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Abstract: In this review, we elucidate the mechanisms of Aβ oligomer toxicity which
may contribute to Alzheimer’s disease (AD). In particular, we discuss on the interaction of
Aβ oligomers with the membrane through the process of adsorption and insertion. Such
interaction gives rises to phase transitions in the sub-structures of the Aβ peptide from
α-helical to β-sheet structure. By means of a coarse-grained model, we exhibit the tendency
of β-sheet structures to aggregate, thus providing further insights to the process of membrane
induced aggregation. We show that the aggregated oligomer causes membrane invagination,
which is a precursor to the formation of pore structures and ion channels. Other pathological
progressions to AD due to Aβ oligomers are also covered, such as their interaction with
the membrane receptors, and their direct versus indirect effects on oxidative stress and
intraneuronal accumulation. We further illustrate that the molecule curcumin is a potential
Aβ toxicity inhibitor as a β-sheet breaker by having a high propensity to interact with certain
Aβ residues without binding to them. The comprehensive understanding gained from these
current researches on the various toxicity mechanisms show promises in the provision of
better therapeutics and treatment strategies in the near future.



Int. J. Mol. Sci. 2012, 13 7304

Keywords: molecular dynamics simulation; Alzheimer’s disease; amyloid β peptide;
amyloid β oligomer toxicity mechanism; curcumin

1. Introduction

The pathogenesis of Alzheimer’s disease (AD) is characterized by the aggregation of amyloid β

peptides leading to extracellular senile plaque, and the formation of intracellular neurofibrillary tangle
by the hyperphosphorylated tau protein. These structures have the detrimental effects of causing a
significant loss of neurons and synapses, which gives rise to the state of Alzheimer’s disease. Amyloid β
peptide (Aβ) is cleaved from the amyloid precursor protein (APP) and it usually possesses 36–43 amino
acids. Aβ peptides are known to self-assemble into dimer, trimer and higher-order oligomers, which are
believed to be the main source of toxicity by causing the death of neurons [1,2]. The mechanism of the
toxicity has been studied extensively from both the experimental and theoretical perspectives which are
summarized here: (1) activation of inflammatory effects by interacting directly with the membrane [3];
(2) induction of oxidative stress [4] through the formation of metal-Aβ complex [5,6]; (3) disruption
of membrane receptors’ function by intimate binding [7]; (4) formation of membrane pore [8–11] and
alteration of ionic homeostasis [12,13] across the membrane; and (5) modification of the structure of
certain DNA by the process of attachment [14].

In this review, we shall focus on the oligomers-membrane interaction and discuss the underlying
mechanisms of the toxicity and their consequences. In this respect, we shall first exhibit the structure of
small oligomers in aqueous environment, the process of Aβ adsorption, insertion, aggregation and ion
channel/pore formation, as well as a brief review on the toxicity of intra-neuronal Aβ. We then bring
out the relationship between Aβ and the membrane receptors, and discuss on the contribution of Aβ to
oxidative stress. The secondary structure evolution of Aβ is then highlighted by means of the α-helix to
β-sheet phase transition from the point of view of statistical physics of coarse-grained models. Finally,
we examine into the potential inhibitory influence of the curcumin molecules on Aβ oligomers formation
from the viewpoint of molecular dynamic (MD) simulations, with the inclusion of relevant experimental
evidences and validations.

