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Abstract: In-shell, peeled and blanched peanut samples were characterized in relation  

to proximate composition and fatty acid profile. No difference was found in relation to its 

proximate composition. The three major fatty acids were palmitic acid, oleic acid, and 

linoleic acid. In order to investigate irradiation and storage effects, peanut samples were 

submitted to doses of 0.0, 5.0, 7.5 or 10.0 kGy, stored for six months at room temperature and 

monitored every three months. Peanuts responded differently to irradiation, particularly with 

regards to tocopherol contents, primary and secondary oxidation products and oil stability 

index. Induction periods and tocopherol contents were negatively correlated with irradiation 

doses and decreased moderately during storage. α-Tocopherol was the most gamma radiation 

sensitive and peeled samples were the most affected. A positive correlation was found 

among tocopherol contents and the induction period of the oils extracted from irradiated 

samples. Gamma radiation and storage time increased oxidation compounds production.  

If gamma radiation is considered an alternative for industrial scale peanut conservation,  

in-shell samples are the best feedstock. For the best of our knowledge this is the first article 

with such results; this way it may be helpful as basis for future studies on gamma radiation 

of in-shell crops. 
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1. Introduction 

Crude peanuts and its by-products are of great importance in foods worldwide and are ingredients 

of many recipes. Peanut food products are usually used by consumers from a range of economic 

statuses. However, potential mycotoxic fungi [1] in peanuts and peanut products are a problem faced 

by the industry. In addition, peanuts are known to be a source of allergenic proteins, a problem that 

manifests itself most often in children but also in adolescents and adults [2]. 

Irradiation of peanuts at 5.0 kGy [3] and 10.0 kGy [4] has been found to be an effective treatment to 

completely eliminate potentially aflatoxigenic fungi in peanuts. According to Kilcast [5], ionizing 

radiation is, by definition, sufficiently high in energy to remove an electron from water, which is  

the main component of foods and living organisms, and to create highly reactive species, including 

free radicals such as the hydroxy radical, and hydrogen peroxide. The authors also suggested that  

the predominant useful effects of irradiation rely on reaction of these species with the DNA of 

microorganisms, causing death. In addition, Oh et al. [6] suggested that gamma radiation may reduce 

the allergenicity of peanut extracts. The authors reported that allergenic proteins that were exposed  

to irradiation presented distinct structural modifications as a result of aggregation, fragmentation, and 

the modification of amino acids, which, in turn, affected the solubility of proteins, their tertiary and 

secondary structure, and their immunogenicity. Alteration of epitopes by denaturation of the peanut, 

after irradiation, might have induced a lower response by T cells. The allergic reaction appears to be the 

result of a TH2-type T-cell response to one or more common environmental allergens [7]. As mentioned 

before [5], irradiation causes molecular changes, among which the formation of free radicals is one of the 

most important for foods with a high fat content. The model proposed by Farmer et al. [8] shows the 

formation of free radicals as the initial step in the mechanism of lipid autoxidation. 

In peanut and its products, the ratio of oleic and linoleic fatty acids (O/L) is used as a quality score; 

the higher the ratio, the greater the product’s shelf life, due to its higher oxidative stability [9]. 

Recently, IAC Runner 886 peanut cultivar presented a decrease in their O/L from 1.86 to 1.51 for 

control and gamma irradiated with 15.0 kGy, respectively [10]. Similar results were reported by Mexis 

and Kontominas [11]. According to their study, monounsaturated fatty acids were preferentially 

attacked by oxygen to produce primary and secondary oxidation products as opposed to attack of 

polyunsaturated fatty acids in gamma irradiated cashew nuts. Palmitic acid is one of major fatty acids in 

peanuts [12], and oleic acid, in terms of content, has been reported to be inversely proportional to the 

palmitic acid [13]. IAC Runner 886 peanut cultivar presents high percentage of unsaturated fatty  

acids [10], for this reason this cultivar is hugely susceptible to oxidation. According to Jensen et al. [14], 

the lipid percentage, fatty acid composition, moisture content, and presence of antioxidants, in addition 

to the surface structure and porosity of the food product, affect its stability. So, the fatty acid composition 

is not the only factor that should be taken into account. 

