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Abstract: A DFT-SOFM-RBFNN method is proposed to improve the accuracy of DFT 
calculations on Y-NO (Y = C, N, O, S) homolysis bond dissociation energies (BDE) by 
combining density functional theory (DFT) and artificial intelligence/machine learning 
methods, which consist of self-organizing feature mapping neural networks (SOFMNN) 
and radial basis function neural networks (RBFNN). A descriptor refinement step including 
SOFMNN clustering analysis and correlation analysis is implemented. The SOFMNN 
clustering analysis is applied to classify descriptors, and the representative descriptors in 
the groups are selected as neural network inputs according to their closeness to the 
experimental values through correlation analysis. Redundant descriptors and intuitively 
biased choices of descriptors can be avoided by this newly introduced step. Using RBFNN 
calculation with the selected descriptors, chemical accuracy (≤1 kcal·mol−1) is achieved for 
all 92 calculated organic Y-NO homolysis BDE calculated by DFT-B3LYP, and the mean 
absolute deviations (MADs) of the B3LYP/6-31G(d) and B3LYP/STO-3G methods are 
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reduced from 4.45 and 10.53 kcal·mol−1 to 0.15 and 0.18 kcal·mol−1, respectively. The 
improved results for the minimal basis set STO-3G reach the same accuracy as those of  
6-31G(d), and thus B3LYP calculation with the minimal basis set is recommended to be 
used for minimizing the computational cost and to expand the applications to large 
molecular systems. Further extrapolation tests are performed with six molecules (two 
containing Si-NO bonds and two containing fluorine), and the accuracy of the tests was 
within 1 kcal·mol−1. This study shows that DFT-SOFM-RBFNN is an efficient and highly 
accurate method for Y-NO homolysis BDE. The method may be used as a tool to design 
new NO carrier molecules. 

Keywords: Y-NO bond; homolysis bond dissociation energies; density functional theory; 
self-organizing feature mapping neural network; radial basis function neural network 

 

1. Introduction 

Over the past two decades, first-principles calculations have become an attractive complement or 
alternative to wet chemistry experiments for studying molecular properties and chemical reaction 
mechanisms. Great progress has been made: calculation speed has accelerated and the size of the target 
molecules has increased, as has the computational accuracy [1–3]. The applications of first-principles 
methods are rather extensive. In some studies, they have already gone beyond the level of testing and 
verifying experiments to predicting the properties of molecules under experimental circumstances that 
have not undergone real-life tests [4–8]. However, current first-principles calculations cannot yet meet 
the high accuracy needed for databases with large numbers of medium or large molecules. Deviations 
in calculations arise from various sources: some from inherent programs, approximations and 
simplifications in formulas and some from the choice of software, methods, basis sets, and so forth.  
In addition, we have to admit that each molecule is unique, but computational program cannot fully 
cover the uniqueness of each molecule, some deviations induced by unified calculations are 
unavoidable. These deviations can be corrected to improve calculations. Computational theory can be 
improved, for example, by modifying functions, avoiding approximations, and using an infinite basis 
set. However, these corrections are time-consuming, and the effect might be insignificant. An alternative is 
to correct calculation results through statistical methods, which may improve the calculations 
significantly in a simple and fast way and simplify the prediction of new compounds [9–18]. The 
method is quite useful for improving functional molecule design and can guide synthetic chemists in 
choosing potential target compounds. In particular, machine learning methods have recently become a 
new option to solve wave function problems [12,19]. 

One first-principles method, hybrid density functional theory (DFT) has become very popular in 
recent years because of its efficiency and accuracy. With the introduction of exchange and correlation 
functionals, DFT costs much less than other high-level ab initio methods (such as MP2 and CI), and its 
accuracy can be as good as those methods. Nevertheless, DFT calculations need further improvement 
to achieve highly accurate results, especially for medium or large molecules [7–9]. The DFT-NEURON 
method from the Chen group combines neural networks and DFT methods, setting up a quantitative 
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relationship between experimental values and DFT calculation results using a neural network to 
improve DFT calculation accuracy. The first application of this method was made to the heats of 
formation for 180 organic molecules; the root mean square errors were reduced from 21.4 kcal·mol−1 
to 3.3 kcal·mol−1 for B3LYP/6-311 + G(d,p) calculations [9]. In the study, the neural network or 
machine learning method showed its substantial potential to improve the efficiency of first-principles 
calculations. The method has since been successfully applied to other properties [10–18], and the 
concept is applicable to other quantum chemical methods.  

However, only a few reports investigate preprocessing molecular descriptors [14,15] (the inputs of a 
neural network). These inputs are crucial for calculations because they greatly influence the capability 
of the network. Molecular descriptors can be obtained from the structure or properties of systems and 
can be diverse, including constitutional, topological, electrostatic, geometrical, and quantum chemical 
descriptors [20]. Without a selection procedure, molecular descriptors are usually selected subjectively 
according to the knowledge and experience of researchers, who may overlook very important 
information related to the quantity of interest or inadvertently overlay this information with noise. 
Chemists may think some descriptors are trivial when they are actually critical for the statistical 
calculations. With hundreds of molecular descriptors, it is difficult to make prudent choices relying 
only on intuition and experience. Therefore, in this study, we introduce SOFMNN clustering analysis 
and correlation analysis to refine molecular descriptors as the inputs of neural networks.  

Nitric oxide (NO) performs significant physiological functions in human life processes [21–30]. 
The highly active free radical NO must be carried by a linear molecular precursor, so NO homolysis 
(formation/breaking of the bond between NO and the rest of the molecule) BDE is of interest for the 
medicinal study of NO-release diseases. Because the experiments are complicated, homolysis BDE  
of NO carrier molecules is difficult to measure with high accuracy. Recently, the Cheng group has 
focused much effort on measurements of homolysis BDE of the Y-NO bond in solution [31–41], 
which has greatly contributed to NO molecular carrier design in silico.  