2. Aβ Oligomers in Aqueous Environment

Presently, there is intense interest in elucidating the structures of Aβ oligomers. Unlike amyloid fibril,
whose structural understanding has been developed over the past decades, less is known on the structures
of Aβ oligomers in aqueous environment. A mature Aβ1−42 amyloid fibril is known to consist of a
β-strand-turn-β-strand motif, which is adopted by its residues 18–42 with the β-sheet being in a parallel,
in-register organization, while its residues 1–17 are mainly in the form of a disordered structure [15]. It
is formed by the nucleation-dependent self-assembly of Aβ [16] via a series of cascade neuropathogenic
process [17]. The β-sheet-rich mature amyloid fibril and the monomeric Aβ are found to be far less toxic
than the soluble Aβ oligomers.
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Although there is limited experimental information on the structures of Aβ oligomers due
to its propensity to form soluble aggregates in comparison to the amyloid fibrils, improved
understanding has been achieved through computer simulations based on REMD, MD and Monte Carlo
approaches [18–24]. These computations investigate into the formation and conformational properties
of small Aβ oligomers from dimers to hexamers (in particular, dimers). They serve to explore into the
nature of the toxicity of these oligomers and to complement the limitation of experiments in capturing
the transient oligomeric states. These studies have revealed that Aβ1−42 oligomers are quasi-spherical in
shape with a hydrophobic core and a hydrophilic surface, with enhanced exposure to the solvent at the
region D1 to D7 of its N terminal. This indicates that oligomerization is driven by hydrophobic effects
since it is more favorable energetically for the hydrophobic residues to hide away from the solvent and
to form inter-molecular contacts with each other, although electrostatic forces are also known to play
an important role. The identical interaction governing the oligomerization and fibrillization may explain
the similar cross-β structure that is found in the Aβ oligomers (especially the toxic Aβ1−42 fibrillar
oligomers) and the mature amyloid fibril. However, in contrast to the amyloid fibril, antiparallel-β
sheets are observed in the oligomers instead of the fibrill-like parallel, in-register β-sheet structure [24].
During dimerization, it is also observed that there is a consistent reduction in the α-helical content with
an increase in β-sheet structure. The residues ILE-41 and ALA-42 and the formation of salt-bridge
between D23-K28 are found to be important in the dimer formation [23]. Notably, the free energy
landscape of Aβ42 dimers is found to be complex and broad, indicating its greater tendency to form
hydrophobic contacts and β-sheet structures relative to the dimers of Aβ40 [22,23]. More importantly,
it is uncovered that a small difference in the Aβ primary structures can lead to significant differences
in the resulting oligomer structures. This implies that to anticipate and fathom the associated toxicity
properties of the eventual oligomer is not a straightforward task.

3. Aβ Adsorption and Insertion Mechanism

The influence of membrane surface on the adsorption and aggregation of Aβ peptides have
been investigated on solid surfaces, monolayer bilayers, self-assembled monolayers (SAMs), implicit
membrane models, and models that mimic membrane structures [25–30]. The general observation is that
solid surfaces promote the self-assembly of Aβ peptides. The main driving forces for the association
have been attributed to dehydration effects and electrostatic interactions. A detailed review on Aβ
interaction with solid surface can be found in Reference [25]. On the other hand, the adsorption
process of Aβ, ranging from dimer to hexamer, towards a self-assembled monolayers surface which is
capped by the COOH, CH3 and OH groups, is also explored [26,27]. These researches have determined
that the strength and extent of the adsorption on the SAMs surface are related to the binding sites.
Furthermore, the Aβ is observed to change its conformation and reorient itself in order to adopt a more
energetically favorable association during the adsorption process. However, the conformational change
of the oligomers is found to be slowed down by the SAMs relative to oligomers that are placed solely
in water. Extensive MD simulation studies have found that trimers and tetramers have well-preserved
β-sheet structures that act as seed for future oligomerization and fibrillization. The hydrophobic effects,
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electrostatic interactions and water-mediated dewetting transition have been highlighted as the main
driving forces behind these aggregation process [16,31–33].

Implicit membrane model with short Aβ fragments has been used to investigate the interaction of Aβ
with the membrane and the folding process of Aβ in the membrane environment [28]. An interesting
observation in this study is that the C-terminus of Aβ(25–35) first forms an α-helical structure in the
hydrophilic region of the membrane before the Aβ attempts to knock into the hydrophobic membrane
core through its hydrophobic residues. The study of Aβ peptides adsorption on different membrane
monolayers has revealed that the adsorbed Aβ exhibits β-sheet structure with its orientation aligned
parallel to the air-water interface and the lower pressure lipid surface [29]. The association of Aβ with
the monolayer has the effect of increasing the surface pressure of the layer. On the other hand, the
interaction of Aβ with the membrane bilayer affects both the order and fluidity of the bilayer. This is
observed when the two fragments of Aβ1−28 and Aβ25−40 are incorporated into the bilayer. While the
hydrophobic group of Aβ25−40 is observed to locate inside the hydrophobic core region, Aβ1−28 shows
a greater propensity to interact with the hydrophilic region of the membrane [30]. In comparison to
Aβ1−28, Aβ25−40 is found to induce larger membrane perturbation and alteration.