The aim of this study was to characterize samples of in-shell, peeled and blanched peanuts  

(Arachis hypogaea L.) cv. IAC-Runner 886 subjected to different doses of gamma radiation (0.0, 5.0, 
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7.5 or 10.0 kGy) and room temperature storage time in relation to their oxidative status as well as their 

tocopherol contents. 

2. Results and Discussion 

2.1. Proximate Composition 

Table 1 shows the proximate composition of the peanut samples. Oil content has an important effect 

on the sensory characteristic of foods because it contributes to mouth feel and carries flavors and 

aromas. Peanuts are high oil content foods [15]. There is a huge variation reported in the literature 

concerning the lipid percentage. Davis et al. [16] reported that the lipid percentage of peanuts collected 

from fields located near Dawson, Georgia State, USA, ranged from 23% (cv. FlavoRunner-458) to 

40% (cv. C11-239), while Santos [17] reported that the lipid percentage of peanuts grown in Southeast 

and Northeast of Brazil, respectively, ranged from 46% (cv. BRS 151 L-7) to 49% (cv. IAC-Tupã). 

Table 1. Proximate composition 1 (g/100) of dry sample. 

Component Peeled In-shell 2 Blanched 
Ash 2.11 ± 0.07 a 3 2.12 ± 0.05 a 1.90 ± 0.16 a 
Lipid 46.92 ± 1.66 a 46.48 ± 4.44 a 47.33 ± 2.77 a 
Protein 22.25 ± 1.58 a 20.34 ± 1.52 a 22.80 ± 0.88 a 
Fiber 21.23 ± 2.32 a 25.88 ± 2.20 a 22.11 ± 0.76 a 
Carbohydrates 5.19 ± 1.78 a 7.49 ± 2.23 a 5.86 ± 2.51 a 

1 Data represent the mean of triplicate analysis for each sample ± standard deviations; 2 In-sheel 
peanuts were hand peeled by hands before the analysis; 3 Means with the same letters within a row 
are not statistically different by Tukey’s multiple test (p < 0.05). 

Non-significant differences were found in relation to the proximate composition of the peanut 

samples (p < 0.05). Although blanching process consists of removing the peanut skins, the process did 

not change the proximate composition of the oilseed. In fact, that can be explained by the low weight 

of the peanut skins, in average 2.6% in relation to the peanut weight [18]. 

The current results are in accordance with the proximate composition of Runner type already reported 

in the literature. Protein, lipid and ash contents ranged from 22.9 to 23.5%, from 45.4 to 47.9% and from 

2.1 to 2.2%, respectively [19]. According to Ng et al. [15], genetically modified peanuts presented lipids 

ranging from 48.4 to 50.1%, protein, from 29.5 to 32.4% and ash ranging from 2.2 to 2.6%. Due to the 

high lipid content of peanuts and its effect on the shelf life of its products, the present study focused on 

the effects of gamma radiation and storage time on oxidation effects. 

2.2. Fatty Acid Composition 

Table 2 reports the fatty acid compositions of lipid extracts from initial peanut samples (0.0 kGy; time 

zero). The oleic to linoleic acid (O/L) ratio is a quality index employed for the determination of genetic 

peanut characteristics classified as normal, mid-, and high-oleic types, ranging from 1 to 1.5; 1.5 to 9.0, 

and above 9.0, respectively [9]. The present study was carried out with normal oleic peanuts. There 

were moderated differences among different samples. This is in good agreement with the findings of 
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Shin et al. [9] whose data confirm that fatty acid composition can be different, even within the same 

cultivar and same harvest year. The enzyme Δ12 desaturase catalyzes the reaction of oleic acid to 

linoleic acid and the oleic to linoleic acid ratio is controlled by the activity of this enzyme. 

