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Abstract: In the present study, the 26-residue amphipathic α-helical peptide A12L/A20L 

(Ac-KWKSFLKTFKSLKKTVLHTLLKAISS-amide) with strong anticancer activity and 

specificity was used as the framework to study the effects of helicity of α-helical anticancer 

peptides on biological activities. Helicity was systematically modulated by introducing  

D-amino acids to replace the original L-amino acids on the non-polar face or the polar face 

of the helix. Peptide helicity was measured by circular dichroism spectroscopy and was 

demonstrated to correlate with peptide hydrophobicity and the number of D-amino acid 

substitutions. Biological studies showed that strong hemolytic activity of peptides 

generally correlated with high hydrophobicity and helicity. Lower helicity caused the 

decrease of anti-HeLa activity of peptides. By introducing D-amino acids to replace the 

original L-amino acids on the non-polar face or the polar face of the helix, we improved the 

therapeutic index of A12L/A20L against HeLa cells by 9-fold and 22-fold, respectively. 

These results show that the helicity of anticancer peptides plays a crucial role for biological 

activities. This specific rational approach of peptide design could be a powerful method to 

improve the specificity of anticancer peptides as promising therapeutics in clinical practices. 
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1. Introduction 

Cancer has become the most malignant diseases threatening human health and life [1,2]. The 

widely-used traditional treatments against cancer such as chemotherapy or radioactive treatments 

generally exhibit less specificity, for example, the process that the chemotherapeutic agents kill cancer 

cells is often associated with deleterious side-effects, including damages to healthy cells and tissues, 

and lead to chemical resistance whereby many adaptation mutations of cancer cells [3,4]. Therefore, 

the development of a new class of anticancer agents has become critical. 

Nowadays, more and more cationic peptides whether from natural or synthetic sources have been 

reported to show anticancer activity with various characteristics, like the ability to kill target cells 

rapidly, the broad spectrum of activity, and the specificity for cancer cells [5]. The cationic α-helical 

anticancer peptides was a large class of the anticancer peptides, termed as α-ACPs, which often rich in 

Lys and/or Arg amino acids resulting in the net positive charge of the peptide molecule. Although the 

mechanism of action of α-ACPs killing the cancer cells has not been clarified yet, it is believed that  

α-ACPs interact with cancer cell membrane and lead to the cell lysis and cell death [3,5]. There were 

two general effects of α-ACPs against cancer cells were suggested: cytoplasmic membrane disruption 

via micellization or pore formation, and induction of apoptosis [6]. 

For anticancer peptides, the major barrier to use anticancer peptides in clinical practices is the 

toxicity or ability to lyse eukaryotic cells. Compare to the normal cells, the membrane of the cancer 

cells have several different properties, (a) the membrane of cancer cells containing with negatively 

charged phospatidylserine (PS) [7] and O-glycosylated mucins [8], which could be attracted to cationic 

α-ACPs through electrostatic interactions; (b) the membrane fluidity of cancer cell is greater than normal 

cells, which may enhance the lytic activity of α-ACPs by facilitating membrane destabilization [9];  

(c) cell surface areas of cancer cells were greater than normal cells, which is based on the relatively 

higher number of microvilli on tumorigenic cell that may allow cancer cells to bind increased numbers 

of α-ACPs [10]. The composition difference of cell membranes between cancer cells and normal cells 

provides a target of designing and developing new anticancer peptide therapeutics with high specificity.  

In the previous study, we have demonstrated that the α-helical cationic anticancer peptides killed 

various cancer cells with a fast necrotic mechanism causing cell membrane lysis, and peptide 

hydrophobicity played a crucial role during the action [11]. In this study, the helicity was selected to 

study the relationship of peptide biophysical properties and the mechanism of action against cancer 

cells. In order to alter the peptide helicity, a series of D- and L-diastereomeric peptides were designed 

by introducing D-amino acids to replace the original L-amino acids of α-ACPs. By comparing the 

helicity and the biological activities of peptides, we illustrated the role of helicity of α-ACPs during the 

mechanism of action against cancer cells and optimized the anticancer activity of peptide analogs as 

potential anticancer therapeutics. 