In our investigations, however, we have uncovered that while the C-terminus of the Aβ peptide
remains outside the membrane, the N-terminus tends to bury inside the DPPC headgroup as a result of
the strong protein-lipid interactions. We have considered two pre-formed Aβ dimers in our simulations,
which consist of 4 Aβ peptide chains: A, B, C and D. They are represented by the GROMOS96
43a1 force field. These peptides are rich in β-sheet contents and they are placed at each side of the
pre-equilibrated dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CHOL) mixed bilayer model,
with an initial 2 nm distance from the membrane surface. The membrane model is represented by the
43A1-S3 parameter set [34–38]. We have used 31, 777 water molecules with the addition of 103 Na+ and
95 Cl− ions to neutralize the system and reach the ions concentration of 0.1 mol/L. The temperature was
kept at 323 K using the Nosé–Hoover coupling scheme [39,40]. The linear constraint solver (LINCS)
algorithm [41] with a 2 fs integration time step was employed to constrain all the bonds in the simulation.
Our results have indicated that the dimers mainly adsorb and reside on the membrane surface during the
1.2 µs simulations. The partial density functions of the dimers, water molecules, and the constituents
of the mixed bilayer during the last 100 ns are given in Figure 1. The result here shows that the
N-terminus of chain A, from residues 1–22 and 26–33, is fully inserted into the DPPC headgroup, while
the C-terminus remains outside the membrane. On the other hand, chain B is observed to interact with
chain A and has correspondingly less interactions with the membrane. Similar to chain A, the N-termini
of chains C and D from 1–33 and 1–24 respectively are totally buried within the DPPC headgroup. Their
C-termini, however, are found to stay outside the membrane. From Figure 2, we see that the dimer which
is made up of chains A and B is more stable than the dimer formed by chains C and D. Furthermore, it is
observed that Aβ peptides adsorption onto membrane surface do not always have stronger protein-protein
interaction within the dimer. The perturbation of the bilayer due to the association of Aβ dimers is also
found to be insignificant.
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Figure 1. Partial density function along the Z-direction.

Figure 2. The residue contact map of each dimer. The coloring scheme is based on the
inter-residue distance.
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4. Membrane-Mediated Aβ Aggregation Mechanism

The toxicity of Aβ oligomers originates from the cleavage of APP with subsequent deposition of
excessive Aβ peptides on the membrane surface, and to the cleaved peptides that fail to exit and release
from the membrane into the extracellular space which form intracellular neurofibrillary tangle. Thus,
a good understanding on the toxicity mechanisms requires knowledge on the possible structures of the
transmembrane parts of the peptide and the detailed cleavage scenario of APP [42]. In particular, in
order to find the possible aggregation behavior inside the membrane [18], it is necessary to examine the
interaction of Aβ with the membrane, and cumulative evidence has suggested that elevated cholesterol
level in the membrane plays an important role in increasing the risk of Alzheimer’s disease [43].
Indeed, research has found that Aβ is produced in the cholesterol-rich areas, which is also known as
the lipid rafts. Such raft-like heterogeneous membrane environment which consists of ganglioside and
cholesterol [44–46] has been extensively used to study the interaction of Aβ with the membrane
environment. Study has proposed that lipid rafts accelerate the aggregation of Aβ [47], with the
controversial results of cholesterol inhibiting the interaction of Aβ with the gangliolipids [48] while
promoting the interaction of Aβ with 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) bilayer[49]. Our
research has revealed that the interaction between Aβ and lipids has facilitated the aggregation of the Aβ
peptides. However, the interaction between Aβ and the cholesterol is inversely correlated with the extent
of the peptide-peptide interactions [18]. The depletion of cholesterol or gangliosides has been shown to
significantly reduce the amount of Aβ and its accumulation [46,50]. In fact, the aggregation of Aβ to
fibrills is mediated by the gangliosides on the lipid rafts, where a transition from the alpha-helix-rich
conformation to the β-sheet-rich conformation is observed. Thus, the constituents of the raft-like
membrane strictly control the amyloid formation [51].

