
Int. J. Mol. Sci. 2012, 13, 8752-8761; doi:10.3390/ijms13078752 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Comparison of Different Ranking Methods in Protein-Ligand 
Binding Site Prediction  

Jun Gao 1,2,†, Qi Liu 1,†, Hong Kang 1, Zhiwei Cao 1,* and Ruixin Zhu 1,3,4,* 

1 College of Life Science and Biotechnology, Tongji University, Shanghai 200092, China;  

E-Mails: jungao@shmtu.edu.cn (J.G.); qiliu@tongji.edu.cn (Q.L.); kangh67@hotmail.com (H.K.) 
2 College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China 
3 Institute for Advanced Study of Translational Medicine, Tongji University, Shanghai 200092, China 
4 School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China 

† These authors contributed equally to this work. 

* Authors to whom correspondence should be addressed; E-Mails: zwcao@tongji.edu.cn (Z.C.); 

rxzhu@tongji.edu.cn (R.Z.); Tel./Fax: +86-21-65981041 (Z.C.), (R.Z.).  

Received: 14 May 2012; in revised form: 19 June 2012 / Accepted: 2 July 2012 /  

Published: 16 July 2012 

 

Abstract: In recent years, although many ligand-binding site prediction methods have been 

developed, there has still been a great demand to improve the prediction accuracy and 

compare different prediction algorithms to evaluate their performances. In this work, in 

order to improve the performance of the protein-ligand binding site prediction method 

presented in our former study, a comparison of different binding site ranking lists was 

studied. Four kinds of properties, i.e., pocket size, distance from the protein centroid, sequence 

conservation and the number of hydrophobic residues, have been chosen as the 

corresponding ranking criterion respectively. Our studies show that the sequence 

conservation information helps to rank the real pockets with the most successful accuracy 

compared to others. At the same time, the pocket size and the distance of binding site from 

the protein centroid are also found to be helpful. In addition, a multi-view ranking 

aggregation method, which combines the information among those four properties, was 

further applied in our study. The results show that a better performance can be achieved by 

the aggregation of the complementary properties in the prediction of ligand-binding sites. 
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1. Introduction 

In most cellular processes, proteins interact with many other molecules to perform their biological 

functions. The successful identification of ligand-binding sites on protein surfaces is generally the 

starting point for the annotation of protein function and drug discovery. In addition, as a result of 

various structural genomic projects performed, structural information of proteins with little or no 

functional annotations is increasing exponentially. However, in most cases, protein-ligand complex 

structures are not easily experimentally accessible, which leads to the demand of in silico methods to 

serve as an alternative [1,2]. Fortunately, it has been proven that the prediction of binding sites using 

computational methods is efficient and powerful compared to in vivo approaches, and several 

computational methods have been presented in this area [3,4]. However, research in this area is clearly 

in an infant stage and there still remain many issues to be solved and improved. 

To predict the potential binding site, several computational methods have been developed. Briefly, 

these algorithms can be divided into three categories, i.e., (1) purely geometry-based methods, which 

follow the assumption that the protein-ligand binding sites are generally located at crevices on the 

protein surface or cavities in the protein. Methods falling in this category include POCKET [5], 

LIGSITE [6], PASS [7], SURFNET [8], and PocketPicker [9] etc.; (2) energetic-based methods, which 

coat the protein surface with a layer of probes to calculate van der Waals interaction energies between 

the protein and probes. As an example, Q-SiteFinder [10] is a classical tool falling in this category;  

(3) knowledge based methods, which includs various statistical methods [11], machine learning  

methods [12] and similarity comparison methods. Besides, a part of them predict protein-ligand 

binding sites by searching for clusters or patterns of the conserved residues [13,14]. 

Generally speaking, a computational method for binding site prediction has to consider several 

challenging issues: (1) Identification of candidate protein-ligand binding sites [5–17], which relate to 

delimit cavities or pockets at the protein surface that are likely to bind molecules; (2) ranking binding 

sites according to their likeliness to accept a molecule, since there are often several presumed binding 

sites that can be predicted on a protein surface, and it is necessary to derive an approach to characterize 

and rank them to select the more relevant ones [18]; (3) induced fit, which may enhance the fidelity of 

molecular recognition in the presence of competition and noise via conformational proofreading 

mechanism [19]. In this study, we focus primarily on the ranking of binding sites. It is said that the 

largest pocket tends to frequently correspond to the observed ligand-binding site [20]. Based on this 

assumption, most prediction methods rank the candidate sites according to the pocket size. Nevertheless, 

different studies have also tried to solve this ranking problem from other perspectives [16,21,22].  