2. Results 

2.1. Peptide Design 

Previously, we have systematically studied the effects of peptide hydrophobicity on the mechanism 

of action of α-helical cationic anticancer peptides and demonstrated peptides killed various cancer cells 
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with a fast necrotic mechanism causing cell membrane lysis and hydrophobicity plays a crucial role 

during the action [11]. Among all the anticancer peptides, peptide A12L/A20L showed the strongest 

anti-HeLa activity; in addition, peptides with greater hydrophobicity than A12L/A20L exhibited more 

cytotoxicity against normal cells [11]. In this study, in order to illustrate the relationships of 

hydrophobicity and helicity with the biological activity of amphipathic α-helical anticancer peptides, 

anticancer peptide A12L/A20L was used as the parent peptide (referred to as peptide P in this study, 

Figure 1). Helicity was systematically reduced in various degrees by replacing L-lysine residues with 

D-lysine residues on the polar face of peptide P and L-leucine residues with D-leucine residues on  

the non-polar face, respectively, since previous studies have showed that D-amino acids exhibit  

helix-destabilizing properties in an α-helical structure without changing the intrinsic amino acid 

hydrophobicity [12,13]. The peptide sequences are shown in Table 1 and named according to the 

substitution sites, for example, K7D means using D-lysine to replace L-lysine at the position 7 on the 

polar face of peptide P and L6D means using D-leucine to replace L-leucine at the position 6 on the 

non-polar face of peptide P. 

Figure 1. Representation of the parent peptide A12L/A20L as helical net showing the 

polar/hydrophilic face (circled residues) and non-polar/ hydrophobic face (boxed residues) 

and helical wheel, the lysine residue at position 13 on the non-polar face of the sequence is 

denoted by a triangle. The hydrophilic face is indicated as an open arc, the hydrophobic 

face is shown as a solid arc in the helical wheel, Ac denotes Nα-acetyl, and amide denotes 

Cα-amide. One-letter codes are used for the amino acid residues. 
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Table 1. Design and sequence of α-helical antimicrobial peptides. 

Group No. Peptide Amino Acid Sequence a 

Parent 1 P Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

Polar face 

group 

2 K7D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

3 K14D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

4 K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

5 K7D/K14 D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

6 K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

7 K7D/K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

8 K7D/K10D/K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

9 K3D/K7D/K10D/K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

10 K1D/K3D/K7D/K10D/K14D/K22D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

Non-polar 

face 

group 

11 L6D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

12 L12D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

13 L20D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

14 L6D/L12D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

15 L12D/L20D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

16 L6D/L12D/L20D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

17 L6D/L12D/L17D/L20D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 

18 L6D/L12D/L17D/L20D/L21D Ac-K-W-K-S-F-L-K-T-F-K-S-L-K-K-T-V-L-H-T-L-L-K-A-I-S-S-amide 
a One-letter codes are used for the amino acid residues; the bold italic letters denote the substituting D-amino acids 

of the peptide P, all other amino acids are L-amino acids. 

2.2. Peptide Secondary Structure 

To determine the helix-destabilizing effect of D-amino acids in the anticancer peptide P, CD spectra 

of two sets of peptide analogs with D-lysine substitutions on the polar face and D-leucine substitutions 

on the non-polar face were measured. Figure 2 shows the CD spectra of the example anticancer peptide 

analogs under benign conditions and in the presence of 50% TFE to mimic the hydrophobic 

environment of the membrane. All peptides exhibited negligible helical structure in KP buffer.  