To gain a better understanding on the underlying interaction mechanism between Aβ, cholesterol and
lipids, and the aggregation process of Aβ in a raft-like environment, we have arranged three full-length
Aβ peptides aligning in a parallel configuration in the vicinity of a DPPC and cholesterol mixed bilayer,
with residues 1–27 on the surface of the membrane and 28–42 inside the membrane. The detailed
simulation information can be accessed from Ref. [18]. Our 1 µs long simulation shows that while
residues 1–27 predispose to interact with the aqueous-membrane interface region, residues 28–42 incline
to remain inside the hydrophobic core region (see Figure 3) [18]. The oligomer is found to attach to
the sunken raft-like membrane surface forming a conglomerate of defects and disordered cholesterol
molecules. Cholesterol further enhances the pre-existing hydrogen-bond network between Aβ and
DPPC and promotes the incorporation of Aβ into the membrane [52]. However, the interaction between
cholesterol and Aβ competes with the Aβ peptide-peptide interactions such that cholesterol hardly
facilitates the aggregation of Aβ once Aβ has been immersed into the membrane [18]. Nonetheless,
cholesterol is observed to facilitate the formation of pore/channel in the membrane by binding directly
to the Aβ during the adsorption process [53].
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Figure 3. The density function of Aβ in the mixed bilayer environment along the Z-direction.
Residues 1–27 are indicated by black line, and residues 28–42 by red line. The light
yellow background shows the DPPC headgroup region. For detailed system information
see Reference [18].

5. Intraneuronal Aβ Accumulation Mechanism

The intraneuronal accumulation of Aβ may precede the generation of Aβ plaque and neurofibrillary
tangles formation [54], which may or may not [55] result in a series of pathological alterations like
cognitive impairment, selective neuron loss, and axonopathy [56]. Since the intraneuronal Aβ17−42

secreted by α- and γ-secretases from APP has been suggested to be a normal product of neuronal
metabolism, it is controversial as to whether its presence represents a sign of neuronal pathology. In
fact, the manner in which Aβ comes to exist inside the neuron is still not well understood. One
theory presupposes that the Aβs get inside the neuron directly after cleavage. These Aβs then lead
to neuronal death. After that they are released into the extracellular space and form amyloid plaques
subsequently [57]. Another theory suggests that Aβ is first being released outside the neuron before
its re-uptake into the neuron through endocytosis or via membrane receptors. Several receptors have
been reported to be able to mediate and internalize the Aβ located outside the neurons. These receptors
are: alpha 7 nicotinic acetylcholine receptor [58,59], the low-density lipoprotein receptor-related protein
1 [60], and scavenger receptor for advanced glycation end products (RAGE) [61]. A detailed review on
different uptake and internalization processes can be found in References [62,63].

Next, let us look at several aspects of intraneuroal Aβ toxicity. The accumulation of intraneuronal
Aβ has been speculated to affect intracellular trafficking [64] which disrupts fast axonal transport [65].
Furthermore, results from APP/PS1KI mouse AD models indicate that the intracellular Aβ can cause
early synaptic deficits, cholinergic neuron loss, and hippocampus atrophy [66–69]. There are also
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emerging evidences showing that the disruption of neuronal functions and survival is indirectly attributed
to the intraneuronal Aβ [70].

