
Int. J. Mol. Sci. 2012, 13, 5125-5137; doi:10.3390/ijms13045125
OPEN ACCESS

International Journal of
Molecular Sciences

ISSN 1422-0067
www.mdpi.com/journal/ijms

Article

Supplementary Material—A DNA Network as an Information
Processing System
Cristina Costa Santini 1,†, Jonathan Bath 2, Andrew J. Turberfield 2 and Andy M. Tyrrell 1,⋆

1 Department of Electronics, University of York, York YO10 5DD, UK; E-Mail: ccsantini@gmail.com
2 Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road,

Oxford OX1 3PU, UK; E-Mails: j.bath1@physics.ox.ac.uk (J.B.);
a.turberfield1@physics.ox.ac.uk (A.J.T.)

† Current address: College of Computer and Information Sciences, King Saud University, P.O.Box
22452, Riyadh 11495, KSA.

⋆ Author to whom correspondence should be addressed; E-Mail: andy.tyrrell@york.ac.uk;
Tel.: +44-0-1904-322340; Fax: +44-0-1904-322461.

Received: 29 February 2012; in revised form: 31 March 2012 / Accepted: 17 April 2012 /
Published: 23 April 2012

Abstract: Biomolecular systems that can process information are sought for computational
applications, because of their potential for parallelism and miniaturization and because their
biocompatibility also makes them suitable for future biomedical applications. DNA has
been used to design machines, motors, finite automata, logic gates, reaction networks and
logic programs, amongst many other structures and dynamic behaviours. Here we design
and program a synthetic DNA network to implement computational paradigms abstracted
from cellular regulatory networks. These show information processing properties that are
desirable in artificial, engineered molecular systems, including robustness of the output in
relation to different sources of variation. We show the results of numerical simulations of
the dynamic behaviour of the network and preliminary experimental analysis of its main
components.
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1. The Gated Hairpin Loop

Sequences*

H: ACACAACACACACCACACAGATCCGTGTGGTGTGTGTTGTGTCCGCTC
I: GAGCGGACACAACACACACCACAC
G: GCGCTCGGATCTGTGTGGTGTGTGTTGTGTCCTTCAACACAACACACACCACACGAGCGCTTTAGA
K: CCCCCCTCTAAAGCGCTCG

* note that strand K has an extra domain, CCCCCC, at the 5′ end which can be used as a toehold to
facilitate removal of K by addition of its complement. This feature was not used for the experiments
presented here, nor is it necessary for construction of the network.

Method

All strands were purchased from IDT and used without further purification. Stocks of each component
strand (1.0 µM H, 2.0 µM I, 0.8 µM G and 1.6 µM K) were quenched by heating to 96 ◦C for 5 min then
transfering to ice. Reactions (20 µL) containing 2 µL of appropriate stock solutions in 10 mM Tris-HCl,
50 mM NaCl and 10 mM MgCl2 (pH 8.0) were incubated for 1 h at room temperature. Samples were
run on a 15 % polyacrylamide gel (29:1) in TAE (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) at
222 V, 4 ◦C for 1 h, then stained with sybr gold.

2. Network Dose Invariance, Scenario B

Definitions

Gy0 ≡ Gy(0) is the initial concentration of network component Gy;
Gyr0 is a (constant) reference initial concentration for this component.
Initial and reference concentrations for network components Hx, Hz and for input Ky, and an initial

concentration for input Ix, are defined similarly.

Reaction Equations

The steady-state output of the network is governed by the branching ratio between the positive and
negative reaction pathways. The steady-state output is equal to the difference between the time-integrated
quantities of intermediate X∗ that are converted initially to output Z∗ and to intermediate Y ∗, as Y ∗ will
eventually contribute stoichiometrically to the inhibition of Z∗. (The time-dependence of the conversion
of Y ∗ to Inh and the sequestration of Z∗ by Inh affect the pulse shape but not the steady-state output.)
These quantities are governed by the following coupled rate equations:

d

dt
Hx(t) = −k1Ix(t)Hx(t) (S1)

d

dt
Hz(t) = −k2X

∗(t)Hz(t) (S2)

d

dt
G∗

y(t) = k3Gy(t)Ky(t)− k4X
∗(t)G∗

y(t) (S3)
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d

dt
Gy(t) =

d

dt
Ky(t) = −k3Gy(t)Ky(t) (S4)

d

dt
Ix(t) = −k1Ix(t)Hx(t) (S5)

d

dt
X∗(t) = k1Ix(t)Hx(t)− k2X

∗(t)Hz(t)− k4X
∗(t)G∗

y(t) (S6)

d

dt
Y ∗(t) = k4X

∗(t)G∗
y(t) (S7)

d

dt
Z∗(t) = k2X

∗(t)Hz(t) (S8)

In Scenario B the boundary conditions are:

G∗
y(0) = 0;Gy(0) = Gy0;Ky(0) = Ky0;Hx(0) = Hx0;Hz(0) = Hz0;

Ix(0) = Ix0;X
∗(0) = 0;Y ∗(0) = 0;Z∗(0) = 0.

