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Abstract: Drug resistance is a major factor for the limited efficacy of chemotherapy in 
gastric cancer treatment. Hypoxia-inducible factor-1�  (HIF-1� ), a central transcriptional 
factor in hypoxia, is suggested to participate in the resistance. Here, we identified a 
hypoxia-mimic (cobalt chloride) sensitive gastric cell line BGC-823 to explore whether 
diosgenin, an aglycone of steroidal saponins, can inhibit cancer cell invasion and survival of 
solid tumor in a hypoxic mimic microenvironment. We have shown that diosgenin is a 
potent candidate for decreasing the ability of invasion and survival in cobalt chloride treated 
BGC-823 cells. In addition, when combined with HIF-1�  specific short hairpin RNA 
(shRNA), diosgenin can inhibit BGC-823 cells more effectively. The anti-invasion role of 
diosgenin may be related to E-cadherin, integrin� 5 and integrin� 6. These results suggest that 
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diosgenin may be a useful compound in controlling gastric cancer cells in hypoxia condition, 
especially when combined with down-regulated HIF-1� . 
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1. Introduction 

Drug resistance is a major cause of the limited efficacy of chemotherapy in the majority of 
gastrointestinal malignancies, including gastric cancer [1,2]. It is known that the inherent specific 
genetic background of the tumor cell mutations, and epigenetic alterations after antiproliferative therapy 
can result in drug resistance [3,4]. Hypoxia, acidosis, and inflammation related to tumor 
microenvironment may be the main contributors for the drug resistance. Hypoxia is thought to be a 
hallmark of solid tumors and associated with metastases, therapeutic resistance, and poor patient 
survival [5]. Hypoxia-inducible factor-1 (HIF-1), a central transcriptional factor for cellular adaptation 
to hypoxia, has been implicated in drug resistance [6,7]. 

HIF-1 belongs to the basic helix-loop-helix family and requires the heterodimerization of HIF-1�  and 
HIF-1�  subunits for its activity [8]. Under normoxic conditions, HIF-1�  protein is negatively regulated 
by proteasomal degradation such that intracellular levels of HIF-1�  are almost undetectable [9].  
The exposure to hypoxia or hypoxia-mimetic compounds, HIF-1�  and consequently HIF-1 binding 
activity are dramatically increased in various cell lines [10]. 

HIF-1�  is centrally involved in multiple aspects of tumorigenesis including tumor angiogenesis, 
proliferation, metabolism, metastasis, differentiation, as well as responses to radiation and 
chemotherapy [11]. The expression of HIF-1�  is commonly increased in a variety of human solid tumors 
and elevated HIF-1�  expression is associated with poor patient outcome in pancreatic, glioblastoma, 
gastric carcinomas, etc. [11,12]. Furthermore, the contribution of HIF-1�  to chemoresistance has been 
observed in several solid tumors, including gastric cancer [13,14]. Interestingly, inhibition of HIF-1�  via 
RNA interference (RNAi) or pharmacological compounds has improved the anti-tumor efficacy in 
murine cancer models [15].  

Diosgenin is an aglycone of steroidal saponins, which is found in several plants, including Dioscorea 
species, fenugreek, and Costus speciosus [16]. Extracts from these plants have been traditionally used to 
treat diabetes [17], hypercholesterolemia [18], and gastrointestinal ailments [19]. It is a principal raw 
material for the synthesis of hormonal products such as dehydroepiandrosterone, which is obtained after 
hydrolysis of steroidal saponins [20]. Diosgenin exhibits anti-proliferative and pro-apoptotic activities 
on cancer cells in vitro widely [21,22], including breast cancer [23], colorectal cancer [24], 
osteosarcoma [25], and leukemia. However, whether diosgenin could play anti-invasion and 
pro-apoptotic roles on gastric cancer cells has not been explored. 