In this article DFT, SOFMNN and RBFNN methods are combined to improve the accuracy of the 
calculations of homolysis Y-NO BDE by DFT. The first section describes the neural network methods 
SOFMNN and RBFNN; the second section describes calculations using the DFT B3LYP method with 
two basis sets, 6-31G(d) and STO-3G, and the collection of the calculated homolysis BDE and relevant 
molecular descriptors of Y-NO bond; the third part discusses the calculation results from the DFT, 
SOFMNN and RBFNN methods, as well as classifying appropriate molecular descriptors by the 
SOFMNN method, setting up RBFNN and optimizing the non-linear model for both B3LYP results. In 
the last section, our conclusions are summarized. 

2. Methods 

2.1. Self-Organizing Feature Mapping Neural Network 

Self-organizing feature mapping neural network (SOFMNN) was proposed by Kohonen in 1981 
around the concept that an ordered arrangement of neurons could reflect certain physical properties of 
sensed external stimuli [42]. The main idea is to gradually reduce the interaction areas of neurons in 
the study process and strengthen the activation of central neurons per relevant learning rules, allowing 
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the removal of neural connections to achieve a model of the real brain nervous system that “excited the 
nearby neurons while retaining the far-away ones.” The structure of SOFMNN consists of input layers 
and competitive layers (aka mapping layers) (shown in Figure 1). 

Figure 1. The structure of self-organizing feature mapping neural network (SOFMNN). 

 

A characteristic of SOFMNN is that the featured topology distribution of the input signal can be 
established in terms of an array of one-dimensional or two-dimensional processing units so that 
SOFMNN may extract features of the input signal. This is of great importance to correct first-principles 
calculations using the neural network because the neural network must extract precisely the essential 
information from inputs obtained by first-principles methods. Calculations over the past few decades 
have proved that primarily first-principles methods can capture the physical essence of molecules. 
These characteristics of SOFMNN are the strength of our DFT-SOFM-RBFNN method to achieve 
high-accuracy calculations. The procedures of the SOFMNN learning algorithm are as follows: 

(1) Network initialization  
The input layer and competitive layer are composed of R and S1 neurons, respectively. The initial 

values of each neuron in the competitive layer start from a small random number IWij
1,1 (i = 1,2,…, S1, 

j = 1,2,…,R), where IWij
1,1 represents the connection weight between the ith neuron in the competitive 

layer and the jth neuron in the input layer. Nc is set as the initial neighborhood, η as the initial learning rate, 
T as the maximum iterations, and N = 1 as the initial iteration. 

(2) The winning neuron calculation 
A training sample p is selected randomly and the input of neurons in the competitive layer is 

calculated according to Equation (1) 

( ) 11

1

1,11 ,,2,1, SibIWpn i

R

j
ij

j
i L=+−−= ∑

=

 (1) 

where n1 
i  and b 1 

i  represent the output and the threshold value of the ith neuron in the competitive layer, 
respectively; pj stands for the value of the jth

 input variable of sample p. 
If the kth

 neuron in the competitive layer is the winning neuron, it should meet the requirements in 
Equation (2): 
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( )1 1 1 1max , 1, 2, , 1,k in n i S k S⎢ ⎥= = ∈ ⎣ ⎦L  (2) 

(3) Weight update 
The weights of the winning neuron k and all neurons in neighborhood Nc(t) will be updated 

according to Equation (3):  
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(4) Learning rate and neighborhood neurons update 
Once the weights of the winning neuron and the neighborhood neurons are updated, the learning 

rate and neighborhood neurons must be updated before the next iteration according to Equations 4,5:  
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where the operator ⎡ ⎤  represents rounding up. 

(5) Iteration 
If the learning process is not finished, another sample will be randomly chosen to continue the 

calculation, and the iteration returns to step (2), or if N < T, then N = N + 1, and iteration also returns to 
step (2). Otherwise, iteration concludes.  

2.2. Radial Basis Function Neural Network 

In 1985, Powell proposed the radial basis function (RBF) method of multivariable interpolation [43]. 
In 1988, Moody and Darken came up with a neural network structure, i.e., RBFNN, which can 
approach any continuous function with various accuracies. RBFNN is a three-layered feed-forward 
network. The network structure is shown in Figure 2. 

Figure 2. The structure of radial basis function neural network (RBFNN). 
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The basic idea of RBFNN uses RBF as the “basis” of neurons in the hidden layer to construct the 
hidden layer space. Thus, input vectors can be mapped directly to the hidden layer space without 
weights between the input layer and hidden layer. Once the RBF central point is determined, the 
mapping relationship is determined. The mapping from the hidden layer space to the output layer space 
is linear, i.e., the output is the sum of linear weighted neurons in the hidden layer, where the weight is 
the adjustable parameter of the network. Generally, network mapping from input to output is non-linear, 
while the output is linear to adjustable parameters. In this way, the weight of the neural network can be 
solved directly from linear equations so that learning rate will improve significantly and local 
minimum problems will be avoided. 

The specific steps of the learning algorithm of the RBFNN are as follows:  
(1) Determining the RBF center of neurons in the hidden layer 
The input matrix P  and output matrix T  for the training set can be described in Equation (6): 
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where pij represents the ith input variable of the jth training sample; tij represents the ith output variable 
of the jth training sample; M is the dimension of the input variables; N is the dimension of the output 
variables; and Q is the number of samples in training set. 