6. Ion Channels/Pore Formation by the Incorporation of Aβ into the Cell Membrane

While Aβ oligomers exert toxicity from disruption of membrane integrity through altering its
dielectric property to binding and activation of membrane receptors, they can also give rise to pores
that leak Ca2+ ions which causes an elevation in cytosolic calcium. The pores formed by Aβ oligomers
are much less efficient in transporting ions than other membrane pores, such as the nuclear pore, the
ion channels, and the bacterial pores, which have all undergone the process of optimization during
evolution [71]. Here we shall mainly focus on pores formed by Aβ oligomers on synthetic and cellular
membrane based on experimental observations, as well as those generated from computational models.

Arispe et al. first proposed the possibility of Aβ forming an ion channel in 1992 [72] which
serves to increase the level of intracellular Ca2+ ions. Later, several models have emerged which
includes the helix-turn-helix [12] and β-sheet-twist-antiparallel-β-sheet [10,11] morphologies for the
membrane-bound Aβ pore structures. The secondary structure of the membrane-bound Aβ is affected
by many factors [44,73], such as the pH, the constituents and property of the membrane, peptide
concentration, and others. By means of basin-hopping global optimization, the strand-turn-strand
motif has been identified to be the most stable membrane-spanning structure for monomers, with
tetrameric and hexameric β-sheet subunits constituting the pore structure [74]. Other proposal includes a
hexamer-of-hexamer ion channel model with stable 36-stranded β-barrel in the membrane. This model is
consistent with experimental observations and has been further used to explain the consequent channel
selectivity [12]. Images from solid state NMR and atomic force microscopy (AFM) has revealed the
presence of hexagonal annular channels in Aβ containing membrane. These images strongly suggest a
pore-like assembly with 6 subunits [75] (in the case of rectangular assembly, 4 subunits in the membrane
were observed). Zn2+ ions, as well as other small molecules like MRS2481 and its enatiomeric species,
have been proposed to inhibit the toxicity by blocking the calcium-permeable channels formed by the
Aβ oligomer [76–78].

7. The Relationship of Aβ with Different Receptors

We have discussed the role of adsorption, insertion, aggregation and ion channel pore formation as
key determinants of Aβ toxicity via interaction of Aβ with the membrane. In this section, we shall
extend our review to the area when Aβ oligomers serve as pathogenic ligands by binding to different
receptors and inducing deterioration and loss of synapses through a redistribution of receptors, which
further leads to alteration of neuronal plasticity accompanied with oxidative stress [79,80]. Indeed, it
is well known that Aβ oligomers can bind to several receptors [81–86] and initiate numerous signaling
cascades and surface expression regulations.

Recent studies have indicated that Aβ oligomers can induce impairment to the transduction of signal
in neuronal insulin receptors [81], and suppress the activation of insulin receptor substrate [87]. Further
studies have shown that the insulin receptor impairment and synaptic deterioration can be mitigated
by insulin via down-regulation of the Aβ oligomers binding sites [79]. Omega-3 fatty acids and
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curcumin [87] are also reported to be able to prevent synaptic dysfunction and neuronal loss by
suppressing the inactivation of insulin receptors due to the Aβ oligomers.

Several mechanisms have been proposed on the role of N-methyl-D-aspartate (NMDA) receptors
in Aβ toxicity [88,89]. This includes the possibility that Aβ activates NMDA receptors directly [90]
or indirectly by regulating the downstream NMDA receptors. Experimental observations have shown
that both synthetic and naturally-secreted Aβ possesses the ability to reduce surface NMDA receptors,
and reducing Aβ would restore the surface expression of NMDA receptors [82]. On the other hand, the
activation of NMDA receptors affects synaptic Aβ generation [91,92] which further induces the elevation
of intracellular Ca2+ and apoptosis [86]. In order to prevent the Aβ oligomer toxicity, various NMDA
receptor antagonists have been suggested [90,93,94].

