anti-tumor activity of As2O3 in 

APL, studies from many independent groups also showed that As2O3 inhibited cancer cell growth and 

induced apoptosis in a variety of human cancers [37–40]. In this study, we used three human breast 

cancer cell lines, MDA-MB-231, MCF-7, and SKBR-3, which expressed high levels of Notch-1, and 

we found that As2O3 elicited a significant effect on growth inhibition and induction of apoptotic cell 

death in breast cancer cells. Although As2O3 has been found to inhibit cancer cell invasion in multiple 

human cancer cell lines [27,41–43], anti-invasive function of As2O3 in breast cancer cells has not been 

reported. Therefore, we determined the effects of As2O3 on breast cancer cell invasion. As we 

expected, As2O3 inhibited the breast cancer cell invasion. In order to further determine the molecular 

mechanism by which As2O3 induced cell growth inhibition as well as apoptosis and inhibited invasion 

in breast cancer cell lines, alterations in the cell survival pathway were explored. It has been well 

documented that Notch signaling is up-regulated in many human cancers including breast cancer and 

plays a critical role in cell growth and invasion, and suppression of apoptosis [3,5]. Consistent with 

one study that As2O3 inhibited Notch-1 and its target gene Hes-1 in gliomas [44], we found that As2O3  

down-regulated the expression of Notch-1 and its target genes in breast cancer cell lines. Importantly, 

depletion of Notch-1 by siRNA together with As2O3 treatment caused cell growth inhibition and 

apoptosis to a greater degree in breast cancer. Interestingly, over-expression of Notch-1 by cDNA 

transfection reduced As2O3-induced cell growth inhibition and apoptosis. Based on these findings, we 
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believe that inactivation of Notch-1 signaling by As2O3 leads to inactivation of its target gene 

expression, which could be mechanistically linked with As2O3-mediated tumor suppressor function.  

4. Experiment Section 

4.1. Cell Lines and Experimental Reagents 

Human breast cancer cell lines, MDA-MB-231, MCF-7 and SKBR-3 were obtained from American 

Type Culture Collection (Manassas, VA) and used in this study. Primary antibodies for Notch-1,  

Bcl-2, and NF-κB p65 were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). The 

monoclonal antibody to β-actin was bought from Sigma-Aldrich (St. Louis, MO). All secondary 

antibodies were obtained from Pierce (Rockford, IL). Lipofectamine 2000 was purchased from Invitrogen 

(Carlsbad, CA). Protease inhibitor cocktail, As2O3, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT), and all other chemicals were obtained from Sigma-Aldrich. As2O3 was dissolved in  

1 mM NaOH to make a 10 mM stock solution and was added directly to the media at different 

concentrations. 

4.2. Cell Growth Inhibition Studies by MTT Assay 

Breast cancer cells (5000) were seeded in 96-well culture plates and treated with different 

concentrations of As2O3 (2, 4, 6, 8, 10, 12 μM) diluted from the stock solution. After 72 h, MTT 

solution was added and incubated for 2 h. MTT assay for determining cell growth inhibition by As2O3 

was performed as described earlier [45]. 

4.3. Histone-DNA Enzyme-Linked Immunosorbent Assay (ELISA) for Detecting Apoptosis  

Since the loss of cell viability could be due to the induction of apoptosis, we further examined the 

effects of As2O3 treatment on apoptotic cell death using Histone-DNA ELISA method. The cell 

apoptosis ELISA detection method (Roche, Palo Alto, CA) was used according to the manufacturer’s 

protocol. Briefly, after different concentration of As2O3 (4, 8, 12 μM) treatment for 72 h, the 

cytoplasmic Histone/DNA fragments from treated cells were extracted and bound to anti-Histone 

antibody for detection of apoptosis as described earlier [46]. 

4.4. Annexin V-FITC Method for Apoptosis Analysis  

Annexin V-FITC apoptosis detection kit (BD, San Jose, USA) was used to measure the apoptotic 

cells. Briefly, cells were treated with 8 μM As2O3 for 72 h and then trypsinized, washed twice with  

ice-cold PBS and the number of apoptotic cells was analyzed as described before [47]. 