The corresponding RBF center of Q neurons in the hidden layer is:  

'PC =  (7) 

(2) Determining the threshold value of neurons in the hidden layer 
The corresponding threshold value of Q neurons in the hidden layer is:  

[ ]',,, 112111 Qbbbb L=  (8) 

where b11 = b12 = ··· = b1Q = 0.8326/spread, spread is the expanding coefficient of RBF. 
(3) Determining weights and threshold values between the hidden layer and the output layer 
Once the RBF center and threshold value of neurons in the hidden layer is determined, the output of 

neurons in the hidden layer can be obtained by Equation (9):  

QibpCa iii ,,2,1),exp( 2
L=−−=  (9) 

where pi = [pi1, pi2, ···, pim] is the ith vector of the training set. And the matrix A is set to  
A = [a1, a2, ···aQ]. 

The connection weight W between the hidden layer and the output layer is set as Equation 10:  
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where wij represents the connection weight between the jth neuron in the hidden layer and the ith neuron 
in the output layer. 

If the threshold value b2 of N neurons in the output layer is obtained Equation (11):  

[ ]',,, 222212 Nbbbb L=  (11) 

The weight W and threshold value b2 between the hidden layer and output layer can be obtained by 
the linear Equation (12), where I = [1,1,···,1]1×Q. 

[ ] [ ]2 ;W b A I T⋅ =  (12) 

3. Calculations 

3.1. Data Set 

In total, 98 organic molecules were used in the dataset for this study. Six molecules were added to 
the set of molecules used in our previous study [15] to validate the predictive ability of the neural 
network. Chemical elements in these molecules include H, C, N, O, F, Si, P, S, Cl and Br, and the 
number of non-hydrogen atoms in the molecules varies from 8 to 25 for these small or medium 
molecules. The final RBFNN models are attained according to the relatively stable estimation results 
of the testing set. Once the neural network is established, the calculations for these data require 
negligible time to perform, which shows the efficiency of this correction approach. 

3.2. Molecular Descriptor Calculations 

Molecular descriptors should represent typical characteristics of molecules and closely correlate to 
the quantity of concern. Because we intended to develop an easy-to-use method, simple descriptors 
were favored. Because the DFT calculation results are corrected and performed for each molecule, 
quantum chemical descriptors are ready-made. In addition to quantum chemical descriptors, 
constitutional descriptors such as the molecular weight, number of atoms, and number of electrons are 
also better descriptors due to their ease of generation. All DFT calculations were performed using the 
Gaussian03 software package [44]. The DFT calculation for homolysis BDE and twelve molecular 
descriptors by hybrid functional method B3LYP with 6-31G(d) were described in [15], and the 
corresponding calculation results by B3LYP/STO-3G method are shown in the Supplementary materials.  

4. Results and Discussion 

4.1. Calculating Y-NO Homolysis BDE with DFT Method 

The homolysis BDE are calculated using DFT B3LYP method with two basis sets, 6-31G(d) and 
STO-3G. The minimal basis set STO-3G consists of 1 function for H, 5 functions for Li to F and 9 
functions for Na to Cl; the basis set 6-31G(d) consists of 2 functions for H, 15 for Li to F and 19 
function for Na to Cl. So for most organic molecules, STO-3G only contains less than half of 6-31G(d) 
basis functions. Then with the STO-3G basis set much time can be saved during DFT calculations. For 
example, the B3LYP frequency calculation for molecule 85 takes 114 minutes with the basis set  
6-31G(d), while it only takes 13 minutes with the basis set STO-3G. This offers applications for 
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molecules that are quite large. The calculated values of the Y-NO (Y = C, N, O, S) homolysis BDE,  
the experimental data and the corresponding molecular descriptors of the 92 molecules are listed in 
Tables 1,2 in the Supplementary materials.  

Table 1. Deviations between experimental and calculated values of 92 organic molecules 
from different methods, reported in kcal·mol−1. 

No. B3LYP/6-31G(d) B3LYP/STO-3G 
DFT-RBFNN DFT-SOFM-RBFNN 

6-31G(d) STO-3G 6-31G(d) STO-3G 
1 −17.17 −6.89 −0.12 −1.84 −0.04 −1.18 
2 −7.88 2.66 0.46 0.12 0.38 0.22 
3 −9.31 0.85 −0.48 −0.65 −0.38 −0.58 
4 −9.29 1.27 −0.03 −0.02 −0.01 −0.01 
5 −9.77 0.14 0.00 −0.01 0.00 0.00 

6 a −9.13 1.04 −0.40 −0.53 −0.34 −0.46 
7 −9.01 1.11 0.05 −0.01 0.03 0.01 
8 −12.53 0.28 −0.03 0.00 −0.01 0.00 
9 −13.13 −3.06 0.00 0.00 0.00 0.00 

10 −10.9 −0.51 −0.01 −0.01 0.00 0.00 
11 2.16 12.31 0.07 0.02 0.04 0.01 
12 2.70 13.23 0.58 0.81 0.55 0.68 
13 1.72 12.17 −0.34 0.42 −0.34 0.23 
14 −0.39 10.26 −0.10 0.03 −0.06 0.01 
15 −1.56 10.1 0.00 0.01 0.00 0.01 
16 1.69 11.63 0.00 0.01 0.00 0.00 
17 2.00 12.39 −0.20 0.25 −0.23 0.13 
18 −8.37 2.73 −0.16 0.05 −0.06 0.03 
19 −7.30 4.12 −0.28 −0.02 −0.21 −0.01 

20 a −6.93 4.16 −0.22 −0.47 −0.21 −0.41 
21 −7.68 3.96 0.29 0.01 0.27 0.00 
22 −10.58 0.56 0.00 0.00 0.00 0.00 
23 −2.11 8.33 0.01 −0.93 0.06 −0.75 
24 3.45 12.33 0.35 0.67 0.19 0.45 
25 −8.07 3.05 −0.53 −0.21 −0.51 −0.18 
26 −7.90 3.23 0.28 0.18 0.29 0.17 