In contrast, all peptides showed the typical α-helical structure with double minima at 208 nm and  

222 nm in the presence of 50% TFE. The molar ellipticity values at different environments and the 

relative helicity of peptide analogs are shown in Table 2. It is clear to see that peptide helicity was 

strongly influenced by the number and position of the substituted D-amino acids. In general, helical 

content of peptide P in the hydrophobic environment was gradually decreased with the increasing 

number of D-amino acids substitutions both on the polar face and on the non-polar face. For instance, 

in the presence of 50% TFE, peptide P showed the strongest α-helical structure and the peptide analogs 

with six D-lysine substitutions on the polar face (K1D/K3D/K7D/K10D/K14D/K22D) and with five  

D-leucine substitutions on the non-polar face (L6D/L12D/L17D/L20D/L21D) exhibited only little  

α-helical contents in the hydrophobic environment (relative helicity of 49% and 33%, respectively) 

(Table 2). 
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Figure 2. Circular dichroism (CD) spectra of peptide P and its analogs in KP buffer  

(50 mM KH2PO4,/K2HPO4, 100 mM KCl, pH 7.4) (A) and in the presence of KP buffer 

and TFE (1:1 v/v) (B) at pH 7.4, 25 °C. Symbols used are ■ for peptide P; ● for peptide 

K14D/K22D; □ for peptide K1D/K3D/K7D/K10D/K14D/K22D; ○ for peptide L12D/L20D and 

∆ for peptide L6D/L12D/L17D/L20D/L21D. 

 

Table 2. Biophysical data of the peptide analogs. 

Peptides a 
tR (min) b 

25 °C 

Benign c 50% TFE d 

[θ]222 % helix e [θ]222 % helix e 

P 46.9 −14550  36.66 −39700  100.00 
K7D 44.1 −6050  15.22 −30900  77.77 
K14D 43.5 −15550  39.16 −35250  88.72 
K22D 43.3 −8400  21.14 −33950  85.48 
K7D/K14 D 40.9 −8750  22.02 −28450  71.65 
K14D/K22D 40.1 −6350 15.95 −32150  81.00 
K7D/K14D/K22D 37.9 −5000  12.59 −26350 66.33 
K7D/K10D/K14D/K22D 35.5 −7350 22.48 −19400 48.84 
K3D/K7D/K10D/K14D/K22D 34.6 −4750 14.59 −21400 53.99 
K1D/K3D/K7D/K10D/K14D/K22D 34.6 −5800 17.74 −19300 48.61 
L6D 44.6 −8500 21.45 −39550  99.61 
L12D 42.9 −8350  21.01 −37750 95.08 
L20D 42.5 −6900 17.42 −36900  92.90 
L6D/L12D 40.8 −6800  17.14 −29050  73.13 
L12D/L20D 37.8 −5550  13.93 −30050 75.69 
L6D/L12D/L20D 37.4 −4950  12.45 −28450 71.66 
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Table 2. Cont. 

L6D/L12D/L17D/L20D 36.3 −4050 12.46 −15050 37.88 
L6D/L12D/L17D/L20D/L21D 34.8 −3600 10.97 −13150 33.20 
a Peptides are ordered by relative hydrophobicity; b tR (min) denotes the retention time at 25 °C by  

RP-HPLC; c The mean residue molar ellipticities, [θ]222 (degree·cm2·dmol−1) at wavelength 222 nm 

were measured at 25 °C in KP buffer (100 mM KCl, 50 mM PO4, pH 7.0); d The mean residue molar 

ellipticities, [θ]222 (degree·cm2·dmol−1) at wavelength 222 nm were measured at 25 °C in KP buffer with 

50% TFE; e The helical content (in percentage) of a peptide relative to the molar ellipticity value of 

peptide P in 50% TFE. 