We assume that the time-dependent concentrations of network components (including Gy, Hx and Hz)
and of input Ky are not sigificantly perturbed by addition of input Ix. In this limit Equations (S1) to
(S3) become:

d

dt
Hx(t) = 0 (S9)

d

dt
Hz(t) = 0 (S10)

d

dt
G∗

y(t) = k3Gy(t)Ky(t) (S11)

We further assume that the initial concentrations of network components and of input Ky are scaled
by a constant α relative to a reference network. For network components and Ky we introduced
scaled functions

G∗
y(t) = αG∗

yr(t
′);Gy(t) = αGyr(t

′);Ky(t) = αKyr(t
′); Hx(t) = αHxr(t

′);Hz(t) = αHzr(t
′) (S12)

where t′ = αt. Trivially, Gy0 = αGyr0, Ky0 = αKyr0 and, in the limit of small Ix, Hxr(t
′) = Hxr0,

Hzr(t
′) = Hzr0. For input Ix (which is not scaled) and for intermediates X∗, Y ∗ and Z∗ we write:

Ix(t) = Ixr(t
′);X∗(t) = X∗

r(t
′);Y ∗(t) = Y ∗

r (t
′);Z∗(t) = Z∗

r(t
′) (S13)

Equations (S4) to (S11) become:

d

dt′
Gyr(t

′) =
d

dt′
Kyr(t

′) = −k3Gyr(t
′)Kyr(t

′) (S14)

d

dt′
Ixr(t

′) = −k1Ixr(t
′)Hxr(t

′) (S15)

d

dt′
X∗

r(t
′) = k1Ixr(t

′)Hxr(t
′)− k2X

∗
r(t

′)Hzr(t
′)− k4X

∗
r(t

′)G∗
yr(t

′) (S16)

d

dt′
Y ∗
r (t

′) = k4X
∗
r(t

′)G∗
yr(t

′) (S17)

d

dt′
Z∗

r(t
′) = k2X

∗
r(t

′)Hzr(t
′) (S18)
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d

dt′
Hxr(t

′) = 0 (S19)

d

dt′
Hzr(t

′) = 0 (S20)

d

dt′
G∗

yr(t
′) = k3Gyr(t

′)Kyr(t
′) (S21)

In the case α = 1 ( i.e., t′ = t) these are identical to the equations describing the evolution of
the reference network, and the boundary conditions are also identical. The dependence of the scaled
functions defined by Equations (S12) and (S13) on the scaled time variable t′ is therefore the same as for
the reference network for all network scalings. We note that Y ∗(∞) = Y ∗

r (∞) and Z∗(∞) = Z∗
r (∞),

independent of α. The time-integrated quantities of intermediate X∗ that are converted initially to Y ∗

and to Z∗ (Y ∗(∞), Z∗(∞) respectively) are therefore independent of network scaling.

Conclusion

If the initial concentrations of network components Gy, Hx, Hz and Aux and of input Ky are
sufficiently large that the network is not significantly perturbed by addition of the input Ix AND if inputs
Ix AND Ky are added simultaneously (Scenario B) AND if initial concentrations Gy0,Hx0, Hz0 and Ky0

are kept in the same ratio THEN the branching ratio of Ix into the positive and negative pathways and
the steady-state network output are independent of network dosage.

Figure S1. The same plots shown in Figures 5a and 5b on an expanded time scale showing
the dynamical component of the output, the pulse. It is possible to see at this scale that
the pulse rise time, fall time, width and amplitude do change in response to changes in
network dosage.
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Figure S2. Comparison between dynamical and steady-state components of the output for
simulations S5, 2S5 (two networks with different component dosages) and S8 (multiple
stimuli) (Figure 5). (a) Output Z∗ as a function of time; (b) Phase plane with coordinates
corresponding to concentrations of components Z∗ and Inh. Key: S5 (red), 2S5 (dotted
black); (c) Phase plane with coordinates corresponding to concentrations of components Z∗

and Inh. Key: S8 (pink). In the phase plane it is easier to visualize the variation in the
dynamical component of the output as well as the invariance to this dosage variation in the
steady-state (the trajectories converge at [Inh] = 0).
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Figure S3. Simulation results showing proportionality between output and input, and
robustness of output to subsequent stimuli. (a–d) Simulations S5, S8 and S9 (as Figure
5c). Key: S5 (red), S8 (pink), S9 (blue). (a) Output Z∗, as Figure 5c; (b) Z∗ (solid lines), Ix
(dotted lines); (c) Z∗ (solid lines), G∗

y (dotted lines); (d) Hz (solid lines), G∗
y (dotted lines);