Furthermore, seed maturity can also influence the fatty acid composition of peanuts [12,13]. Since the 

present study did not control the production field and harvest, differences among samples cannot be 

clearly explained. Palmitic acid, oleic acid, and linoleic acid were the major fatty acids. According to 

the literature [12], the remaining fatty acids, stearic, arachidic, eicosenoic, behenic, and lignoceric 

acids, normally occur in weight percentages between 0.02 and 4.0%, which in fact agrees with the 

present study. 

Table 2. Fatty acid compositions of the peanut samples (g/100 g) 1. 

Fatty acids Peeled In-shell Blanched 
C16:0 13.06 ± 0.53 ab 3 13.33 ± 0.02 a 12.14 ± 0.54 b 
C18:0 1.54 ± 0.01 b 1.47 ± 0.03 c 2.08 ± 0.00 a 
C18:1 46.68 ± 0.09 a 44.94 ± 0.26 b 44.92 ± 0.23 b 
C18:2 35.40 ± 0.09 b 37.10 ± 0.32 a 37.63 ± 0.22 a 
C20:0 0.59 ± 0.04 a 0.52 ± 0.03 a 0.61 ± 0.05 a 
C22:0 0.88 ± 0.04 a 0.77 ± 0.03 b 0.73 ± 0.05 b 
C22:1 1.28 ± 0.18 a 1.45 ± 0.46 a 1.32 ± 0.33 a 
C24:0 0.57 ± 0.10 a 0.43 ± 0.11 a 0.56 ± 0.13 a 
O/L 2 1.32 ± 0.00 a 1.21 ± 0.00 b 1.19 ± 0.01 b 
SFA 16.64 ± 0.36 a 16.52 ± 0.12 a 16.12 ± 0.32 a 

PUFA 35.40 ± 0.09 b 37.10 ± 0.32 a 37.63 ± 0.22 a 
MUFA 47.96 ± 0.27 a 46.38 ± 0.20 b 46.24 ± 0.10 b 

1 Data represent the mean of triplicate analysis for each sample ± standard deviations;  
2 O/L = oleic/linoleic ratio, SFA = saturated fatty acids, PUFA = polyunsaturated fatty acids, 
MUFA = monounsaturated fatty acids; 3 Means with the same letters within a row are not 
statistically different by Tukey’s multiple test (p < 0.05). 

Different cultivars may have different fatty acid composition. In a recent study, Shin et al. [9] 

analyzed 151 samples from two year crops and noticed that there was a huge variation in relation to the 

fatty acid content in samples classified as normal, mid-, or high-oleic. The authors reported that palmitic 

acid (C16:0) ranged from 5.31%, to 11.49%; stearic acid (C18:0), 1.46% to 4.76%; oleic acid (C18:1, 

ω9), 44.78% to 82.17%; linoleic acid (C18:2, ω6), 2.85% to 33.92%; arachidic acid (C20:0), 0.87% to 

2.18%; gondoic acid (C20:1, ω9), 1.09% to 3.13%; behenic acid (C22:0), 0.73% to 4.37%; and 

lignoceric acid (C24:0), 0.41% to 2.12%. These data are in agreement with the ones obtained in the 

current work. 

2.3. Tocopherols 

Table 3 shows the tocopherol concentration of the peanut samples. Initial concentration for all 

samples were γ > α > δ > β-tocopherol. The presence of natural antioxidants such as tocopherol has 

been widely studied in peanuts [14,20–24]. Tocopherols appear to be responsible compounds for the oil 

antioxidant capacity, being negligible the contribution of polyphenols. Only small amount of polyphenols 
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were found in nut oils [20]. On the other hand, small concentration of tocopherols has been found in 

peanut skins [25], whose antioxidant properties are more related to its high concentration of polyphenols 

such as condensed tannins. 

Table 3. Tocopherol contents of the peanut samples 1 (mg/100 g). 