Our former work for binding site prediction is based on the integration of sequence conservation 

information with geometry-based cleft identification. In this study, in order to improve the performance 

of our work and investigate the contribution of different ranking methods in the prediction of  

protein-ligand binding sites, five ranking methods (pocket size, distance from the protein centroid, 

sequence conservation, number of hydrophobic residues, multi-view method) involving four properties 

have been tested. The results show that (1) if only one property is considered, the use of sequence 

conservation information helps ranking the pockets best; and (2) the innovative multi-view method, 

which integrates complementary properties such as pocket size and distance from the protein centroid, 

can achieve a better performance than if only one individual property is considered.  
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2. Results and Discussion 

2.1. Individual Property Comparison 

For the bound and unbound/bound test sets, 17 pockets were predicted for each protein on average 

with our geometry-based site finding method. The TOP1 and TOP3 accuracy differs for different 

ranking methods. The accuracy of the TOP 1 and TOP 3 in different individual property prediction 

ranking lists is listed in Table 1. A geometry-based method, SURFNET [8], with its own ranking 

algorithm is also tested for comparison. It is shown that ranking that presumes binding sites according 

to conservation score achieves the best performance with a 59% success rate in the top 1 prediction, 

which means that almost 124 of the 210 proteins in the bound test set are correctly predicted. Ranking 

with the criterion of “volume and distance from the protein centroid” (shown in the “Distance” 

column) also performs with better results, which may indicate that the size and the depth of the binding 

site could be helpful in ligand binding site prediction. However, we found that ranking according to the 

hydrophobic attribute does not deliver the expected results. We explain this by the fact that the 

description of hydrophobic properties in our study may be too simple.  

Table 1. Prediction success rate presented by different ranking methods. 

Methods 

Bound Unbound/bound 

TOP1 
MCC  

for TOP1 
TOP3 TOP1 

MCC  
for TOP1 

TOP3 

Conservation score 59% 0.53 73% 57 0.53 72 
Distance 48% 0.53 66% 56 0.53 70 
Volume 47% 0.50 69% 44 0.53 59 
Hydrophobic 39% 0.51 62% 30 0.51 48 
SURFNET (Control) 42% ~ 57% ~ ~ ~ 

2.2. Ranking Aggregation from a Multi-View Perspective 

In some cases the conservation profiles of proteins are not easily accessible, which may make it 

impossible to rank presumed binding sites by conservation score. In addition, there is an urgent need 

for developing an efficient approach to fully integrate various complementary ranking lists from a 

comprehensive multi-view perspective. Thus in our study, an innovative ranking aggregation method 

is further applied to address these problems. We integrate the ranking lists of different properties like 

the combination of “binding site size” and “the distance from the protein centroid”. The corresponding 

results are listed in Table 2. It is shown that after the ranking aggregation, most of the success rates are 

improved remarkably and some of them are comparable to the conservation ones. These results 

indicate that the combination of different individual complimentary properties will generally improve 

the prediction success rate. In addition, “Volume plus Distance” is found to be an alternative  

to “Conservation” when proteins with no conservation profiles are predicted. An example  

(PDB: 2SIM [23]) for such a kind of ranking aggregation is presented in Table 3. It can be seen that 

the ordering of the correctly predicted binding sites (*Pocket 9) is promoted after ranking aggregation, 

which leads to the improvement of the TOP 1 success rate. In Figure 1, the surface position of Pocket 9 
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is visualized with Jmol [24]. However, it is worth noting that when two or more properties that are not 

complementary are used, such as the information of volume and conservation, the final success rate 

probably does not show any improvement. 

Table 2. Prediction success rate of ranking aggregation. 