4.5. Cell Invasion Assay  

The invasive activity of the MDA-MB-231, MCF-7 and SKBR-3 cells followed by 8 μM As2O3 

treatment was detected using the BD BioCoat Tumor Invasion Assay System (BD Biosciences, 

Bedford, MA). Briefly, breast cancer cells with serum-free medium supplemented with 8 μM As2O3 

were seeded into the upper chamber of the system. Bottom wells in the system were filled with 
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complete medium and 8 μM As2O3. After 24 h of incubation, the cells in the upper chamber were 

removed, and the cells that had invaded through the matrigel matrix membrane were stained with  

Wright-Giemsa for 15 min. These stained invasive cells were photographed and counted under  

a microscope. 

4.6. Reverse Transcription-PCR (RT-PCR) Analysis for Gene Expression Studies  

The total RNA from As2O3-treated cells was isolated by Trizol (Invitrogen, Carlsbad, CA) and 

purified by RNeasy Mini Kit and RNase-free DNase Set (QIAGEN, Valencia, CA) according to the 

manufacturer’s protocols. One microgram of total RNA from each sample was subjected to first strand 

cDNA synthesis using TaqMan reverse transcription reagents kit (Applied Biosystems, Foster City, 

CA). RT reaction was performed at 25 °C for 10 min, followed by 48 °C for 30 min and 95 °C for 5 min. 

PCR reaction was performed at 94 °C for 30 s, followed by 48 °C for 30 s and 72 °C for 40 s. The 

primers used in the PCR reaction were as follows: NOTCH-1: 5'-CGA CGT CAA CGC CGT AGA T-3' 

and 5'-CTC CTC CCT GTT GTT CTG CAT AT-3'; NF-κB: 5'-AGG ACA TAT GAG ACC TTC 

AAG AGC-3' and 5'-CTC ATC ATA GTT GAT GGT GCT CAG-3'; Bcl-2: 5'-GGC GCA CGC TGG 

GAG AAC-3' and 5'-TAG CGG CGG GAG AAG TCG TC-3'. GAPDH: 5'-CAA GGT CAT CCA 

TGA CAA CTT TG-3' and 5'-GTC CAC CAC CCT GTT GCT GTA G-3'. 

4.7. Western Blot Analysis 

Cells were lysed in EBC (50 mM Tris pH 7.5, 120 mM NaCl, 0.5% NP-40) buffer supplemented 

with protease inhibitors (Complete Mini, Roche) and phosphatase inhibitors (phosphatase inhibitor 

cocktail set I and II, Calbiochem). The protein concentrations of the lysates were determined using the 

Bio-Rad assay system (Bio-Rad, Hercules, CA). Total proteins were fractionated using SDS-PAGE 

and immuno-blotted with indicated antibodies as described earlier [47].  

4.8. Plasmids and Transfections  

Notch-1 siRNA and siRNA control were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). 

The Notch-1 cDNA plasmid encoding the Notch-1 intracellular domain was described previously [48]. 

Human breast cancer cells were transfected with Notch-1 siRNA and cDNA, respectively, using 

Lipofectamine 2000 as described earlier [49].  

4.9. Densitometric and Statistical Analysis 

The statistical significance of differential findings between experimental groups and control groups 

was statistically evaluated using GraphPad StatMate software (GraphPad Software, Inc., San Diego, CA).  

p values lower than 0.05 were considered statistically significant.  

5. Conclusions 

In conclusion, our current findings suggest that As2O3 may function as a Notch-1 inhibitor, 

resulting in cell growth inhibition and induction of apoptosis. The inactivation of Notch-1 by As2O3 

decreased the expression of Bcl-2 and NF-κB, which likely leads to the inhibition of invasion. 
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However, further investigations are required to determine the exact molecular mechanism(s) 

underlying As2O3-mediated tumor suppression together with conventional therapeutics. Furthermore, 

in vivo animal studies together with clinical trials are necessary to confirm the tremendous potential of 

As2O3 for the treatment of human breast cancer. 
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