Tocopherols Peanuts T 2 0.0 kGy 5.0 kGy 7.5 kGy 10.0 kGy 

α-Tocopherol 

Peeled 

0 19.59 ± 0.33 A 3 a 4 7.61 ± 0.31 A b 6.13 ± 0.15 A c 7.82 ± 0.13 A b 

3 18.23 ± 0.71 B a 5.86 ± 0.60 B b 5.13 ± 0.53 B b 6.39 ± 0.98 AB b

6 18.14 ± 0.46 B a 6.93 ± 0.53 AB b 6.39 ± 0.11 A b 5.92 ± 0.39 B b 

In-shell 

0 19.13 ± 0.64 A a 10.70 ± 0.48 A b 10.50 ± 0.34 A b 10.83 ± 0.10 A b 

3 17.81 ± 0.87 AB a 9.61 ± 0.44 A b 10.34 ± 0.17 A b 10.65 ± 0.46 A b 

6 16.05 ± 1.25 B a 9.15 ± 0.93 A b 9.78 ± 0.44 A b 10.22 ± 0.63 A b 

Blanched 

0 11.75 ± 1.46 A a 7.52 ± 0.19 A b 7.43 ± 0.11 A b 7.03 ± 0.44 A b 

3 11.88 ± 0.97 A a 7.18 ± 0.41 A b 6.83 ± 0.14 A b 6.88 ± 0.49 A b 

6 12.02 ± 0.11 A a 6.29 ± 0.76 A b 6.59 ± 0.55 A b 7.77 ± 0.62 A b 

β-Tocopherol 

Peeled 

0 0.55 ± 0.01 A a 0.49 ± 0.01 A b 0.36 ± 0.00 A d 0.39 ± 0.01 A c 

3 0.54 ± 0.03 AB a 0.45 ± 0.01 AB b 0.36 ± 0.03 A c 0.37 ± 0.01 AB c

6 0.50 ± 0.00 B a 0.44 ± 0.02 B b 0.37 ± 0.01 A c 0.34 ± 0.02 B c 

In-shell 

0 0.55 ± 0.03 A a 0.52 ± 0.02 A a 0.44 ± 0.01 A b 0.46 ± 0.01 A b 

3 0.54 ± 0.03 A a 0.47 ± 0.01 B b 0.45 ± 0.03 A b 0.47 ± 0.02 AB b

6 0.47 ± 0.02 B a 0.47 ± 0.00 B a 0.44 ± 0.00 A a 0.44 ± 0.03 B a 

Blanched 

0 0.56 ± 0.01 A a 0.54 ± 0.02 A ab 0.52 ± 0.01 A ab 0.50 ± 0.03 A b 

3 0.57 ± 0.03 A a 0.50 ± 0.00 AB b 0.50 ± 0.02 A b 0.49 ± 0.03 A b 

6 0.57 ± 0.02 A a 0.47 ± 0.03 B b 0.47 ± 0.01 A b 0.51 ± 0.01 A b 

γ-Tocopherol 

Peeled 

0 24.21 ± 0.20 A a 18.51 ± 0.48 A b 13.06 ± 0.33 B d 15.56 ± 0.30 A c 

3 23.44 ± 0.85 AB a 17.93 ± 0.04 AB b 12.13 ± 0.24 C d 14.27 ± 0.17 B c 

6 22.66 ± 0.45 B a 17.47 ± 0.33 B b 14.50 ± 0.25 A c 12.53 ± 0.54 C d 

In-shell 

0 24.45 ± 0.78 A a 21.03 ± 1.08 A b 18.63 ± 0.78 A c 19.32 ± 0.09 A bc

3 24.06 ± 1.19 AB a 18.99 ± 0.22 AB b 18.98 ± 0.78 A b 19.47 ± 0.64 A b 

6 21.44 ± 1.41 B a 17.36 ± 1.03 B b 17.41 ± 0.89 A b 18.78 ± 0.29 A b 

Blanched 

0 23.74 ± 1.26 A a 20.92 ± 0.29 A b 19.85 ± 0.42 A b 18.88 ± 1.16 A b 