Here we show for the first time that diosgenin exerted a certain anti-invasion role on BGC-823 cells, 
which are sensitive to the hypoxia stimulation, and down-regulated HIF-1�  could significantly improve 
its effects. These findings suggest that combined with decreased HIF-1� , diosgenin could be considered 
as a candidate to improve clinical therapy of gastric cancer. 
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2. Results and Discussion 

2.1. Identification of a Hypoxia-Mimetic Chemical Sensitive Gastric Cancer Cell Line 

To identify the suitable gastric cell line, several cell lines were subjected to cobalt chloride treatment 
(a hypoxia mimic). The real-time PCR and Western blotting showed that cobalt chloride treatment 
increased HIF-1�  expression in NCI-N87, MGC80-3, SGC-7901 and BGC-823 cells significantly 
(Figure 1). Compared to the other cell lines, the HIF-1�  expression in BGC-823 was the lowest, but the 
increased effect of the hypoxia mimetic agent was the most significant. Therefore, BGC-823 cells were 
employed for the following experiments. 

Figure 1. Identification of hypoxia mimetic chemical sensitive gastric cancer cell line.  
(A) Different cell lines were treated with 100 � M cobalt chloride and real-time PCR was 
performed to analyze the mRNA levels of HIF1� . The columns represent the gene 
expression of HIF1�  compared to beta-actin, compared to the corresponding normal one.  
* p < 0.05 and ** p < 0.01; (B) Different cell lines were treated with 100 � M cobalt chloride 
for 24 hours and cell lysates were subjected to western blotting. � -actin served as the loading 
control. The results shown are representative of three independent experiments.  

 

2.2. Screening of Effective shRNA Vector 

To inhibit HIF-1�  stably, three candidate vectors expressing shRNAs targeting various regions of 
HIF-1�  mRNA were constructed. Lentiviral particles were packaged and subsequently used for the 
infection of BGC-823 cells. After cobalt chloride treatment, the HIF-1�  expression was analyzed. 
Fluorescence microscopy showed that the infection efficiency was higher than 90% (Figure 2a).  
At mRNA level, the negative lentivirus did not affect HIF-1� , but the three lentiviruses expressing 
shRNAs targeting HIF-1�  can inhibit its expression significantly (p < 0.05 or p < 0.01, Figure 2b). The 
Western blotting results demonstrated the same trend, and the inhibitory efficiency of No. 3 lentivirus 
was the best (Figure 2c). Based on these results, it was selected for stable BGC-823 cell transduction. 
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Figure 2. Selection of effective shRNA targeting HIF-1� . (A) BGC-823 cells were infected 
with (1) Lv-shRNA1-HIF1�  and (2) Lv-shRNA1-Negative lentivirus, respectively, and the 
infection efficiency after 72 h was detected by microfluorography; (B) Total RNA was 
extracted from the infected cells or control cells which were treated with 100 � M cobalt 
chloride for 24 h and analyzed by real-time PCR. The expression of HIF1�  mRNA was 
normalized by � -actin mRNA. * p < 0.05, ** p < 0.01 compared to the control; (C) Total 
proteins were extracted from the infected cells or control cells which were treated with  
100 � M cobalt chloride for 24 h and analyzed by western blotting. � -actin served as the 
loading control. The results shown are representative of three independent experiments. 

 

2.3. HIF-1�  Knockdown Enhances the Anti-Proliferation and Anti-Invasion Ability of Diosgenin 

To assess the anti-proliferation activity of diosgenin combined with HIF-1�  silencing, the stable 
BGC-823 cells with HIF-1�  shRNA and control cells were treated with cobalt chloride with or without 
diosgenin. The cell vitality was studied using MTT assay in the following 3 days of treatment. The 
hypoxia mimic increased the proliferation of control cells, and HIF-1�  shRNA and diosgenin impaired 
this effect (Figure 3a). Moreover, the combination of HIF-1�  knockdown and diosgenin treatment 
eliminated the rise caused by cobalt chloride treatment, and the differences between the group and cobalt 
chloride treated control culture were significant (p < 0.05 at 24 h, and p < 0.01 at 48 and 72 h).  
In addition, the Boyden transwell invasion model was employed to investigate the effect on cell invasion 
of the combination of HIF-1�  silencing and diosgenin. We found that hypoxia mimetic chemical 
treatment can promote cell invasion and knockdown of HIF-1�  could significantly inhibit the invasion, 
suggesting HIF-1�  plays an important role in mediating cancer cells invasion under cobalt chloride 
treatment (Figure 3b). At the same time, diosgenin inhibited cobalt chloride-induced invasion less 
potently than HIF-1�  knockdown. To our surprise, the combination of HIF-1�  knockdown and 
diosgenin inhibited cell invasion was more significant than either treatment alone (Figure 3b). These 
findings implicated that HIF-1�  mediates BGC-823 cell invasion and the anti-invasion and 
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pro-apoptotic ability of diosgenin could be significantly improved when combined with down-regulated 
HIF-1� . 