(e–f) as (a–d) but with Simulation S10 substituted for S8. Key: S5 (red), S10 (pink), S9
(blue). Simulation S10 is similar to S8 but with larger subsequent stimuli: the initial input
stimulus of 100 nM Ix is followed by stimuli that raise the concentration of Ix by 200 nM
at 700 s and by 200 nM at 1400 s. Even with this input dose, the concentration of network
components is sufficient to ensure that the steady state activation of the network is still very
close to that achieved with the same initial stimulus in S5 and S8. Note that in both S8 and
S10, the additional inputs of Ix at t = 700 s and t = 1400 s are followed by a drop in Hz that
exactly matches the drop in G∗

y. For this reason the subsequent stimuli causes no increase in
the steady-state level of activation of the network.
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Figure S3. Cont.
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Figure S4. Simulations S11, S12 and S13, showing the limits of the desired network
behaviour. (a) In Simulations S11, S12 and S13 the concentrations of network components
and Ky were reduced in concentration relative to those in S5 by factors of 2, 5 and
10 respectively. The initial concentration of input Ix was maintained at 100 nM. The
steady-state level of Z∗ in S12 (2-fold excess of network over input) remains very close
to the steady-state level of Z∗ in S5. However, in S13 (no excess network concentration)
there is a significant change in output level, supporting the conclusion that in order to
maintain network-dosage invariance, the network components have to be in significant
excess in relation to the input stimulus Ix; (b) Simulation S14 is as S11, except for additional
stimuli that increased the concentration of input Ix by 250 nM at t = 700 s and 250 nM
at t = 1400 s. The total input dose (equivalent to 600 nM) is greater than the initial
network concentration. The steady-state output deviates from that of S11, demonstrating
that robustness to subsequent input stimuli is only observed if network components remain
in excess; (c) As (b), with in addition the concentration of Ix (dotted lines).
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Figure S5. Simulation results showing the results of extreme unbalance between the
activation and repression pathways. (a) Simulation S2 (as Figure 5a). At t = 0 s all
components of the network (Hx, Hz, Gy and Aux ) as well of input Ky were combined
with initial concentrations of 1 µM. Input stimulus Ix (100 nM) was added at t = 700 s. In
this case, the reaction of Ky with Gy to produce repressor complex G∗

y is complete, balancing
the repression and activations pathways, before input of Ix. The network therefore shows no
steady-state activation. The transient output pulse is explained by the relative delay of the
inhibition pathway, which has a longer chain of interactions; (b) Simulation S15 is the same
as S2 except that input Ky is zero, so the negative reaction pathway is not activated. All
input stimulus Ix reacts with Hz leading to a stoichiometric yield of output Z∗.
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Table S1. Initial concentrations and output Z* at t = 4000 s for all the simulations discussed.
For most simulations this is the steady-state level of the output. For simulation S2, for
example, the output Z* slowly tends to zero, as shown in Supplementary Figure 5.

Simulation
t = 0 s t = 700 s t = 1,400 s t = 4,000 s

Hz (nM) Hx (nM) Gy (nM) Aux (nM) Ky (nM) Ix (nM) Ix (nM) Ix (nM) Z* (nM)

S1 1, 000 1, 000 500 1, 000 3, 000 0 100 0 32

2S1 2, 000 2, 000 1, 000 2, 000 3, 000 0 100 0 33

S2 1, 000 1, 000 1, 000 1, 000 3, 000 0 100 0 2.7

2S2 2, 000 2, 000 2, 000 2, 000 3, 000 0 100 0 2.8

S3 500 1, 000 1, 000 1, 000 3, 000 0 100 0 0

2S3 1, 000 2, 000 2, 000 2, 000 3, 000 0 100 0 0

S4 1, 000 1, 000 500 1, 000 500 100 0 0 64

2S4 2, 000 2, 000 1, 000 2, 000 1, 000 100 0 0 64

S5 1, 000 1, 000 1, 000 1, 000 1, 000 100 0 0 28

2S5 2, 000 2, 000 2, 000 2, 000 2, 000 100 0 0 28

S6 500 1, 000 1, 000 1, 000 1, 000 100 0 0 0.1

2S6 1, 000 2, 000 2, 000 2, 000 2, 000 100 0 0 0.2
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Table S1. Cont.

Simulation
t = 0 s t = 700 s t = 1,400 s t = 4,000 s

Hz (nM) Hx (nM) Gy (nM) Aux (nM) Ky (nM) Ix (nM) Ix (nM) Ix (nM) Z* (nM)

S7 1, 000 1, 000 1, 000 1, 000 2, 000 100 0 0 13

S8 1, 000 1, 000 1, 000 1, 000 1, 000 100 50 50 26

S9 1, 000 1, 000 1, 000 1, 000 1, 000 200 0 0 54

S10 1, 000 1, 000 1, 000 1, 000 1, 000 100 200 200 24

S11 500 500 500 500 500 100 0 0 27

S12 200 200 200 200 200 100 0 0 26

S13 100 100 100 100 100 100 0 0 18

S14 500 500 500 500 500 100 250 250 18

S15 1, 000 1, 000 1, 000 1, 000 0 0 100 0 100
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