Methods 

Bound Unbound/bound 

TOP1 
MCC *  

for TOP1 
TOP3 TOP1 

MCC  
for TOP1 

TOP3 

CON + DIS 57% 0.52 74% 61 0.53 74 
VOL + DIS 52% 0.51 73% 54 0.53 74 
CON + VOL 52% 0.52 72% 48 0.54 65 
VOL + HYDRO 46% 0.50 67% 39 0.53 61 
DIS + HYDRO 47% 0.51 68% 44 0.49 63 
CON + HYDRO 53% 0.51 70% 39 0.53 61 
DIS + CON + HYDRO 53% 0.50 72% 48 0.51 67 
VOL + CON + HYDRO 51% 0.52 71% 41 0.55 63 
VOL + DIS + HYDRO 50% 0.52 71% 46 0.50 67 
VOL + DIS + CON 54% 0.51 73% 52 0.53 74 
VOL + DIS + CON + HYDRO 53% 0.52 72% 48 0.53 67 

* The one-sided Wilcoxon signed ranked sum test is used based on the Matthews Correlation Coefficient 

(MCC) scores for each protein. The p values for the comparison of different methods are listed in the 

Supporting Information (Table S1 for bound test set, S2 for unbound/bound test set). 

Table 3. Part of results obtained for different ranking methods, which include volume 

(VOL), distance of presumed binding sites from the protein centroid (DIS), rank 

aggregation (REG) for VOL and DIS, and conservation score (CONS). * Pocket 9 

corresponds to the observed binding site. 

Rank VOL DIS REG CONS 

1 Pocket 0 Pocket 12 *Pocket 9 *Pocket 9 
2 *Pocket 9 *Pocket 9 Pocket 0 Pocket 5 
3 Pocket 5 Pocket 0 Pocket 10 Pocket 0 
4 Pocket 10 Pocket 7 Pocket 12 Pocket 2 

In summary, our study has not only validated the significance of sequence conservation in ligand 

binding site prediction, but also indicated the usefulness of the size and depth of the binding site in the 

ranking of binding sites. Furthermore, rather than only considering one property, an innovative  

multi-view ranking method was applied, which could achieve a much better performance for binding 

site prediction. 
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Figure 1. The surface position of Pocket 9 in protein structure. PDB ID: 2SIM. (Red 

points: water molecule; Light blue: the whole protein; Golden: molecular ligand; Purple: 

predicted binding site constituted by amino acids).  

 

3. Methods 

Our study relies on a new protein-ligand binding site prediction method introduced in our previous 

work. It is based on the integration of geometry and sequence conservation information [4]. An 

overview of the ranking study is presented in Figure 2.  

Figure 2. The concept of multi-view ranking aggregation. 
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3.1. Four Properties Used for Ranking  

The four properties for the ranking of binding sites are calculated as follows: 

(1) Pocket size. This is one of the most popular ranking properties. In this study, the volume of every 

presumed binding site is calculated with the Qhull program [25]. 

(2) Distance of binding site from the protein centroid. This property is considered to reflect the depth 

of a presumed binding site. And the distance is defined as the Euclidian distance between the 

protein centroid and the geometric center of the presumed binding site.  

     2 2 2
b p b p b px x y y z z

d
      (1) 

where (xb, yb, zb) is the coordination of the predicted binding site center, and (xp, yp, zp) is the center 

of the protein. 

(3) Sequence conservation value. The sequence conservation information is achieved by the  

ConSurf-DB [26], which provides the pre-calculated evolutionary conservation profiles for proteins 

with known structures in the PDB. In ConSurf-DB, every residue in every corresponding protein is 

evaluated with a normalized conservation score  so that its average over all residues is zero and the 

standard deviation is one. Low (negative) scores indicate the conserved positions while the high 

scores indicate the variable ones. In our study, the candidate binding sites are ranked according to 

the conservation score of all residues in the same binding site.  

(4) The number of hydrophobic residues. Due to the importance of hydrophobicity in  

protein-ligand binding sites [27,28], the number of hydrophobic residues in each presumed binding 

site is also calculated. The hydrophobic residues include ALA, VAL, LEU, ILE, PRO, PHE, TRP 

and MET. The following equation is used to calculate hydrophobic residues: 

H iN n ,  , , , , , , ,i ALA VAL LEU ILE PRO PHE TRP MET  (2) 

3.2. Multi-View Ranking Aggregation  

The complementary properties listed above might be helpful in ranking presumed binding sites. 

Such an innovative ranking aggregation method was also applied in our previous study [29]. It is based 

on the equalitarian philosophical paradigm to seek a consensus list among individual ranking lists. 

