
Int. J. Mol. Sci. 2012, 13, 6863-6872; doi:10.3390/ijms13066863 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Determination of Aniline and Its Derivatives in  
Environmental Water by Capillary Electrophoresis with  
On-Line Concentration 

Shuhui Liu 1,2,*, Wenjun Wang 1, Jie Chen 1 and Jianzhi Sun 1 

1 College of Sciences, Northwest A & F University, Yangling, Shaanxi 712100, China;  

E-Mails: wang3108@126.com (W.W.); baifk1988@nwsuaf.edu.cn (J.C.);  

sjz06101959@yeah.net (J.S.) 
2 State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, China 

* Author to whom correspondence should be addressed; E-Mail: shliu815@126.com;  

Tel./Fax: +86-029-8709-2226. 

Received: 26 March 2012; in revised form: 27 April 2012 / Accepted: 17 May 2012 / 

Published: 5 June 2012 

 

Abstract: This paper describes a simple, sensitive and environmentally benign method for 

the direct determination of aniline and its derivatives in environmental water samples by 

capillary zone electrophoresis (CZE) with field-enhanced sample injection. The parameters 

that influenced the enhancement and separation efficiencies were investigated. 

Surprisingly, under the optimized conditions, two linear ranges for the calibration plot,  

1–50 ng/mL and 50–1000 ng/mL (R > 0.998), were obtained. The detection limit was in 

the range of 0.29–0.43 ng/mL. To eliminate the effect of the real sample matrix on the 

stacking efficiency, the standard addition method was applied to the analysis of water 

samples from local rivers.  

Keywords: capillary electrophoresis; water analysis; environmental analysis; aromatic 

amines; on-line concentration 

 

1. Introduction 

Aniline and its derivatives are important raw materials in the pesticide, plastic and pharmaceutical 

industries. Their considerable consumption in industrial processes has led to a release of chemical  
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by-products into aquatic environments. These compounds are well known due to their high toxicity 

and suspected carcinogenicity [1–4]. 

The most common techniques for the determination of aniline and its derivatives in environmental 

samples have been and remain GC [5,6] and HPLC [7,8]. Due to the low concentration of aniline and 

its derivatives in real samples, most methods rely on some types of pretreatment of the samples before 

analysis. Liquid-liquid extraction and solid-phase extraction have been frequently adopted, which are 

time-consuming and harmful to the environment due to the large volume of organic solvents used. 

There are few methods that can be employed to directly analyze aniline and its derivatives in 

environmental water. Varney [9] and Sun [10] achieved a limit of detection (LOD) of 1.5–15 nM by 

HPLC and 10 nM by CE, respectively, using electrochemical detection, which is not a common 

chromatographic technique. Although Chen obtained a LOD in the range of 0.1–10 nM using CE with 

on-line stacking [11], this concentration method was effective only for those aniline and its derivatives 

that have a high degree of association with micelle structures.  

After development over a period of decades, CE has become a mature technique for analytical 

separation [12–14]. CE possesses several advantages over other separation techniques, including high 

separation efficiency, minimal sample requirements, and almost no need for organic solvents, which 

makes CE an environmentally friendly separation technique. Due to its poor concentration sensitivity 

with photometric detectors, CE has yet to be widely accepted within environmental field as a routine 

analytical method. However, for compounds such as aniline and its derivatives, CE is suitable as a 

chromatographic separation technique because the detection sensitivity can be easily improved by 

field-enhanced sample injection [15–18]. Furthermore, this on-line concentration method only works 

for cationic analytes, not for non-ionic or anionic analytes, resulting in high sensitivity and intrinsic 

selectivity for the final, overall analysis. 

2. Results and Discussion  

2.1. Development of Separation Parameters 

The first experimental variable examined was the buffer concentration. In all cases, phosphoric 

acid/sodium dihydrogen phosphate was used as the electrolyte buffer because successful separation 

results were obtained. Figure 1 illustrates the effect of the buffer concentration on the migration times 

of the analytes. As the buffer concentration was increased, the overall migration times slightly 

increased due to the associated decrease in the electroosmotic flow through the column. 

The peak height of each analyte increased as the buffer concentration increased due to the 

enhancement in the electric field amplification at the higher buffer concentrations. When the buffer 

concentration was greater than 120 mM, zone broadening occurred due to significant Joule heating 

effects. As a compromise between analyte resolution and concentration factors, a 120 mM phosphate 

buffer was selected for all further experiments. In addition, 10 mM triethanolamine was added to the 

buffer solution to decrease absorption of the analytes onto the capillary wall, and 2 mM phosphoric 

acid was employed in the sample solution to protonate the analytes and to maintain stable 

electroinjection conditions. 
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The effect of the buffer solution pH on the migration time of the analytes is shown in Figure 2. The 

migration order of the four analytes depended mainly on their pKb (o-tolidine, pKb1 = 8.21, pKb2 = 9.54; 

aniline, pKb = 9.39; o-toluidine, pKb = 9.56; m-aminophenol, pKb = 9.70). At low pH, the diamine 

compound (1) had the highest mobility due to the lowest pKb, and at higher pH, the migration sequence 

between aniline and o-tolidine was reversed. The increase in pH caused an increase in the migration 

time without a significant effect on analyte peak heights. A pH value of 2.8 was selected for routine work. 