It is recently proposed that the natively folded cellular prion protein (PrPC), which is involved in
the development of nervous system through mediation of synaptic and neuroprotective roles [95–100]
and promoting neurite outgrowth [101], is an Aβ oligomer receptor and is related to AD by mediating
synaptic dysfunction induced via the Aβ oligomers [102]. However, it is currently controversial as to
whether the presence of PrPC is necessary for Aβ to induce synaptic dysfunction because there are
experimental evidences which indicate that PrPC is not essential and has no effects on the impairment of
synaptic plasticity induced by the Aβ oligomers [103,104].

Aβ has been reported to show a very high binding affinity towards the alpha 7 nicotinic
acetylcholine receptors (nAChRs) [105], and it directly modulates [106] and blocks the response of these
nAChRs [107]. Meanwhile, nAChRs is known to promote intraneuronal Aβ aggregation [58] and
exacerbates cognitive deficits and synaptic pathology [108]. However, this view is in conflict with
another report which states that the absence of nAChRs can enhance Aβ accumulation [109] and hence
worsen the cognitive deficit. Nonetheless, the neuroprotective role of nAChRs by counterbalancing
the toxicity of Aβ oligomers has been proposed based on experimental observation [109]. For
example, drugs like 2-(2-(4-bromophenyl)-2-oxoethyl)-1-methyl pyridinium (S 24, 795), which have
been assessed to be able to reduce the interaction between Aβ and nAChRs, have been shown to enhance
long-term potentiation [110–112]. Interestingly, one research group has found that Aβ does not bind with
nAChRs and has no direct relationship with the nAChRs expression and activity. Instead, the Aβ may
affect the nAChRs indirectly by attaching to the membrane and altering the property of the membrane,
which then influences the membrane receptors inadvertently [113]. Finally, note that there are other
receptors like P75 neurotrophin receptor (P75NTR) [85,114,115], serpin-enzyme complex receptor
(SEC-R) [116,117], receptor for advanced glycosylation end-products (RAGE) [118,119], and scavenger
receptor CD36 [120–122], which bind with the Aβ oligomers.

8. Oxidative Stress

Patients with AD are found to show an elevated level of oxidative stress, which is mainly characterized
by protein, DNA and RNA oxidation, and lipid peroxidation [123,124]. Oxidative stress may induce the
overproduction of Aβ peptides through the activation of β-secretase [125]. The excessive Aβ peptides
may aggregate into toxic oligomers which in turn initiate the free radical process. This results in new
oxidative stress, accompanied with increased macroautophagy and lysosomal ensuing apoptosis [126],
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and any additional overexpression of oxide synthase can bring about extra neuronal damage [124].
Oxidative stress can also change the protein structure and affect its function, leading to physiological
alteration and pathological induction [124,127,128]. In fact, a series of oxidatively modified proteins
have been identified in the brain of AD patients [124,129–131]. Met-35 of Aβ is believed to be the key
residue involved in oxidative stress and the mutation of Met-35 has been shown to reduce the effect of
toxicity in Aβ [123,132,133]. There are many food and compounds, such as the walnut and turmeric
extract, which are anti-oxidant in nature. These products have been reported to be able to prevent the
oxidative stress induced by Aβ and its associated apoptosis [134].

In summary, we have discussed the various mechanisms which contribute to Aβ oligomer toxicity:
adsorption, insertion, aggregation and pore formation in the membrane, as well as the interaction of
Aβ with the membrane receptors and oxidative stress. The pleiotropic effects of Aβ peptides can be
seen in Figure 4. Currently, there are lots of therapeutic strategies being proposed to suppress the Aβ
induced toxicity, such as the β- and γ-secretase inhibitors whose function is to reduce the production of
Aβ peptides. There are also other strategies to overcome Aβ oligomer toxicity, such as the aggregation
inhibitors, the pore/channel blockers etc.; a detailed review on these therapeutic approaches is available
in Ref. [135].

Figure 4. The cleavage of APP by α-, β- and γ-secretase and the production of Aβ peptides
are shown on the left side of the figure. The following toxic mechanisms are illustrated
in the figure: formation of Aβ oligomers and its further conversion to fibrils; disruption
of membrane receptors; adsorption on membrane surface which alters the property of the
membrane; formation of pore which causes the leakage of Ca2+; and the accumulation of
intraneuronal Aβ.