27 a −8.60 2.58 −0.42 −0.01 −0.38 −0.01 
28 −8.22 4.07 0.01 0.00 0.00 0.00 
29 −4.97 6.77 0.00 0.00 0.00 0.00 
30 1.87 −11.2 0.00 0.02 0.00 0.01 

31 a 1.97 −11.27 −0.05 0.00 −0.04 0.00 
32 0.33 −12.53 −0.01 −0.03 0.00 −0.02 

33 a 1.91 −6.79 0.04 −0.03 0.03 −0.03 
34 0.74 −11.6 0.00 0.00 0.00 0.00 
35 1.92 −10.83 0.18 0.01 0.15 0.01 
36 0.62 −14 −0.18 0.00 −0.15 0.00 
37 1.16 10.52 0.00 0.00 0.00 0.00 
38 0.76 11.2 0.14 0.12 0.10 0.10 
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Table 1. Cont. 

No. B3LYP/6-31G(d) B3LYP/STO-3G 
DFT-RBFNN DFT-SOFM-RBFNN 

6-31G(d) STO-3G 6-31G(d) STO-3G 
39 0.29 11.06 −0.05 −0.09 −0.07 −0.08 
40 −0.36 10.68 −0.06 −0.39 −0.05 −0.36 
41 −0.41 11.52 0.00 0.00 0.00 0.00 
42 −0.04 11.72 0.02 0.40 0.01 0.37 
43 −0.26 10.28 0.04 −0.05 0.04 −0.03 

44 a −1.14 11.08 1.01 0.95 0.92 0.84 
45 −0.97 9.89 0.00 0.00 0.00 0.00 
46 0.03 12.03 0.00 0.00 0.00 0.00 
47 0.87 10.84 0.02 0.04 0.01 0.02 
48 −1.67 8.65 0.00 0.00 0.00 0.00 
49 −3.41 8.59 −0.01 −0.03 0.00 −0.02 
50 7.47 −0.71 −0.01 0.01 0.01 0.01 
51 5.60 −0.55 0.00 0.00 0.00 0.00 
52 7.03 −1.38 0.03 0.00 0.01 0.00 
53 6.33 −2.14 −0.01 −0.01 −0.01 −0.01 
54 −2.62 15.71 0.00 0.00 0.00 0.00 
55 −2.88 15.23 0.12 0.28 0.08 0.25 
56 −3.88 14.1 −0.12 −0.28 −0.08 −0.25 
57 −3.89 13.76 0.00 −0.01 0.00 −0.01 

58 a −7.57 9.35 0.00 0.00 0.00 0.00 
59 −4.88 12.76 1.26 1.19 1.20 1.14 
60 −7.33 9.84 −1.20 −1.15 −1.16 −1.12 
61 −6.90 10.9 0.17 0.26 0.20 0.28 
62 6.39 18.5 0.00 0.00 0.00 0.00 
63 4.12 17.94 0.00 0.38 0.00 0.35 
64 −9.96 16.41 0.00 −0.37 0.00 −0.34 
65 4.19 15.06 0.00 −0.01 0.00 −0.01 
66 0.55 14.42 0.00 0.00 0.00 0.00 
67 −3.51 19.3 −0.60 −0.52 −0.47 −0.43 
68 −2.46 21.15 −0.93 −0.93 −0.85 −0.90 
69 0.27 22.96 0.51 0.57 0.44 0.54 
70 0.05 22.7 0.07 0.50 0.04 0.47 

71 a 2.43 22.6 0.19 0.18 0.16 0.14 
72 0.20 19.63 0.01 0.00 0.00 0.00 
73 −0.88 20.53 −0.16 −0.52 −0.09 −0.48 
74 7.91 19.5 0.02 0.03 0.01 0.02 
75 −0.36 22.56 0.38 0.39 0.39 0.40 
76 2.96 21.38 0.00 0.00 0.00 0.00 
77 1.69 22.06 0.83 0.53 0.61 0.43 
78 2.77 21.23 0.00 0.01 0.00 0.01 
79 2.52 20.27 0.21 0.00 0.13 0.00 
80 0.84 19.65 0.01 −0.01 0.00 −0.01 
81 1.17 21.22 0.00 0.00 0.00 0.00 
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Table 1. Cont. 

No. B3LYP/6-31G(d) B3LYP/STO-3G 
DFT-RBFNN DFT-SOFM-RBFNN 

6-31G(d) STO-3G 6-31G(d) STO-3G 
82 0.68 20.49 −0.21 0.00 −0.13 0.00 

83 a −2.03 16.73 −0.27 −0.57 −0.26 −0.56 
84 a −0.24 18.15 0.27 0.57 0.26 0.56 
85 a −7.63 2.33 −0.04 0.02 −0.03 0.02 
86 −4.58 6.59 0.00 0.00 0.00 0.00 
87 −7.16 5.16 0.48 0.16 0.36 0.12 
88 −8.00 2.5 0.02 0.10 0.01 0.07 
89 −3.70 11.26 0.00 0.00 0.00 0.00 
90 −10.85 0.62 −0.49 −0.26 −0.37 −0.18 

91 a −8.77 5.98 −0.16 −0.17 −0.13 −0.13 
92 −8.61 1.34 0.00 0.00 0.00 0.00 

a The molecules belong to the test set. 

Table 2. SOFMNN clustering analysis results for twelve molecular descriptors. 