3 23.06 ± 1.47 A a 19.92 ± 1.02 AB b 19.71 ± 0.51 A b 17.89 ± 0.61 A b 

6 22.85 ± 0.26 A a 18.64 ± 1.05 B b 19.14 ± 1.11 A b 19.47 ± 0.11 A b 

δ-Tocopherol 

Peeled 

0 1.44 ± 0.01 Aa 1.00 ± 0.03 A b 0.86 ± 0.02 A c 0.92 ± 0.04 A bc

3 0.96 ± 0.03 B a 0.93 ± 0.01 B a 0.71 ± 0.02 B c 0.79 ± 0.04 B b 

6 0.87 ± 0.02 C a 0.83 ± 0.01 C a 0.82 ± 0.02 A a 0.73 ± 0.04 B b 

In-shell 

0 1.07 ± 0.03 A a 0.99 ± 0.05 A ab 0.92 ± 0.05 A b 0.93 ± 0.01 A b 

3 0.98 ± 0.05 A a 0.88 ± 0.03 A a 0.94 ± 0.01 A a 0.91 ± 0.04 A a 

6 0.85 ± 0.06 B a 0.84 ± 0.08 A a 0.86 ± 0.08 A a 0.80 ± 0.15 A a 

Blanched 

0 1.19 ± 0.04 A a 1.16 ± 0.01 A a 1.15 ± 0.01 A a 1.16 ± 0.02 A a 

3 1.13 ± 0.09 A a 1.13 ± 0.06 A a 1.14 ± 0.04 A a 1.09 ± 0.06 A a 

6 1.14 ± 0.08 A a 1.02 ± 0.10 A a 1.12 ± 0.02 A a 1.13 ± 0.03 A a 
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Table 3. Cont. 

Total-tocopherol 

Peeled 

0 45.80 ± 0.52 A a 27.61 ± 0.78 A b 20.42 ± 0.46 B d 24.69 ± 0.43 A c

3 43.17 ± 1.61 AB a 25.17 ± 0.62 B b 18.33 ± 0.59 C d 21.83 ± 1.06 B c

6 42.16 ± 0.93 B a 25.67 ± 0.72 B b 22.08 ± 0.34 A c 19.52 ± 0.95 C d

In-shell 

0 45.19 ± 1.45 A a 33.23 ± 1.59 A b 30.49 ± 1.18 A b 31.53 ± 0.17 A b

3 43.39 ± 2.13 AB a 29.95 ± 0.54 AB b 30.71 ± 0.69 A b 31.50 ± 1.16 A b

6 38.80 ± 2.62 B a 27.82 ± 1.77 B b 28.50 ± 1.21 A b 30.23 ± 0.66 A b

Blanched

0 37.23 ± 2.71 A a 30.14 ± 0.49 A b 28.94 ± 0.54 A b 27.57 ± 1.62 A b

3 36.65 ± 2.42 A a 28.73 ± 1.49 AB b 28.18 ± 0.71 A b 26.35 ± 1.07 A b

6 36.58 ± 0.31 A a 26.41 ± 1.76 B b 27.32 ± 1.54 A b 28.87 ± 0.50 A b
1 Data represent the mean of triplicate analysis for each sample ± standard deviations; 2 T = Storage 
time in months; 3 Means with the same small letter within a row are not statistically different by 
Tukey’s multiple test (p < 0.05); 4 Means with the same capital letters within a column are not 
statistically different by Tukey’s multiple test (p < 0.05). 