Figure 3. HIF-1�  shRNA and diosgenin inhibit the enhanced proliferation and invasion of 
BGC-823 cells. (A) Normal BGC-823 cells and HIF1� -knockdown BGC-823 cells were 
seeded at 1 × 105 cells/well on a 96-well plate. The hypoxia mimetic group was treated with 
100 � M cobalt chloride with or without 10 � M diosgenin for the indicated hours. MTT assay 
was performed to assess the cell viability. * p < 0.05, ** p < 0.01 compared to the hypoxia 
mimetic group; (B) Cell invasion was analyzed using the QCM™ 24-well Invasion Assay 
Kit. 2.5 × 105 cells were seeded into the upper chamber, and 0.5 mL RPMI 1640 medium 
with 10% FBS was added to the lower chamber. The hypoxia mimetic group was treated 
with 100 � M cobalt chloride with or without 10 � M diosgenin for 48 h. The invasive cells 
were detected using the reagents supplied in the kit. * p < 0.05, ** p < 0.01 compared to the 
hypoxia mimetic group. 

 

2.4. Anti-Invasion Role of Diosgenin Involves the Alteration of Cell Adhesive Molecules Expression 

Since cancer cell invasion is related to adhesive molecules, to figure out whether the effects of 
HIF-1�  and diosgenin are associated with these molecules, western blotting was used to analyze the 
changes of E-cadherin, integrin� 5 and integrin � 6. Our data showed that while cobalt chloride can 
down-regulate E-cadherin and integrin� 5 expression, treatment of HIF-1�  shRNA and/or diosgenin can 
significantly enhance their expression [26]. On the contrary, integrin� 6 showed the opposite change 
(Figure 4). These suggest the inhibitory effect on cell invasion of HIF-1�  knockdown and diosgenin may 
involve the expression of E-cadherin, integrin � 5 and integrin � 6. 
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The reduced chemosensitivity of gastric cancer cells represents a pivotal obstacle in patient treatment. 
The transcriptional factor HIF-1�  has been established as an important mediator of hypoxia-induced 
chemoresistance [27,28]. Here, we identify HIF-1�  as a potential mediator of invasion and vitality of 
gastric cancer cells. Moreover, diosgenin can exert more potent anti-invasion and anti-proliferation roles 
when combined with down-regulated HIF-1� .  

Figure 4. Western blot analysis of HIF1� , E-cadherin, integrin� 5 and integrin� 6 protein 
expression in BGC-823 cells. Normal BGC-823 cells and HIF1� -knockdown BGC-823 cells 
were treated with or without 100 � M cobalt chloride, with or without 10 � M diosgenin and 
the total proteins were extracted and subjected to western blotting. � -actin served as the 
loading control. The results shown are representative of three independent experiments.  

 

Tumor hypoxia plays important roles in mediating chemoresistance in cancer cells through which it 
impairs drug diffusion [29], reduces cell proliferation [30], decreases cytotoxic drug activity [31] and 
induces stress proteins [32]. Hypoxia also induces cellular adaptations, which contributes to cancer 
progression, such as initiation of angiogenesis and metastasis process, but also to tumor cell 
chemoresistance, one of these adaptations being the expression of multidrug resistance proteins such as 
ABC transporters [33]. While hypoxia has already been implicated in the resistance to chemotherapies 
by modifying gene expression [6], the exact mechanisms are not finely characterized. 