It is interesting to see that the relative helicity values of peptide K7D/K14D (71.7%) and L6D/L12D 

(73.1%) were lower than those of the peptide K14D/K22D (81%) and L12D/L20D (75.7%) respectively, 

indicating that N-terminal amino acids in the peptide P sequence may be more important to stabilize 

the helical structure. Furthermore, the D-amino acids substitutions on the polar face of the helix had 

dramatically stronger effects on the α-helical structure in the hydrophobic environment than the 

corresponding substitutions on the non-polar face. For example, relative helicity values of single  

D-amino acid substituted peptides K7D (77.8%), K14D (88.7%) and K22D (85.5%) were less than those 

of L6D (99.6%), L12D (95.1%) and L20D (92.9%), these results demonstrated that the L-lysine on the 

polar face had more important role to sustain the helical structure than L-leucine on the non-polar face. 

2.3. Peptide Hydrophobicity 

Peptide relative hydrophobicity was measured by RP-HPLC retention time, since RP-HPLC is 

highly sensitive to the change of peptide secondary structure during the elution and α-helical peptides 

bind to the stationary phase of RP-HPLC with the preferred binding domain [13,14]. In general, 

peptide hydrophobicity was changed in two ways, the difference of intrinsic hydrophobicity of  

side-chains of substituting amino acids [15] and the alteration of the number of the i→i+3 and i→i+4 

hydrophobic interactions of large hydrophobes which affects the continuity of the hydrophobic face of 

the peptide [16]. However, in this study, the change of peptide hydrophobicity was mainly due to the 

destabilizing ability of D-amino acids in the α-helical structure and the change of the continuity of the 

hydrophobic/hydrophilic face of the helix with different D-amino acid substitutions, since D- and  

L-amino acid enantiomers have the same intrinsic hydrophobicity. In Table 2, the hydrophobicity of 

peptides (as expressed by RP-HPLC retention time tR) decreased gradually with the increasing number 

of D-amino acid substitutions both on the polar face and on the non-polar face of peptide analogs while 

tR ranging from 46.9 to 34.6 min (from peptide P to peptide K1D/K3D/K7D/K10D/K14D/K22D) and 46.9 

to 34.8 min (from peptide P to peptide L6D/L12D /L17D/L20 D /L21D), respectively. These results were 

consistent with the aforementioned orders of helicity on both the polar and non-polar faces. 

2.4. Anticancer Activity 

According to the previous study [11], HeLa cell line was chosen as the target cancer cell line for 

this study due to its sensitivity to different peptide analogs and the great viability during cell culture 

process. Peptides have been proved showing no different anti-HeLa activity after the incubation of  
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1 h or 36 h [11], thus, in this study the anticancer activity of the peptides was determined after 

incubating with HeLa cells for 1 h and results are shown in Table 3. 

Table 3. Biological data of peptide analogs. 

Peptides a 
MHC b 

(μmol/L) 
IC50 

c 
(μmol/L) Therapeutic Index d Fold e

P 5.20 ± 0.02 1.71 ± 0.07 3.04 1.0 
K7D 10.4 ± 0.04 1.29 ± 0.03 8.07 2.7 
K14D 5.20 ± 0.02 1.52 ± 0.05 3.42 1.1 
K22D 20.81 ± 0.10 1.39 ± 0.02 14.97 4.9 
K7D/K14 D 20.81 ± 0.15 2.06 ± 0.01 10.10 3.3 
K14D/K22D 20.81 ± 0.06 1.40 ± 0.09 14.86 4.9 
K7D/K14D/K22D 81.31 ± 0.17 4.45 ± 0.19 18.27 6.0 
K7D/K10D/K14D/K22D 325.20 ± 0.82 4.79 ± 0.23 67.89 22.3 
K3D/K7D/K10D/K14D/K22D >325.20 20.41 ± 0.64 31.87 10.5 
K1D/K3D/K7D/K10D/K14D/K22D >325.20 18.07 ± 0.48 35.99 11.8 
L6D 10.40 ± 0.08 2.23 ± 0.10 4.67 1.5 
L12D 20.81 ± 0.03 2.63 ± 0.07 7.91 2.6 
L20D 20.81 ± 0.13 2.33 ± 0.06 8.93 2.9 
L6D/L12D 20.81 ± 0.10 3.01 ± 0.08 6.91 2.3 
L12D/L20D 81.31 ± 0.43 3.14 ± 0.06 25.89 8.5 
L6D/L12D/L20D 162.61 ± 0.19 7.80 ± 0.26 20.85 6.9 
L6D/L12D/L17D/L20D 81.31 ± 1.05 9.69 ± 0.38 8.39 2.8 
L6D/L12D/L17D/L20D/L21D >325.20 12.88 ± 0.15 50.50 16.6 