DFT 
Training 

Steps 
Clustering Analysis  

ΔHhomo QY QN QO, NX µ α EHOMO-1 EHOMO ELUMO ELUMO+1 ΔE 

B3LYP/6-31G(d) 

10 24 1 1 1 24 4 24 1 1 1 1 1 
30 5 13 13 13 24 19 24 13 13 13 13 13 
50 4 12 6 12 1 21 1 12 12 12 12 12 
100 19 12 10 12 3 22 1 12 12 11 11 10 
200 16 1 8 1 11 19 24 1 1 2 2 8 
500 16 13 1 19 12 8 24 19 19 20 20 1 

1000 16 13 20 13 23 2 24 13 13 14 14 20 

B3LYP/STO-3G 

10 2 1 1 1 24 1 24 1 1 1 1 1 
30 23 1 7 1 24 5 24 1 1 1 2 7 
50 21 1 1 1 6 13 12 1 1 1 1 1 
100 21 7 19 7 24 3 12 7 7 14 19 19 
200 5 7 19 1 24 3 22 1 1 13 14 15 
500 4 16 19 21 24 8 12 21 21 20 19 13 

1000 10 13 15 19 24 2 12 19 19 20 15 21 

By analyzing the molecular descriptors, we find that, in the B3LYP/6-31G results, the charge on the 
N atom of NO does not change with the charge on Y. The electronegativity of Y itself is most likely 
the key factor determining the amount of charge on N because the charge on the N atom only changes 
with the type of Y atoms. Neither the structure of molecular fragments that connect to Y nor the 
amount of charges on Y has much effect on the charge value of N. When Y = N, O, S, C, the  
charges on the N atom of Y-NO are between 0.21−0.25e, 0.38−0.44e, −0.01−0.08e and 0.13−0.17e, 
respectively; the charges on Y change in the range from −0.63−0.33e, as determined by the rest of 
molecules. The charges on the O atoms do not fluctuate very much and have no clear pattern. In Table 
2 of the Supplementary Materials, the patterns of calculated charges on Y, N and O atoms shown with 
the STO-3G basis set are consistent with 6-31G(d), although the magnitude of the atomic charges are 
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different. In addition, there are some exceptions for charges on the N atom of N-NO bond (molecules 
30–36 and 50–53 have about half charges for the same Y-NO molecules), when N is bonded to S.  

Structural analysis indicates that the conformation of the molecules and functional groups on the 
aromatic rings are shown to affect the homolysis BDE. Conformational effects reported by the Guo 
group show that syn and anti conformations induce BDE differences between isomers [45]. In our data 
set, most molecules contain aromatic rings and functional groups that include −CH3, −CH3O, −Cl, −Br 
and −NO2, among which −CH3 and −CH3O are electron-donating groups and −Cl, −Br and −NO2 are 
electron-withdrawing groups. The electron-donating groups on the meta- and para- positions of the 
benzene ring decrease the BDE of the Y-NO bond, while electron-withdrawing groups on these 
positions increase the BDE. Electron-donating groups at the ortho-position decrease the BDE of the  
Y-NO bond, but the effects of electron-withdrawing groups are stronger than electron-donating groups. 
The substitution effects are smaller for molecules with multiple rings (e.g., indole, dibenzo-azepine) 
than for benzene rings due to the longer distance between the substituent group and the Y-NO bond. 

To study the correlation between the molecular descriptors and the Y-NO experimental homolysis 
BDE, a correlation analysis was performed. The results show that the B3LYP/6-31G(d)-calculated 
homolysis BDE values (ΔHhomo) are the most relevant to the experimental homolysis BDE and the 
correlation coefficient is 0.64, which proves that DFT calculations indeed capture the essence of 
physics. This is the reason that DFT-calculated homolysis BDE (ΔHhomo) are considered the primary 
descriptor. The correlation coefficients of other strong related molecular descriptors are as  
follows: EHOMO(0.51), QN(0.49), QY(0.46) and EHOMO-1(0.43). The remaining descriptors have 
numerically weaker relationships with the experimental homolysis BDE, and the correlation 
coefficients are α(0.28), ΔE(0.27), µ(0.18), ELUMO(0.17), NX(0.12), ELUMO+1(0.05) and QO(0.02). For 
the molecular descriptors calculated by B3LYP/STO-3G, the correlation coefficients in decreasing 
order are EHOMO(0.48), QN(0.43), EHOMO-1(0.40), QY(0.39), ΔHhomo(0.35), ΔE(0.34), α(0.31), NX(0.12), 
ELUMO(0.06), ELUMO+1(0.05), QO(0.05) and µ(0.03). The coefficient shows that the calculated ΔHhomo 

by B3LYP/STO-3G has a weaker relationship with the experimental homolysis BDE than that of 
B3LYP/6-31G(d) due to its poor accuracy. In addition, it can be seen that the types of molecular 
descriptors strongly related with the experimental homolysis BDE do not change greatly. This suggests 
that the B3LYP/STO-3G calculation results essentially agree with the B3LYP/6-31G(d) results, but 
with large deviations. 