As a primary transcription factor expressed in response to hypoxia, active HIF-1, a heterodimer 
consisting of �  and �  subunits, can be translocated into the nucleus and transcriptionally affect the 
expression of a number of genes through binding to hypoxia-responsive elements (HREs) [34]. Around 
50 genes with HREs have been identified [29], including carbonic anhydrase IX (CA IX), glucose 
transporter 1 (Glut-1), erythropoietin (Epo), inducible nitric oxide synthase (iNOS), and vascular 
endothelial growth factor (VEGF). All of these may contribute to hypoxia related chemotherapeutical 
resistance and tumorigenesis.  
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In this study, we identified a gastric cancer cell line, BGC-823, which responded to the cobalt 
chloride treatment (hypoxia mimic) with more potential compared to the other examined gastric cell 
lines. Previous data showed that the inhibition of HIF-1�  by means of RNA interference or 
pharmacological compounds exhibits antitumoral efficacy in murine cancer models [35]. Here, we 
employed lentiviral transduction of shRNA to inactivate HIF-1�  and explored whether HIF-1�  
participates in hypoxia-related pro-invasion ability in gastric cancer cells. The results showed that 
HIF-1�  knockdown can significantly inhibit cell invasion and decrease the cell vitality of BGC-823. It 
reminds us that HIF-1�  could be a pivotal mediator in chemotherapeutical resistance in gastric cancer. 
This is confirmed by the latest finding that exposure to HIF-1�  results in chemoresistance in gastric 
cancer cells through modulation of the p53 and NF-� B signaling pathway [36]. Therefore, the reduced 
expression of HIF-1�  may impair the resistance of chemical therapy and be used in the combination 
therapy with chemotherapy drugs. 

Diosgenin has been suggested to have potent anti-cancer effects [37]. In present studies, we showed 
that diosgenin could exert anti-invasion and anti-proliferation roles on gastric cancer cells with enhanced 
invasion and survival induced by hypoxia mimic. Moreover, it was surprisingly found that the 
combination of HIF-1�  knockdown and diosgenin could play more potent roles than either of diosgenin 
or HIF-1�  shRNA treatment alone. The results indicate that the anti-invasion effect of diosgenin on 
gastric cancer cells with cobalt chloride induced invasion and survival may be independent on a HIF-1�  
related signal pathway, so that the combination of diosgenin and down-regulated HIF-1�  can produce 
synergetic effects. The mechanisms of how diosgenin modulates the proliferation and invasion in this 
model should be further elucidated. 

The results of the experiments used to evaluate cell invasion in diosgenin treated BGC-823 cells with 
HIF-1�  knockdown shows that the cell invasion was decreased. Therefore, cell adhesion molecules, 
including E-cadherin, integrin � 5 and integrin � 6, associated with the process were measured as well. 
Results show that combination treatment of diosgenin and HIF-1�  silencing RNAs can enhance the 
expression of E-cadherin, an invasion/tumor suppressor gene [38], which is suggested to suppress the 
invasiveness of MDA-MB-231 and TSU-Pr1 cells in a tet-on inducible expression system [39]. 
Therefore, the enhanced E-cadherin may contribute to the anti-invasion effect of diosgenin and HIF-1�  
knockdown. In the context of tumor biology, the role of integrin � 5� 1 in tumor invasions has been 
revealed by the finding of lost or reduced integrin � 5� 1 expression in adenocarcinoma of the breast [40]. 
Diosgenin and HIF-1�  silencing treatment enhanced integrin � 5 expression in BGC-823 cells, which 
may partially account for the suppression of cell invasion and vitality. In addition, the combination 
treatment inhibited the expression of integrin � 6, another cell adhesive molecule, which has proved to 
play a role in enhanced invasive behavior in oral squamous cell carcinoma [41]. Though we 
demonstrated that a few cell surface adhesion molecules are associated with the effects of combination 
of diosgenin and HIF-1�  knockdown, more well-defined mechanisms are still to be determined.  
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3. Experimental Section 

3.1. Cell Culture and Cobalt Chloride Treatment 

Human gastric cell lines NCI-N87, HGC-27, MGC80-3, SGC-7901 and BGC-823 were obtained 
from Shanghai Cell bank of Chinese Academy of Sciences (Shanghai, China) and maintained in RPMI 
1640 media (Invitrogen, USA) containing 10% fetal bovine serum (GIBCO-BRL) at 37 °C in a humidified 
atmosphere of 5% CO2. Twenty four hours after seeding, 10 mM of cobalt chloride solution was added 
to a final concentration of 100 � M and the cells were incubated for another 24 h. Then the relative 
HIF-1�  mRNA and protein levels were analyzed. The cell line with a low expression of HIF-1�  in 
normal conditions but the most significant increase when treated with the hypoxia mimic was selected 
for the following experiments.  