a Peptides are ordered by relative hydrophobicity; b Hemolytic activity (minimal hemolytic concentration) 

was determined on human red blood cells after incubating with peptides for 1 h (hRBC); When no hemolytic 

activity was observed at 325.2 μmol/L, a value of 650.4 μmol/L was used for calculation of the therapeutic 

index; c Anticancer activity (IC50) represents the concentration of peptides at which cell viability was reduced 

by 50% in comparison to untreated cells; The MTT assay was repeated in triplicate and IC50 value was 

determined by averaging three repeated experiments; d Therapeutic index = MHC/IC50 , Larger values 

indicate greater anticancer specificity; e The fold improvement in the therapeutic index was determined as 

relative to that of parent peptide P. 

From Table 3, it is clear to see that the anticancer activities of peptides correlated to the number of 

D-leucine substitutions on the non-polar face of the peptides, that is, the more D-amino acid 

substitutions on the non-polar face, the less anticancer activity the peptides exhibited. In contrast, for 

the D-lysine substitutions on the polar face, the overall trend was not as clear as that on the non-polar 

face, indicating the importance of the non-polar face of peptides during the mechanism of action 

against cancer cells. The single and double D-amino acid substituted peptides (on both the polar and 

the non-polar faces) exhibited close anticancer activity on IC50 values compare to peptide P  

(1.71 μmol/L), ranging from 1.29 μmol/L to 2.06 μmol/L on the polar face (K7D to K7D/K14D) and 

from 2.23 μmol/L to 3.14 μmol/L on the non-polar face (L6D to L12D/L20D) (Table 3). However, along 

with the further increase of D-amino acid substitutions, peptide analogs exhibited significant lower 

anticancer activities compared to peptide P. It is worthy to note that among the peptide analogs with 

substitutions on the polar face, all three single (K7D, K14D and K22D) and one double (K14D/K22D)  
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D-amino acid substituted peptides exhibited stronger anticancer activity than peptide P, showing that 

maintaining the complete hydrophobic face while modulating the peptide helicity on the polar face 

may optimize peptide anticancer activity. 

2.5. Hemolytic Activity 

The minimal hemolytic concentration (MHC) of the peptide analogs against human erythrocytes 

was determined as a major measurement of peptide toxicity toward normal cells (Table 3). Compare to 

the peptide P (MHC = 5.2 μmol/L), the hemolytic activity of peptide analogs was significantly 

improved up to no detectable hemolysis at the concentration of 325.2 μmol/L by introducing D-amino 

acids on both the non-polar face and the polar face of the helix. In general, peptide hemolytic activity 

was correlated with the number of D-amino acid substitutions on both the polar face and the non-polar 

face of peptides, i.e., the more D-amino acid substitutions, the weaker the hemolytic activity of the 

peptides was (Table 3). 

2.6. Peptide Specificity (Therapeutic Index) 

The therapeutic index is calculated by the ratio of MHC (hemolytic activity) and IC50 (anticancer 

activity) and used to represent the specificity of potential reagents, thus, larger values in therapeutic 

index indicate greater anticancer specificity [11,12]. In Table 3, compare to the parent peptide P, the 

therapeutic indices of peptides against HeLa are generally in a first-increase-then-drop trend with the 

increasing number of D-amino acid substitutions both on the polar face and on the non-polar face.  