The deviations of all the methods are listed in Table 1. The total MADs for two basis sets 6-31G(d) 
and STO-3G are 4.45 and 10.53 kcal·mol−1, respectively. For the results of B3LYP/6-31G(d), the 
deviations between the DFT calculated and experimental homolysis BDE for all four types of carriers 
span a wide range, from −17.17 to 7.91 kcal·mol−1. The calculated homolysis BDE vary according to 
the type of Y atoms in the Y-NO bond, and the deviation distributions also change with different types 
of Y-NO bond. The DFT-calculated homolysis BDE of the S-NO bond carrier molecules agree best 
with the measured values: the MAD is 1.83 kcal·mol−1. The DFT calculation results are in particularly 
good agreement with the experimental data for molecules with amino acid groups (78–84), although 
the introduced amino acid groups make these molecules the largest in the dataset, and the MAD is only 
1.46 kcal·mol−1. This may be good news for theoretical studies on the mechanism of physiological 
release of NO in the human body. The MAD of DFT-calculated homolysis BDE for N-NO bond 
carrier molecules is 4.75 kcal·mol−1, which is much larger than that of the S-NO bond carrier 
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molecules; and the deviation distribution shows two extremes: deviations of 20 molecules exceed  
7 kcal·mol−1

, whereas the deviations of the other 27 molecules are less than 3 kcal·mol−1 (There are  
53 N-NO bond molecules in total). In addition, for some calculations, the homolysis BDE are 
dramatically underestimated (the absolute deviations of the DFT calculated homolysis BDE exceed  
10 kcal·mol−1). The deviations of the calculated and experimental homolysis BDE for the O-NO bond 
carrier molecule homolysis BDE are relatively large, and the MAD is 5.01 kcal·mol−1. The deviations 
for the C-NO bond homolysis BDE of the carrier molecules are the largest and all of the homolysis 
BDE are underestimated (MAD is 7.41 kcal·mol−1). This is consistent with the results of the Guo  
group [45], who found that the DFT calculations in a vacuum tend to underestimate the homolysis 
BDE of Y-NO bond carrier molecules. The results from B3LYP/STO-3G are obviously worse than 
those from B3LYP/6-31G(d), especially for the S-NO and O-NO bond molecular carriers. The results 
for the S-NO homolysis BDE have the largest MAD (20.67 kcal·mol−1), which is exactly opposite to 
the results from 6-31G(d), which has the smallest MAD among the four types of Y-NO bonds. This 
indicates that the polarization function may be obligatory for the S-NO BDE calculations. 

4.2. SOFMNN Calculation Results 

Descriptor selection is a significant step for neural networks, but reports on this topic are scarce [14,15]. 
In this study, twelve molecular descriptors for each molecule are used. Twelve may seem a small 
number, but if we exhaust all combinations of these descriptors, there are 1 2 12

12 12 12 4095C C C+ + =L  

options. Therefore, if there are hundreds of descriptors (n), it is impossible to consider all of the 
combinations (2n − 1) without the appropriate methods. The SOFMNN clustering analysis is able to 
classify similar molecular descriptors into a group; one or several typical molecular descriptors will be 
selected to represent the group according to the correlation analysis for descriptors and experimental 
values, considerably reducing the number of descriptors. Through SOFMNN clustering analysis and 
correlation analysis, subjective selection and bias on molecular descriptors can be avoided and 
molecular descriptors with the same properties will not be chosen repeatedly. Signals extracted from 
molecular descriptors can stand out from the noise; therefore, the neural network is more efficient and 
accurate than the neural network with full molecular descriptors.  

SOFMNN clustering analysis for the molecular descriptors is illustrated by the B3LYP/6-31G(d) 
calculation results. When twelve molecular descriptors (ΔHhomo, QY, QN, QO, NX, µ, α, EHOMO-1, 
EHOMO, ELUMO, ELUMO+1 and ΔE) are taken as the input of SOFMNN, the input layer of SOFMNN 
contains twelve neurons, and a 6 × 4 pattern is adopted in the network structure of the competitive 
layer (Figure 3a). The number of neurons grows gradually from the bottom left to the top right, i.e., the 
number of the neurons at the bottom left is 1, and the number on the top right is 24. In Figure 3b, the 
blue neurons are those that won in competition, and the numbers refer to how many times the neuron 
has won. The clustering analysis results are reported in Table 2. When the training step is set to 10, 
ΔHhomo, NX and α belong to one group, µ itself becomes one group, and all other molecular descriptors 
are clustered into one group. Similarly, when the training step is set to 30, 50, and 100, the preliminary 
clustering is performed for the descriptors, but the cluster is not accurate enough because the training 
steps are not sufficient and the results are not stable. When the number of training steps increases to 
1,000, the calculated results of SOFMNN only show small differences when compared to 200 or 500 
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training steps, i.e., when the training step reaches 500, the clustering results by SOFMNN become 
steady, and the corresponding clustering number of the twelve molecular descriptors computed by 
SOFMNN are 16, 13, 1, 19, 12, 8, 24, 19, 19, 20, 20 and 1, respectively. This suggests that the 
SOFMNN classifies twelve descriptors into eight groups in total: ΔHhomo, QY, NX, µ and α as five 
independent groups, QN and ΔE as one group, QO, EHOMO-1 and EHOMO as one group, and ELUMO and 
ELUMO+1 as another group. For groups with more than one descriptor, selection is made according to 
the correlation analysis results, so QN, EHOMO and ELUMO, are chosen because of their higher correlation 
coefficient. These three descriptors, together with the five independent molecular descriptors (ΔHhomo, 
QY, NX, µ and α) are chosen to represent the major characteristics of the Y-NO bond homolysis BDE 
and are taken as the final inputs of RBFNN. With the same procedure, the nine descriptors ΔHhomo, QY, 
QN, EHOMO, NX, µ, α, ELUMO and ΔE obtained by B3LYP/STO-3G are selected for the final inputs  
of RBFNN.  

Figure 3. (a) The topology structure of the competitive layer; (b) Distances of neighbor neurons. 

 

In the SOFMNN calculation, only one neuron wins each time. Its weight and the corresponding 
weights of its peripheral neurons are adjusted synchronously, and the weights of the neurons change in 
favor of winning the competition. At the same time, SOFMNN reduces the neighborhood area 
gradually and starts to repulse its neighbor neurons. The mode combining cooperation with competition 
allows SOFMNN to acquire superior performance and significantly improves the learning ability and 
generalization of the neural network. After running the SOFMNN program, the resulting labels are 
likely different because the excited neurons are different each time, but the final clustering result does 
not change no matter which neuron is excited. 