3.2. Construction and Identification of Lentiviral Vectors for HIF-1�  Silencing.  

Three shRNAs were selected based on the sequence of Homo sapiens hypoxia inducible factor  
1 mRNA (HIF-1� , GenBank GI: 194473733) and a scrambled shRNA was used as a negative control. 
The target sequences and corresponding oligonucleotide sequences are shown in Table 1. The synthesized 
oligonucleotides (Invitrogen, China) were annealed and cloned into the pSIH1-H1-copGFP shRNA 
cloning and expression Vector (System Biosciences, USA). 293T cells (ATCC, USA) were transfected 
with the lentiviral vectors and two packaging plasmids using Lipofectamine™ 2000 (Invitrogen) 
following the manufacturer’s protocols and the viral supernatants were collected and used to infect the 
selected cells. 48 h after infection, the cells were treated with 100 � M cobalt chloride for 24 h. The 
relative HIF-1�  mRNA and protein levels were analyzed. After the silencing efficiency was obtained, 
the optimal shRNA lentivirus was selected for stable transduction. 

Table 1. shRNA s targeting HIF-1� . 

shRNA Target sequence (5'–3') Oligonucleotide sequence(5'–3') 

shRNA 1 
GACTTTCCTCAGTCG
ACAC 

Forward 
GATCCGACTTTCCTCAGTCGACACCTTCCTGTCA
GAGTGTCGACTGAGGAAAGTCTTTTTG 

Reverse 
AATTCAAAAAGACTTTCCTCAGTCGACACTCTG
ACAGGAAGGTGTCGACTGAGGAAAGTCG 

shRNA 2 
GTCACCACAGGACA
GTACA 

Forward 
GATCCGTCACCACAGGACAGTACACTTCCTGTC
AGATGTACTGTCCTGTGGTGACTTTTTG 

Reverse 
AATTCAAAAAGTCACCACAGGACAGTACATCTG
ACAGGAAGTGTACTGTCCTGTGGTGACG 

shRNA 3 
GTAGTGCTGACCCTG
CACT 

Forward 
GATCCGTAGTGCTGACCCTGCACTCTTCCTGTCA
GAAGTGCAGGGTCAGCACTACTTTTTG 

Reverse 
AATTCAAAAAGTAGTGCTGACCCTGCACTTCTG
ACAGGAAGAGTGCAGGGTCAGCACTACG 

shRNA 
-negative 

GAAGCCAGATCCAG
CTTCC 

Forward 
GATCCGAAGCCAGATCCAGCTTCCCTTCCTGTCA
GAGGAAGCTGGATCTGGCTTCTTTTTG 

Reverse 
AATTCAAAAAGAAGCCAGATCCAGCTTCCTCTG
ACAGGAAGGGAAGCTGGATCTGGCTTCG 
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3.3. Cell Transduction, Stable Clone Selection, and Cobalt Chloride Treatment 

The most effective lentivirus was used to infect the selected cells. The clonal stably-transduced cells 
with HIF-1�  shRNA were obtained by limiting dilution and used for the subsequent experiments.  
The stable cells in the 3rd passage were subject to cobalt chloride treatment as described above.  
The relative protein levels of HIF-1� , E-cadherin, integrin� 5 and integrin� 6 were analyzed by  
western blotting.  

3.4. RNA Extraction and Quantitative RT-PCR  

Cells were harvested in TRIzol Reagent (Invitrogen) and total RNA was isolated. The first-strand 
cDNA was synthesized using M-MLV Reverse Transcriptase (Takara) and random primers. Specific 
primers for quantitative PCR of human HIF-1� , E-cadherin, integrin� 5, integrin� 6 and � -actin were as 
follows: HIF-1� : 5'-GCGCGAACGACAAGAAAAAGATAA-3' and 5'-CACACGCAAATAGCTGAT 
GGTAAG-3', E-cadherin: 5'-ACGGTAACCGATCAGAATGAC-3' and 5'-GTCATTCTGATCGGTTA 
CCGT-3', integrin� 5: 5'-AGGAGCCTGTGGAGTACAAG-3' and 5'-TGCTGCCCAGCTGAAATCTG 
AG-3', integrin� 6: 5'-ATGAAGTTAACAGTGAAGAC-3' and 5'-TTGCAAACACCATTTCCTCC 
AC-3' and � -actin: 5'-CCTGTACGCCAACACAGTGC-3' and 5’-ATACTCCTGCTTGCTGATCC-3'. 
Real-time PCR was performed using SYBR® Premix Ex Taq™ kit (Takara, Japan) and TP800 System 
(Takara, Japan). cDNA from 100 ng total RNA was used as the template. The PCR amplification was 
carried out in the conditions: 40 cycles of denaturation at 95 °C for 10 s, annealing at 60 °C for 20 s and 
extension at 72 °C for 20 s. The mRNA levels of HIF-1� , E-cadherin, integrin� 5, and integrin� 6 were 
normalized to � -actin using the �� Ct method.  