Before defining the two distance measures, some necessary notations should be introduced. Let 

Mi(1), ···, Mi(k) be the scores associated with the ordered list Li, where Mi(1) is the best score, Mi(2) is 

the second best one, and so on. Let rLi(A) be the rank of A in the list Li if A is within the top k, and 

otherwise equal to k + 1. The distance between two ranking lists can be defined as: 





ji

ji

LLt

LL
ji trtrLLd


|)()(|),(  (3) 

which is also named the Spearman’s footrule distance [30]. rLj(t) in equation (3) indicates the position 

of element t in the ordered list j. 

In order to discover a comprehensive ranking list that would also be as close as possible to all the 

given ranking lists, an optimization function is defined: 
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where iw  is the importance weight of ranking list iL . It is set to one in our study as we treat the four 

properties equally. Parameter d, which is calculated according to Spearman distance, represents the 
distance between the “comprehensive list” δ* and iL . The goal of the ranking aggregation is to find δ* 

which minimizes the total distance between the “comprehensive list” and every ranking list. To 

accomplish this goal, the Cross-Entropy method (CE) [31] is used here, which is a general Monte 

Carlo approach for multi-extremum optimization. The CE algorithm requires users to set a number of 

parameters. It is recommended that the number of samples N for each stage is set to at least 10 k2, and 

the rarity parameter ρ in the sampling stage of CE [31] used to update the cell probabilities is set to 

0.01 when N is relatively large, and 0.1 when N is small (less than 100). All data are aggregated under 

R statistical environment with the RankAggreg package.  

3.3. Test Dataset and Evaluation of the Pocket Prediction 

In this study, two datasets, i.e., the 210 bound structures and 48 unbound/bound structures, which 

are used to evaluate the LIGSITEcsc [16] algorithm are also used as a kind of unbound/bound and 

bound test set. To assess the quality of binding-site predictions, a standard evaluation method 

presented previously [4,6,9,16] is applied, which defines a prediction to be a met, if the geometric 

center of the presumed pocket lies within 4 Å to any atom of the ligand. Predictions that do not meet 

this criterion are excluded in the calculation of prediction success rates. 

We also used another evaluation measurement, i.e., the Matthews Correlation Coefficient [32] 

(MCC) as a comparison. For each protein, residue predictions were classified as true positives  

(TP: correctly predicted binding site residues), true negatives (TN: correctly predicted nonbinding site 

residues), false negatives (FN: incorrectly predicted as nonbinding site residues), false positives  

(FP: incorrectly predicted as binding site residues). The MCC was computed using Equation 6: 

( ) ( ) ( ) ( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


      
 (6) 

For the bound and unbound/bound test sets, the MCC score for each protein can be calculated with 

a certain prediction method. In our implementation, different score can be calculated for different 

ranking methods. To determine the significant differences between different ranking methods as well 

as their combinations, the one-sided Wilcoxon signed ranked sum test is used based on MCC scores 

for each protein. The statistical evaluation is performed using R (version 2.15.0). 

For the 210 bound structures, the evaluation is very straightforward and we will follow the above 

described routing procedure. For the unbound/bound dataset, the Biojava development package [33] is 

first used for the alignment of all the structures, and the ligands in the bound structures are mirrored to 

the corresponding unbound structures. Finally the predictions are performed for the unbound structures 

and then they are checked against the bound structures.  
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4. Conclusions  

The prediction of protein-ligand binding sites has great significance for protein function annotation 

and computer-aided drug design. Besides the binding site identification, the binding sites’ ranking 

according to their likeliness to accept a molecule is also an important and challenging issue. In order to 

improve the findings of our previous work, this paper represents an initial effort to study the contribution 

of different ranking methods to protein-ligand binding site prediction. Five ranking methods  

(pocket size, distance from the protein centroid, sequence conservation, number of hydrophobic 

residues, multi-view ranking aggregation) have been tested in our study. The results show that when 

only one property is considered, the use of sequence conservation information helps ranking the pockets 

best. In addition, pocket size and depth can also serve as important attributes. Moreover, it is also proven 

that ranking aggregation which involves complementary properties can obtain a better performance 

than that of individual properties. This finding not only supports the findings of our previous work, but 

also provides useful suggestions for other related binding site identification studies.  
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