4.3. RBFNN Calculation Results 

As mentioned above, eight descriptors (ΔHhomo, QY, NX, µ, α, QN, EHOMO and ELUMO) for  
B3LYP/6-31G(d) and nine descriptors (ΔHhomo, QY, QN, EHOMO, NX, µ, α, ELUMO and ΔE) for 
B3LYP/STO-3G selected by SOFMNN clustering analysis and correlation analysis were taken as the 
RBFNN final inputs. These inputs of RBFNN must be normalized to make the learning and training 
process easier because the magnitude of the raw data may vary widely if very different raw data are 
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input directly into the neural network. Data with large fluctuations might monopolize the RBFNN 
learning process, and the network may fail to reflect small changes in data. 

In RBFNN, the value of spread is increased from 0.2 to 3 by the constant with a variation of 0.2. 
The optimal neural network output can be decided during the variation of spread. For DFT-RBFNN 
and DFT-SOFM-RBFNN methods, the best results of regression estimation are achieved when the 
values of spread are 0.6 and 0.8, respectively.  

Figure 4 shows the histograms of deviations between the computed homolysis BDE values and the 
experimental BDE values. The Figure 4(a–c) presents the histograms of deviations for B3LYP/6-31G(d), 
B3LYP/6-31G(d)-RBFNN and B3LYP/6-31G(d)-SOFM-RBFNN, respectively, and Figure 4(d–f) are the 
corresponding deviations of the B3LYP/STO-3G calculations. The deviation in Figure 4a distributions 
for the homolysis BDE of 92 organic molecules from B3LYP/6-31G(d) calculations are broad and 
have large systematic deviations, but most are distributed near 0 (34 molecules), which suggests that 
the accuracy of the results obtained by B3LYP/6-31G(d) is not poor (MAD 4.45 kcal·mol−1). However, 
the deviations for the homolysis BDE by B3LYP/STO-3G in Figure 4d are much worse (the MAD is 
10.53 kcal·mol−1) than those of the B3LYP/6-31G(d) calculation, and most of the deviations are 
approximately 12 kcal·mol−1 (27 molecules). The results shown in Figure 4(b,e), denoted by  
DFT-RBFNN, are the DFT results corrected by RBFNN with twelve molecular descriptors (without 
selection) as inputs. The deviations of the DFT-RBFNN results are remarkably reduced  
after RBFNN correction. The MADs for the basis sets 6-31G(d) and STO-3G decrease to 0.17 and 
0.21 kcal·mol−1, respectively; the deviation ranges are narrowed to −1.2−1.3 kcal·mol−1 and  
−1.8−1.2 kcal·mol−1; and the deviation distributions are Gaussian curves, indicating that systematic 
errors have been removed. The DFT-RBFNN effectively improves the accuracy of the DFT calculations.  

If we use fewer molecular descriptors, how many descriptors should we choose and which ones 
should be chosen? These questions can be answered by SOFMNN coupled with correlation analysis. 
Figure 4(c,f) shows the histograms of deviations for B3LYP with two basis sets corrected by RBFNN 
with the SOFMNN classified descriptors as inputs, and the method is denoted DFT-SOFM-RBFNN. 
Calculations are performed to improve DFT calculations, employing these selected descriptors as 
inputs of RBFNN. In Figure 4(c,f), the deviations of DFT-SOFM-RBFNN are further improved 
compared with DFT-RBFNN, although the difference is slight. The ranges of deviations are  
−1.2–1.2 kcal·mol−1 and −1.2–1.1 kcal·mol−1 and the MADs are 0.15 and 0.18 kcal·mol−1 for the  
6-31G(d) and STO-3G basis sets, respectively. When regarding only improvements to the accuracy, 
the significance of SOFMNN is unclear because DFT-RBFNN is already sufficiently accurate, but 
SOFMNN increases the calculation efficiency and solves mass descriptor problems, very well when 
many descriptors are used. Although the improvement of accuracy compared with DFT-RBFNN is 
slight, chemical accuracy (1 kcal·mol−1) is achieved for all 92 Y-NO homolysis BDE calculation 
results, which is a very important result. Surprisingly, the homolysis BDE by B3LYP/STO-3G after 
correction are comparable to those by B3LYP/6-31G(d), even with the raw MAD (10.53 kcal·mol−1) of 
STO-3G being much worse than that (4.45 kcal·mol−1) of 6-31G(d). With the minimal basis set  
STO-3G, we can save much time and many resources while retaining the ability to perform calculations 
for large molecules.  
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Figure 4. The histograms of deviations between the different calculated homolysis BDE 
and the experimental values for 92 organic molecules, (a) B3LYP/6-31G(d);  
(b) B3LYP/6-31G(d)-RBFNN; (c) B3LYP/6-31G(d)-SOFM-RBFNN methods; (d–f) are 
the deviations when changing the corresponding basis set from 6-31G(d) to STO-3G. 

 

During this study, we considered the extrapolation of the method to larger molecules and molecules 
with more types of elements as well as to different Y-NO bonds in addition to the four types in this 
dataset, so we preferred descriptors that were independent of the elemental types. After establishing 
the DFT-SOFM-RBFNN method, some molecules were used to test the ability to extrapolate. The 
structures of the molecules and the calculation results are shown in Table 3. Six extrapolation test 
molecules contained Si-NO bonds and fluorine, which were not included in original dataset. The  
DFT-SOFM-RBFNN results show that deviations of the DFT calculations for test molecules are 
reduced dramatically and reach the same accuracy as the 92 organic Y-NO bond molecules, 
particularly for B3LYP/STO-3G calculation results with large calculation deviations, which gives us 
more confidence in the predictive ability of this method.  
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Table 3. The extrapolation test for the DFT-SOFM-RBFNN method. (kcal·mol−1). 