3.5. Western Blotting 

The total proteins were isolated with M-PER® Mammalian protein extraction reagent (Pierce, USA). 
Protein concentration was determined by the BCA protein assay kit (Pierce, USA). The protein samples 
(10 � g) were separated by SDS–PAGE using a 12% (� -actin) or 10% (HIF-1� , E-cadherin, integrin� 5, 
and integrin� 6�  gel and electro-transferred onto PVDF membranes (Millipore, USA). The membranes 

were blocked with 5% non-fat milk in TBST and incubated with antibodies against HIF-1�  (1:200), 
E-cadherin (1:300), integrin� 5 (1:200), integrin� 6 (1:200) and � -actin (1:500) (Santa Cruz, USA) for  
12 h at 4 °C. After washing, the membranes were then incubated with a HRP-labeled anti-goat or 
anti-mouse IgG antibody (Santa cruz, USA) and visualized by enhanced chemiluminescence reagents 
(Pierce, USA). 

3.6. Cell Proliferation 

The control and HIF-1� -knockdown cells were seeded into 96-well plates at 1 × 105 cells/well  
24 h before treatment. The cells were serum-starved for 8 h and then treated with or without 100 � M 
cobalt chloride and/or 10 � M diosgenin for indicated times. At the end, 10 � L MTT solution was added 
to each well. After incubation for additional 4 h, the violet crystals were dissolved in100 � L dimethyl 
sulfoxide (DMSO). The plates were vibrated at room temperature for 15 min and the absorbance of each 
well at 570 nm was measured with 630 nm as a reference.  
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3.7. Cell Invasion Assay 

The Chemicon QCM™ 24-well Invasion Assay Kit was used to assess cell invasive potential 
following the manufacturer’s instructions. Briefly, the cells were harvested and resuspended with 
serum-free RPMI 1640 medium containing 5% bovine serum albumin at 1.0 × 106 cells/mL. 
Approximately 0.25 mL cell suspension was added into the upper chamber. As a chemo-attractant,  
0.5 mL RPMI 1640 medium with 10% FBS was added to the lower chamber. After 48 h of incubation, 
the invasive cells migrated through the polycarbonate membrane and attached to the lower surface were 
detached, and treated with lysis buffer/dye solution supplied by the kit. Aliquot mixes were transferred 
to a 96-well plate and read with Fluoroskan Ascent FL microplate fluorometer (Thermo Scientific) using 
480/520 nm filter set. The Relative Fluorescence Unit (RFU) values correlated with the cell numbers 
were used to demonstrate invasion results, and the cell invasion rate was calculated by: cell invasion  
rate = the number of cell passing through the membrane/(cell number of upper chamber + number of cell 
passing through the membrane) × 100%. The experiments were performed three times in triplicate. 

3.8. Statistical Analysis 

Data were shown as the mean ± SD. Statistical analysis of the data was performed using Student’s 
t-test and p values < 0.05 were considered statistically significant. 

4. Conclusions 

In conclusion, we identified a hypoxia-mimic sensitive gastric cancer cell line BGC-823 and found 
that cobalt chloride can promote its ability to invade and survive. By knockdown of HIF-1�  via lentiviral 
delivery of specific HIF-1�  shRNA, the enhanced status of invasion and survival is effectively decreased. 
In addition, diosgenin, as a candidate contributing to new therapy approaches, is also explored since it 
can significantly inhibit the cobalt chloride induced invasion and survival in BCG823, especially when 
combined with down-regulation of HIF-1� . Subsequent studies should focus on whether diosgenin, 
when combined with shRNA of HIF-1� , is effectively applied to the animal gastric cancer model.  
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