For the peptides with substitutions on the polar face, the therapeutic index values range from 3.04 to 

67.89. Peptide K7D/K10D/K14D/K22D exhibited the highest therapeutic index value of 67.89, 

representing that the anti-HeLa activity of peptide K7D/K10D/K14D/K22D was 67.89-fold greater than 

its toxicity against human red blood cells, which is a 22.3-fold increase on specificity compared to 

peptide P. In contrast, for the peptides with substitutions on the non-polar face, the therapeutic index 

values range from 4.67 to 50.5 and peptide L6D/L12D/L17D/L20D/L21D showed the best specificity 

against HeLa cells. However, due to the high anticancer activity, peptide L12D/L20D exhibited more 

valuable specificity against cancer cells than peptide L6D/L12D/L17D/L20D/L21D with the therapeutic 

index value 25.89, which is an 8.5-fold increase on specificity compared to peptide P. 

3. Discussion 

In the previous study, we have demonstrated that the hydrophobicity of peptides plays a crucial role 

in the mechanism of action against cancer cells and the peptides with greater hydrophobicity showed 

stronger anticancer activity with a necrotic-like membrane disruption mechanism [11]. Shai et al. 

reported a group of short model diastereomeic peptides composed of varying ratios of leucine and 

lysine and one third of their sequence composed of D-amino acids could lose their cytotoxic effect on 

normal mammalian cells but preserve biological activity [17–19], in addition, their stability to 

enzymatic degradation by serum components is an excellent property for anticancer application. In this 

study, peptide P with strong anticancer activity was used as the parent peptide and the helicity was 
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systematically reduced to different degrees by replacing L-amino acid residues with D-enantiomeric 

amino acids on the polar face or the non-polar face. 

Figure 3. Relationships of helicity, hydrophobicity and the number of D-amino acid 

substitutions on the polar or the non-polar face of peptide analogs. The experimental data 

are from Table 2. The least square fit analysis results showed correlations of helicity and 

number of D-amino acid substitutions with R = 0.942 on the polar face (A) and R = 0.954 

on the non-polar face (B), correlations of hydrophobicity and number of D-amino acid 

substitutions with R = 0.967 on the polar face (C) and R = 0.924 on the non-polar face (D), 

and correlations of hydrophobicity and helicity with R = 0.955 on the polar face (E) and  

R = 0.913 on the non-polar face (F). 

 

As shown in Figure 3, peptide helicity in 50% TFE (a mimic of the hydrophobic environment of 

biomembrane) and hydrophobicity are linearly correlated with the number of D-amino acid 

substitutions both on the polar face (R values of 0.942 and 0.967, respectively) (Figure 3A,C) and on 

the non-polar face (R values of 0.954 and 0.924, respectively) (Figure 3B,D). This can be attributed to 

the fact that peptides with stronger helicity usually exhibit more complete non-polar face or polar face, 

thus have higher relative hydrophobicity; whilst, D-amino acid substitutions disrupted α-helical 

structure of peptides, broke the continuity of the non-polar face or the polar face and reduced the 

hydrophobicity of peptides [12,13]. At the same times, From Figure 3E,F, it is clear that the 

hydrophobicity and the helicity in 50% TFE of the peptides with D-amino acid substitutions on the 

polar face or the non-polar face showed linear correlation with R values of 0.955 and 0.913, 
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respectively. These results are consistent with the linear relationships of hydrophobicity and helicity of 

amphipathic helical anticancer peptides in the previous studies [11,12]. 

Figure 4. Histogram illustration of relationships of peptide helicity and hemolytic activity (A), 

anticancer activity (B) and specificity (C). The experimental data are from Table 3. 

Hatched columns denote the peptides with D-amino acid substitutions on the polar face and 

solid columns denote the peptides with D-amino acid substitutions on the non-polar face. 

The numbers on the X-axis denote the corresponding peptide analogs in Table 1. 