No. Structures Expt. B3LYP/6-31G(d) 
DFT-SOFM-RBFNN 

6-31G(d) 
B3LYP/STO-3G 

DFT-SOFM-RBFNN 

STO-3G 

1 

S

NO

 
31.6 29.02 30.49 48.10 30.56 

2 H3C NO  41.1 38.55 40.95 49.4 40.59 

3 F3C NO 39.9 37.67 39.90 32.47 39.90 

4 

NO

F

F

F

F

F

 

50.5 50.34 50.48 60.6 51.12 

5 H3Si NO 37.8 27.04 37.85 48.8 37.98 

6 CH3Si NO

CH3

CH3  
44.8 34.65 44.76 50.58 44.62 

The excellent performance of the DFT-SOFM-RBFNN method benefits from the combined 
advantages of all the methods. DFT molecular descriptors represent the physical essence of the 
homolysis BDE; the RBFNN is independent of the initial weights and thresholds, converges quickly to 
global minima, has few parameters that must be adjusted, shows great capacity for reverse redundancy 
and fault tolerance and possesses a built-in nonlinear model capable of carrying out calculations with a 
partial response. As a result of the SOFMNN cluster analysis, the significant features of the descriptors 
have been discovered and the number of descriptors can be narrowed down, so that the accuracy and 
efficiency of RBFNN calculations are improved. The combined DFT-SOFM-RBFNN method 
improves the DFT calculations and develops new applications in chemistry for SOFMNN and RBFNN. 

To compare the DFT-SOFM-RBFNN calculations with more sophisticated DFT calculations with  
a larger basis set, the M06-2X/6-311 + G(2d,p) calculations with or without the solvent effect are 
performed for the four smallest molecules from each type of Y-NO molecule. The results are listed in 
Table 4. As shown in Table 4, the BDE calculations are improved by the M06-2X/6-311 + G(2d,p) 
calculation compared to the B3LYP/6-31G(d) calculations, but high accuracy cannot be reached. The 
solvent effect by the polarizable continuum model (PCM) on the BDE is adopted. The results show 
that the solvent effects are small (<2 kcal·mol−1) and uncertain for improvement of BDE calculations, 
and the chemical accuracy cannot be reached even when considering the solvent effects. This further 
exhibits the high efficiency and accuracy of the proposed DFT-SOFM-RBFNN method.  

Table 4. The deviations of calculation methods (kcal·mol−1). 

NO. DFT-SOFM-RBFNN a M06-2X/6-311 + G(2d,p) M06-2X/6-311 + G(2d,p) 
(PCM) 

B3LYP/6-31G(d) 

39 −0.1 3.6 2.4 0.29 
59 1.2 1.5 0.8 −4.9 
76 0.0 4.2 4.2 3.0 
91 −0.1 −2.2 −4.1 −8.7 

a DFT-SOFM-RBFNN is based on B3LYP/6-31G(d) calculations. 
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5. Conclusions 

Recently, artificial intelligence, or “machine learning,” has begun to be employed to solve  
first-principles/quantum chemical calculation problems in a simple and efficient manner; therefore, 
they can reach statistically interesting problems rather than simply solving wave functions. In this 
study, the accuracy of the DFT calculations for the homolysis BDE of 92 organic NO carrier molecules 
was improved by the proposed DFT-SOFM-RBFNN method, which combines first-principles  
DFT and artificial intelligence SOFMNN and RBFNN. The DFT computes the molecular 
descriptors/quantum mechanical descriptors, the SOFMNN performs cluster analysis to classify 
molecular descriptors, and the correlation analysis selects descriptor from each classified group; thus, 
subjective opinions on and the biases of molecular descriptors can be avoided. Thereafter, RBFNN 
uses these selected molecular descriptors as inputs to correct the DFT-calculated homolysis BDE. The 
DFT calculations are performed by B3LYP with two basis sets, the minimal basis set STO-3G and the 
medium size basis set 6-31G(d). In total, twelve descriptors are obtained, eight and nine groups are 
categorized by SOFMNN for descriptors acquired with the B3LYP/6-31G(d) and B3LYP/STO-3G 
basis sets, respectively. After the final RBFNN calculations, chemical accuracy (≤1 kcal·mol−1) is 
achieved for all DFT-calculated homolysis BDE of 92 NO carrier molecules. The overall MADs of the 
homolysis BDE calculated by the B3LYP method with the 6-31G(d) and STO-3G basis sets decrease 
from 4.45 to 0.15 kcal·mol−1 and from 10.53 to 0.18 kcal·mol−1, respectively. Although the raw MAD 
by B3LYP/STO-3G was much worse than that of B3LYP/6-31G(d), high accuracy for B3LYP/STO-3G 
has yet to be obtained. The minimal basis set DFT-SOFM-RBFNN could apply to fairly large 
molecules; additionally, the molecular descriptors used are general, which makes the method easy to 
use and further extrapolate to various system; extrapolation tests proved that high-accuracy results can 
be achieved for molecules with different types of Y-NO bond and systems including atoms not already 
in the database. In particular, the high-accuracy result obtained in the study is practically important for 
the design of new types of NO-releasing drug molecules. We firmly believe that DFT-SOFM-RBFNN 
can calculate not only the homolysis BDE but also other interesting properties such as bond heterolysis 
energy, optical properties, power conversion efficiency, and further research is ongoing. 
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