9. Secondary Structure Phase Transition

One of the important underlying mechanisms that leads to the formation of Aβ oligomer is
the occurrence of secondary structure phase transition within the Aβ peptide. In particular, the
transition typically involves a phase transition from an α-helix or a random coil to a β-sheet
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configuration [136–138]. Such structural changes or misfolding can result in a loss of normal biological
functions and is well known to be a source of diseases such as the Creutzfeldt–Jakob disease, in addition
to the Alzheimer’s disease [139,140]. The phenomenon of protein misfolding has led to intensive
studies on the subject of protein secondary structure phase transition. A fruitful approach in these
studies involved coarse-grained models which include those developed by Zimm–Bragg, Lifson–Roig,
Yakubovich et al., Ding et al., Hong–Lei, Yasar–Demir, Gibbs–DiMarzio etc. [141–149].

In our investigation, we have explored a coarse-grained protein model based on a polypeptide
consisting of backbone atoms and hard-sphere side chains. The hard-sphere side chain serves to
simulate the amino acid residue. In our approach, we have defined the base unit as crank instead of
residue [150,151]. Each crank has a pair of dihedral angles φ and ψ, which are the only degrees of
freedom in the polypeptide. In addition, bond lengths and bond angles are being held rigid in our model.
We have studied phase transition from α-helix to β-sheet, and from β-sheet to random coil, using this
model both numerically and theoretically. While our numerical study employs the model of Conditioned
Self-Avoiding Walk (CSAW), our theoretical approach is based on the Hamiltonian formulation. Note
that in both of these cases, we have assumed that the non-covalent forces arise solely from the hydrogen
bonds. In our theoretical analysis, we have restricted the pair of dihedral angles of a crank to only five
distinct states, such that the combination of crank states can adopt only the α-helix, β-sheet and random
coil conformations. Such a protein model has shown to be reliable based on our computation of the
normal modes of the α-helix and β-sheet [152].

By taking polyalanine as a prototypical example, we have plotted an α-β-coil phase transition from
the ensemble average of the number of hydrogen bonds against temperature (see Figure 5 and note that
1 a.u. is to be associated with a temperature of 1 K). Such a plot allows us to predict the transition
temperature of the phase transition. We have also plotted an ensemble average of the heat capacity
against temperature, where we observed two significant peaks for the α-β and the β-coil transition.
These results have demonstrated that the transitions are associated with a first-order phase transition.
In our model, we have assumed polyalanine to be in the gas phase, which implies that lower transition
temperatures are to be expected in an aqueous environment [153].

A key finding in both our theoretical and numerical studies relates to a biased in terms of stability
for the hydrogen bond formed within the β-sheet and the α-helix. Our results show that hydrogen
bonds are more stable in β-sheet due to a stronger hydrogen bond-to-hydrogen bond co-operative
interaction [153]. This has important implication as we believe it is such a strong hydrogen
bond-to-hydrogen bond interaction that leads to the aggregation behavior of the Aβ oligomer.

10. Curcumin

There are various small molecules, such as resveratrol [154], cyclodextrin [155,156], mitoxantrone
and pixantrone [157], derivatives of Congo Red [158], curcumin and other compounds, which have been
used to investigate the inhibitory effects on Aβ aggregation [159]. In fact, these molecules can serve
as drugs or potential labelling agents for the diagnosis and monitoring of AD [160]. In particular,
the molecule curcumin and its derivatives, with their antioxidant, anti-inflammatory, and anticancer
properties, have made them very promising candidates for the treatment of Alzheimer’s disease.
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Figure 5. Plots of α-β-coil secondary structure phase transition for a seven crank
polyalanine. Solid line represents the number of hydrogen bonds; dotted line represents
the corresponding heat capacity. The transition temperatures are Tα−β = 300 a.u., and
Tβ−coil = 950 a.u., respectively.