 

In this study, the anticancer activity and hemolytic activity of the peptides also correlated with the 

peptide helicity and the number of D-amino acid substitutions both on the polar face and on the  

non-polar face (Table 3). However, the helicity showed different effects against cancer cells and 

normal cells when measured therapeutic index (Table 3, Figure 4). When the number of D-amino acid 

substitutions on both the polar face and the non-polar face of peptides is less than 3, the anticancer 

activity of peptide analogs were strong and similar among these peptides, whilst values of the 

hemolytic activity were showed in a gradually increasing trend, thus peptide specificity were 

improved. In contrast, when the number of D-amino acid substitutions on both the polar face and the 

non-polar face of peptides is more than 3, the values of IC50 of most peptide analogs increased 

dramatically (less anticancer activity) with the hemolytic activity improved, resulting the decrease of 

specificity (Table 3, Figure 4). According to the previous studies, peptides killed cancer cells with a 

fast necrotic mechanism causing cell membrane lysis as described in the “membrane discrimination 

mechanism” [11,20,21]. Hydrophobicity plays an important role for peptide penetrating deep into the 
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hydrophobic core of the cell membrane. Helicity showed the similar effect to hydrophobicity during 

the mechanism of action of anticancer peptides. Stronger helicity usually means the more complete 

non-polar face of the helix, which is correlated with higher apparent hydrophobicity of peptide 

molecules when interacting with biomembrane. We believe that hydrophobicity and helicity are key 

parameters for the mechanism of action of α-helical anticancer peptides. Moreover, in this study, 

amino acid residues on the polar and the non-polar face of the helix seem to have different effects on 

peptide biological activity. Amino acids on the polar face may be more sensitive to the cytotoxicity of 

peptides against normal cells; in contrast, amino acids on the non-polar face are necessary to maintain 

the anticancer activity. Hence, peptide specificity can be improved by the modulation of suitable  

D-amino acid on the polar face or the non-polar face of helix. 

In summary, this study shows the important role of helicity in the mechanism of action of the  

α-helical anticancer peptides and the relationships between helicity and hydrophobicity. Utilizing  

D-amino acid substitution approach, we can modulate peptide helicity, increase anti-HeLa activity and 

reduce cytotoxicity against normal cells, thus improve peptide specificity. The number of D-amino acid 

substitutions was correlated with the decrease of peptide helicity and hydrophobicity. This  

de novo design approach proves its value of obtaining new anticancer peptides with promising 

potentials in clinical practice. 

4. Experimental Section 

4.1. Materials 

Rink amide 4-methylbenzhydrylamine resin (MBHA resin) (0.8 mmol/g), all of the N-α-Fmoc 

protected amino acids and coupling reagents for peptide synthesis, trifluoroacetic acid (TFA),  

2,2,2-trifluoroethanol (TFE) were purchased from GL Biochem (Shanghai, China). Acetonitrile 

(HPLC grade) was obtained from Fisher Scientific Worldwide Co. (Shanghai, China).  

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was purchased from Sigma  

(St. Louis, MO, USA). Others analytical grade were purchased from JinXin Chemicals  

(Changchun, China). 

4.2. Cell Line and Cell Culture 

Human cervix carcinoma cells (HeLa) was obtained from the American Type Culture Collection 

(ATCC, Manassas, VA, USA) in 2011. In this study, cells were grown at 37 °C in Dulbecco’s 

modified eagle medium (DMEM) containing 100 U/mL penicillin, 100 μg/mL streptomycin and 

supplemented with 10% fetal bovine serum (Invitrogen Co., Grand Island, NY, USA). 