Figure 1. Effect of buffer concentration on the migration times of the analytes. ■: aniline; 

: ◇ o-tolidine; : △ o-toluidine; ▼: m-aminophenol. Background electrolyte (BGE): varying 

amounts of NaH2PO4 and 10 mM triethanolamine, pH 2.6; sample concentration: 50 ng/mL 

each in 2 mM phosphoric acid and 60% acetonitrile; electroinjection: 6 s at 10 kV after 

injection of a water plug for 5 s at 0.5 psi. 

 

Figure 2. Effect of buffer pH on the migration times of the analytes. BGE, 80 mM of 

NaH2PO4 and 10 mM triethanolamine; for other experimental conditions, see Figure 1. 
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2.2. Optimization of Field-Enhanced Sample Injection 

In field-enhanced sample injection, an electrokinetic injection was usually used to obtain higher 

detection sensitivity compared to hydrodynamic injection. A short plug of water, before electrokinetic 

injection of the sample, provided an appropriate enhancement of the electric field at the injection point, 

which produced an empty region for the concentration of ions deeper into the column and away from 

the inlet end. As discussed in our previous study [19], the water plug was necessary to maintain good 

reproducibility of the peak heights or areas. In the present study, the injection time of the water plug 

was 5 s. 

2.2.1. Effect of Sample Injection Time and Voltage 

As shown in Figure 3, the peak heights of the analytes increased rapidly as the injection  

time increased from 4 to 12 s. With a further increase in injection time, the peak heights changed 

slightly and the peaks were broadened. Therefore, an injection time of 12 s was optimal for the 

standard solutions. 

Figure 3. Effect of the injection time on the peak heights of the analytes. Injection voltage: 

8 kV; other conditions are the same as in Figure 1. 

 

The effect of the injection voltage on the peak heights of the analytes was similar to the injection 

time (Figure 4). Analyte ions permeated the boundary between the water plug and the run buffer into 

the buffer if longer injection times or higher voltages were applied, and the sample zones became 

dispersed, which resulted in an incomplete stacking process. The data presented in Figure 4 illustrate 

that the effective injection voltage was 8 kV in this study. 
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Figure 4. Effect of injection voltage on the peak heights of the analytes. Electrokinetic 

injection time: 12 s; other conditions are the same as in Figure1. 

 

2.2.2. Effect of Different Organic Solvents on Sample Stacking 

The effect of the volume ratio of different organic solvents on sample stacking is shown in Figure 5. 

As the percentage of solvent was increased, the peak heights of the analytes increased. At the same 

volume ratio for each organic solvent tested, the use of acetonitrile resulted in the highest stacking 

efficiency. A volume ratio of 60% acetonitrile was adopted because the shapes of the analyte peaks in 

the real samples deteriorated at 80% acetonitrile, which was probably due to a low conductivity of the 

sample [20].  

Figure 5. Effect of different organic solvents on stacking efficiency of the analytes by 

electroinjection 6 s at 8 kv: (a) aniline; (b) o-tolidine; (c) o-toluidine; (d) m-amonophenol. 

For other experimental conditions see Figure 1. 
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Figure 5. Cont. 

 

Since the real sample matrix had a complicated composition, which influenced the on-line stacking 

efficiency, the standard addition method was used for quantitative analysis [21]. When the optimized 

stacking parameters were applied to the standard solutions spiked with local river water, a distortion in 

the peak shape occurred. After the stacking, parameters for real samples were further investigated, and 

the optimal injection time and voltage were determined to be 6 s and 8 kV, respectively. 

2.3. Reproducibility, Linearity and Detection Limits 

Linearity for all of the tested amine compounds was verified by studying different concentrations of 

each amine over a range of 1–1000 ng/mL. Interestingly, two linear trends appeared within the 

investigated concentration range; one trend occurred at low concentrations, over a range of  

5–50 ng/mL (for aniline, 1–50 ng/mL), and another trend occurred at higher concentrations, over a 

range of 50–1000 ng/mL (for o-tolidine, 5–800 ng/mL) (Table 1). Regression coefficients and 

characteristics of the calibration plots were calculated. As illustrated, good linearity for all of the 

amines was achieved over both of these concentration ranges. The limit of detection ranged from  

0.29 to 0.44 ng/mL with a signal-to-noise ratio of 3. The reproducibility of this method was validated 

in terms of the migration times and the peak heights of the analytes. For a given sample, RSD values  

of the migration times and peak heights for five replicate injections were below 0.5% and  

4.5%, respectively. 

Table 1. Parameters of calibration graphs and limits of detection for aromatic amines. 