Jonnala et al. [22] reported that tocopherol concentration of peanuts ranged from 14.59 to 16.12, 

0.70 to 1.03, 6.90 to 10.62 and, from 4.61 to 4.99 mg/100 g, in relation to α, β, γ and δ-tocopherols, 

respectively. These results are in accordance with the present study (Table 3). According to  

Shin et al. [24], α and γ-tocopherols were predominant in normal, mid and high oleic Runner cultivars, 

comprising ca. 95% of the total vitamin E present in the kernel. It was also found in the current trial 

that vitamin E represented ca. 95.63, 96.44, and 95.33% in relation to α and γ-tocopherols, for in-shell, 

peeled and blanched control samples, respectively (Table 3). 

The current study demonstrated that gamma radiation caused tocopherol losses in all samples and  

α-tocopherol was the most affected by the process. Right after the process, α-tocopherol contents 

decreased by 63.31, 44.2 and 37.63% for peeled, in-shell and blanched peanuts, respectively. The 

highest sensitivity of α-tocopherol can be related to the antioxidant ranking of individual tocopherols 

reported by Telegdy Kováts and Berndorfer-Kraszner [26]. According to the authors, between 80 and  

120 °C the antioxidant activity is δ > γ > α > β-tocopherol, while between 20 and 60 °C is α > γ > β > 

δ-tocopherol. Since gamma radiation was performed under 25 °C, α-tocopherol contributed the most to 

the antioxidant properties, as expected. Similarly to α-tocopherol, right after gamma radiation (5.0 kGy, 

time zero), -tocopherol was affected differently in each sample. γ-Tocopherol decreased by 23.54, 

13.99 and 11.88% for peeled, in-shell and blanched peanuts, respectively. Regarding short time effects 

of gamma radiation (time zero), β-tocopherol concentration started to decrease in peeled samples  

at 5.0 kGy, while in-shell and blanched samples presented the same behavior at 7.5 and 10.0 kGy, 

respectively. δ-Tocopherol started to decrease in peeled and in-shell samples at 5.0 kGy and 7.5 kGy, 

respectively, while blanched samples were not affected by gamma radiation on any time of storage. 

Furthermore, on the third and sixth months of storage, δ-tocopherol concentration in in-shell samples 

was not statistically different among control and gamma irradiated samples. According to Kilcast [27], 

vitamin E is the most radiation-sensitive of the fat-soluble vitamins. Bhatti et al. [28] reported loss of 

tocopherols in peanut oil extracted from gamma irradiated peanuts. According to Lalas et al. [29], 

soybean oil submitted to gamma radiation (3.00 kGy) presented up to 92.3% loss of α-tocopherol. 

There was moderated decrease in α, β, γ and δ-tocopherols contents of non-irradiated peeled and  

in-shell samples during storage, while no difference was found for blanched peanuts (Table 3). 
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Regarding the gamma irradiated samples it is possible to notice that storage affected moderately  

the tocopherol contents of the samples. In-shell and blanched samples were the least affected. 

Lavedrine et al. [30] reported losses of 29, 28 and 30% in relation to α, γ, and δ-tocopherol on the third 

month of storage of walnuts under 4 °C. Losses of 24 and 20% in relation to total tocopherols were 

reported by Chun et al. [31] in air and vacuum packaged stored peanuts at 21 °C, respectively. In the 

present study the shells can play a protective function against photooxidation, which is not possible 

with peeled and blanched samples. Since the blanching process involves heating, Maillard compounds 

can be generated. According to Davis et al. [21], Maillard compounds present antioxidant properties. 

The authors submitted runner-type peanuts (cv. Georgia green) to lab-scale roasting at 166 °C, from  

0 to 77 min. The lowest loss in α-tocopherol content was noticed in peanut samples submitted to the 

highest roasting intensity. The authors suggested that the final concentration of vitamin E in roasted 

peanuts or peanut oil is a balance between heat degradation and indirect heat stabilization via the 

formation of Maillard reaction products. 

The present study showed a negative correlation among gamma radiation and most of the individual 

tocopherol contents (Table 4). Decreasing of the negative correlation of in-shell and blanched  

samples was observed during the storage, while the opposite was noticed in peeled samples. Peeled 

samples showed negative correlation as high as r = −0.99 for γ-tocopherols, which means an almost 

perfect correlation. 