Curcumin can suppress the Tau phosphorylation and insulin receptor inactivation induced by Aβ.
It can also improve insulin signaling and overcome cognitive deficits [87]. It is able to disrupt the existing
Aβ plaques in vivo and partially restore the dystrophic dendrites at the same time [161]. Meanwhile,
research has proposed that curcumin can reduce neurotoxicity by promoting the conversion of oligomers
into fibril [162], with the inhibition of oxidative damage and tau hyperphosphorylation [163]. Solid state
NMR has been employed to uncover the binding sites of curcumin on the full-length Aβ fibrils [164].
It was found that residues 12, 17–21, and the β-sheet structure of Aβ interact with the methoxy and/or
hydroxy groups of curcumin. In order to investigate the potential binding sites of curcumin on Aβ, we
had also performed 20 all-atom MD simulations for a system consisting of pre-formed Aβ dimer and
curcumin molecules of both the diketone and keto-enol form. The detailed simulation information can be
obtained from Reference [19]. After a total simulation time of 10 µs, we plotted the binding propensity
of both the diketone and keto-enol form of curcumin in Figure ??. We observed that no specific residues
strongly bind to curcumin although some residues have a higher chance of forming hydrogen bonds
with curcumin. Furthermore, we observed that the –OH group of curcumin has more than twice the
chance of forming a hydrogen bond than the methoxy group (diketone: –OH ∼ 62%, –O–CH3 ∼ 17%;
keto-enol: –OH∼ 50%, –O–CH3 ∼ 20%). Interestingly, we discover that curcumin travels along certain
common pathways as it moves around Aβ. These pathways are defined to consist of at least 4 steps
and are common among at least two trajectories, where each step is being made from one residue of Aβ
to another. The common pathways are displayed in Figure 7. Our results show that the most popular
pathways are: 34LB → 34LA → 32IA → 34LA and 34LB → 34LA → 34LB → 34LA (see Figure 7).
As curcumin traverses about Aβ, we observe that it serves the role of a β-sheet breaker. The frequent
π–π stacking interactions between its aromatic ring and the aromatic side chain of HIS, TYR and PHE
are important. Although these interactions are transient, they contribute indirectly to a reduction in the
β-sheet content in the Aβ dimer [19].
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Figure 6. The binding propensity of curcumin towards the Aβ dimer.

Figure 7. The common pathways of curcumin in the diketone (a) and the keto-enol form
(b) of Aβ dimer. The blue colored domains represent the residues from chain A, while
the green colored domains represent the residues from chain B. The thickness of the arrow
indicates the popularity of the pathway. This figure was generated by Graphviz [165].

(a) (b)
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11. Conclusions

At present, there are still many unanswered and challenging questions for the experimentalists
and theorists regarding the detailed mechanism of Aβ oligomers toxicity. Nevertheless, there are
many excellent works that give a deeper insight into this area which unfortunately we are unable
to cover and cite in this short review. To summarize, we list the current outstanding problems of
Aβ oligomers toxicity as follow: (1) deciphering the unknown transmembrane structure of APP;
(2) uncovering the configurational and structural diversity of Aβ oligomers; (3) elucidating the
pathogenesis of intraneuronal Aβ accumulation; and (4) curing Alzheimer’s disease by directing the
best antibodies at Aβ peptides. While there are pan-Aβ antibodies available at this point in time, these
antibodies have the problem of discriminating the Aβ peptides from the much more abundant normal
full-length APP, as well as the Aβ that is embedded in the APP fragments cleaved by the β-secretase. In
conclusion, our review has demonstrated that the toxicity of Aβ oligomers arises from many factors, and
in order for potential therapeutics and treatment strategy to be effective against them, extensive future
research which aim to gain a more comprehensive account of the various toxicity mechanisms discussed
here is both necessary and important.
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23. Côté, S.; Laghaei, R.; Derreumaux, P.; Mousseau, N. Distinct dimerization for various alloforms
of the amyloid-beta protein: Aβ1−40, Aβ1−42, and Aβ1−40(D23N). J. Phys. Chem. B 2012, 116,
4043–4055.
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