4.3. Peptide Synthesis and Purification 

Peptide synthesis was carried out by solid phase peptide synthesis using Fmoc  

(9-fluorenyl-methoxycar-bonyl) chemistry and Rink amide 4-methylbenzhydrylamine resin (MBHA 

resin; 0.8 mmol/g), as described previously [12,22]. The crude peptides were purified by preparative 

Shimadzu LC-6A high-performance liquid chromatography (HPLC), using a Zorbax 300 SB-C8 

column (250 × 9.4-mm ID, 6.5-μm particle size, 300 Å pore size; Agilent Technologies, Santa Clara, 
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CA, USA) with a linear AB gradient (0.1% acetonitrile/min) at a flow rate of 2 mL/min, while eluent 

A was 0.1% aqueous trifluoroacetic acid (TFA) in water, and eluent B was 0.1% TFA in acetonitrile. 

The peptides were further characterized by mass spectrometry and amino acid analysis. 

4.4. Analytical RP-HPLC of Peptides 

Peptide samples were analyzed on a Shimadzu LC-20A HPLC using a Zorbax 300 SB-C8 column 

(150x4.6-mm ID, 5-μm particle size, 300 Å pore size) from Agilent Technologies, Santa Clara, CA, 

USA) with a linear AB gradient (1% acetonitrile/min) and a flow rate of 1 mL/min, in which eluent A 

was 0.1% aqueous TFA and eluent B was 0.1% TFA in acetonitrile. 

4.5. Circular Dichroism Spectroscopy 

Circular dichroism (CD) spectra were acquired with a 0.02-cm path length quartz cuvette on a Jasco 

J-810 spectropolarimeter (Jasco) at 25 °C according to previously described [22]. The concentration of 

75 μmol/L peptides was measured in benign conditions (50 mM KH2PO4/K2HPO4, 100 mM KCl,  

PH 7, referred to as KP buffer) or KP buffer with 50% TFE. The mean residue molar ellipticities were 

calculated by the equation [θ] = θ/10lcMn [12]. The relative helicity of the peptides were determined 

using the values of mean residue molar ellipticities of the peptide analogs at 222 nm. 

4.6. Measurement of Anticancer Activity 

Human cervix carcinoma cells (HeLa) were grown at 37 °C in Dulbecco’s modified Eagle’s 

medium (DMEM) containing 100 U/mL penicillin, 100 mg/mL streptomycin and supplemented with 

10% FBS (Invitrogen Co.). The MTT assay has been used to test cytotoxicity of reagents and cell 

viability. Cells were seeded in 96-well plates and incubated with serially 2-fold diluted concentrations 

of different peptides (0.6–86 μmol/L) for 1 h at 37 °C. As a negative control, cells were cultured 

without addition of the peptides. Thereafter, 200 μL of 5 mg/mL MTT solution in PBS was added to 

the cells and treated for 4 h at 37 °C. The formazan crystals were dissolved by adding 150 μL dimethyl 

sulfoxide (DMSO) just before spectrometric determination. The absorbance was determined at  

490 nm. The results were expressed as IC50, representing the concentration at which cell viability was 

reduced by 50%. The cytotoxicity assays were repeated in triplicates. 

4.7. Measurement of Hemolytic Activity 

Peptide samples were serially diluted by PBS in 96-well plates (round bottom) to give a volume of 

70 μL sample solution in each well. Human erythrocytes anticoagulated by EDTAK were collected by 

centrifugation (1000 rpm) for 5 min, and washed twice by PBS, then diluted to a concentration of 2% 

in PBS. 70 μL of 2% erythrocytes were added to each well to give a final concentration of 1% human 

erythrocytes in each well and plates were incubated at 37 °C for 1 h. The plates were then centrifuged 

for 10 min at 2000 rpm and supernatant (90 μL) was transferred to a 96-well plate (flat bottom). The 

release of hemoglobin was determined by measuring the absorbance of the supernatant at 578 nm. The 

hemolytic activity was determined as the minimal peptide concentration that caused hemolysis 
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(minimal hemolytic concentration, MHC). Erythrocytes in PBS and distilled water were used as 

control of 0% and 100%hemolysis, respectively. 
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