Compound Regression 
Equation 

Correlation 
Coefficient 

Linear Range 
(ng/mL) 

Detection Limit 
(ng/mL) 

Aniline y = 40.8x + 50.061 0.9983 1~50 0.29 

y = 5.1371x + 1149.9 0.9995 50~1000  

o-Tolidine;  
o-Toluidine 

y = 30.588x + 324.09 0.9996 5~800 0.39 

y = 27.016x + 16.356 0.9999 5~50 0.44 

y = 9.9569x + 907.81 0.9993 50~800  

3-Aminophenol y = 27.895x + 49.048 0.9997 5~50 0.43 

y = 12.142x + 769.55 0.9994 50~1000  
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2.4. Real Sample Analysis and Recovery 

The developed method was applied to the determination of aniline and its derivatives in samples 

collected from three local rivers (Yangling, China). To eliminate the effect of the real sample matrix 

on stacking efficiency, a standard addition method was used for quantitative analysis (Figure 6).  

A volume ratio of 10% river water was added into volumetric flasks that contained standard solutions 

with the specified concentration. The four tested compounds were not found in the real samples. 

Recoveries were calculated from the Gaogan Qu River sample spiked with aromatic amine standards, 

and the results were satisfactory (Table 2). 

Figure 6. Electropherograms of the gaogan river sample and the 50 ng/mL internal 

standard analytes of gaogan river sample (a) 10% gaogan river sample (0.002 mol/L, 

phosphoric acid, 60% acetonitrile); (b) 50 ng/mL internal standard analytes of sample 

(other condition are the same as a). 

 

Table 2. Recovery of aromatic amines from Gaogan water samples. 

Compound Analytes Spiked 
(ng/mL) 

Measured Amount 
(ng/mL) 

RSD 
(%) 

Recovery (%) 

Aniline 20 20.8 4.93 104 
 300 278.2 3.60 93 

o-Tolidine 20 19.2 1.69 96 
 300 290.8 5.85 97 

o-Toluidine 20 19.4 4.37 97 
 300 279.8 4.11 93 

m-Aminophenol 20 18.9 2.79 95 
 300 294.5 5.17 98 

3. Experimental Section  

3.1. Chemicals 

Analytical grade sodium hydroxide, sodium dihydrogen phosphate, triethanolamine, and phosphoric 

acid were obtained from Tianli Chemical Reagent Co. Ltd. (Tianjing, China). HPLC grade acetonitrile, 
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acetone, ethanol, and methanol were purchased from Luomiou Chemical Reagent Co. Ltd. (Tianjing, 

China). Aniline, o-tolidine, o-toluidine, and m-aminophenol were purchased from Sigma-Aldrich  

(St. Louis, MO, USA).  

Stock solutions of analyte standards (5 mg/mL) were prepared in methanol and stored in a 

refrigerator at 4 °C. Fresh standard solutions were prepared daily by suitable dilutions of the stock 

solutions to prevent possible degradation of the analytes. 

3.2. Apparatus 

All experiments were performed on a Beckman P/ACE™ MDQ Capillary Electrophoresis  

System equipped with a photodiode array detector (PDA). The system was controlled by System  

Gold software, version 8.1 (Beckman Coulter Inc.: Fullerton, CA, USA, 2006). A fused silica capillary 

of 57 cm × 50 µm i.d. (50 cm to the detector), manufactured by Ruipu Chromatogram Equipment 

Company (Yongnian, China), was maintained at 25 °C in a cartridge with a 100 × 800 μm detection 

window. The PDA acquisition range was set between 190 and 300 nm (bandwidth of 6 nm) at a 

spectral acquisition rate of 4 Hz. Electropherograms were recorded at 214 nm. The pH of all solutions 

was measured using pH 213 equipment (Hanna Instruments, Baranzate, Italy). Deionised (18.2 MΩ) 

water was obtained using a Millipore Direct-Q 3 system (Millipore Corporation, Bedford, MA, USA). 

3.3. Experimental Procedure 

To activate a new capillary, it was rinsed with 0.1 M NaOH for 30 min, deionized water for 30 min, 

and a background electrolyte (BGE) solution for 30 min. On a daily basis, prior to the first sample 

injection, the capillary was flushed with 0.1 M NaOH for 3 min, deionized water for 2 min, and BGE 

for 5 min. Samples were introduced from the anodic end of the capillary by electroinjection using the 

specified voltage and time. All BGEs were degassed by sonication and filtered through 0.22-µm mixed 

cellulose ester filters (Shanghai Minimo Separation Technology Co. Ltd., Shanghai, China). 

3.4. Preparation of Real Samples 

Water samples were collected from three local rivers (Gaogan Qu River, Weihui Qu River and 

Suixi Gou River; Yangling, China), and the samples were analyzed after filtering through 0.45-μm 

cellulose ester filters. 

4. Conclusions  

The proposed method for determining amine compounds in environmental water samples by 

capillary zone electrophoresis (CZE) with on-line concentration is simple and efficient. The selectivity 

of this technique limits interference from differently charged compounds in complex matrices, which 

simplifies a tedious procedure for sample pretreatment. In addition, this method provides the required 

sensitivity for the inherent toxicity and the possible dangers of these compounds in environmental 

waters. Finally, it consumes low volumes of organic solvents (a few milliliters) and is relatively 

environmentally benign. This approach should find widespread applicability in this field in terms of 

environmental protection issues. 
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