Table 4. Pearson’s correlation between gamma radiation and tocopherol contents. 

Tocopherols Peanuts Time zero Third month Sixth month 

α-Tocopherol 
Peeled −0.87 ** −0.85 ** −0.91 ** 
In-shell −0.87 ** −0.81 ** −0.78 ** 

Blanched −0.87 ** −0.88 ** −0.73 ** 
 Peeled −0.91 ** −0.93 ** −0.97 ** 

β-Tocopherol In-shell −0.85 ** −0.73 ** −0.62 * 
 Blanched −0.82 ** −0.79 ** −0.62 * 
 Peeled −0.90 ** −0.91 ** −0.99 ** 

γ-Tocopherol In-shell −0.90 ** −0.80 ** −0.80 ** 
 Blanched −0.92 ** −0.90 ** −0.73 ** 
 Peeled −0.91 ** −0.76 ** −0.86 ** 

δ-Tocopherol In-shell −0.84 ** −0.47 ns −0.14 ns 
 Blanched −0.53 ns −0.21 ns −0.01 ns 
 Peeled −0.90 ** −0.91 ** −0.97 ** 

Total-Tocopherols In-shell −0.90 ** −0.81 ** −0.73 ** 
 Blanched −0.91 ** −0.91 ** −0.73 ** 

** significant (p < 0.01); * significant (p < 0.05); ns non significant. 

Figures 1 and 2 show the effect of gamma radiation on α, β,  and δ-tocopherols with focus on the 

storage condition. Non irradiated samples (0.0 kGy) on time zero were considered as the control. The 

ranking for α-tocopherol concentration in control samples was peeled = in-shell > blanched. β and  

γ-tocopherols did not show differences among the control samples, which demonstrate that the blanching 

process, that involves the samples heating, did not change their concentration. In control samples the 

ranking for δ-tocopherol was peeled > blanched > in-shell. 
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Figure 1. α-Tocopherol content on time zero (A), in the third (B) and sixth month storage (C). 

β-Tocopherol content on time zero (D), in the third (E) and in the sixth month storage (F). 

Error bars represent standard deviations of triplicate measurements. Means with the same 

letter within a gamma radiation dose are not statistically different by Tukey’s multiple test 

(p < 0.05). 

 

After gamma radiation in-shell samples presented the highest final concentration of α-tocopherol 

during the whole storage period. In general, the final concentration of β-tocopherols in blanched samples 

was similar or higher than that of the peeled samples. Initial concentration of α-tocopherol was 19.59 and 

11.75 mg/100 g for peeled and blanched samples, respectively, this way the initial concentration for 

blanched peanuts was 40% less than that of the peeled sample. Peanut samples are submitted to heating 

to remove their peanut skin. This is probably the reason for the lowest α-tocopherol concentration in 

blanched peanuts. 
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Figure 2. γ-Tocopherol content on time zero (A), in the third (B) and sixth month storage (C). 

δ-Tocopherol content on time zero (D), in the third (E) and in the sixth month storage (F). 

Error bars represent standard deviations of triplicate measurements. Means with the same 

letter within a gamma radiation dose are not statistically different by Tukey’s multiple test  

(p < 0.05). 

 

Gamma radiation decreased β-tocopherol concentration and blanched samples presented the highest 

or equal concentration to that of the in-shell samples. In general, peeled samples submitted to gamma 

radiation have shown the lowest β-tocopherol concentration. No differences were found among  

non-irradiated samples regarding γ-tocopherol contents during the whole storage period (Figure 2). 

Right after gamma radiation (time zero) peeled samples presented the highest decrease in their  

γ-tocopherol content, while no differences were found between in-shell and blanched samples. The 

ranking of γ-tocopherol contents in gamma irradiated samples was in-shell = blanched > peeled (time 

zero). On the third and sixth months of storage, at higher doses (7.5 and 10.0 kGy), in-shell samples 

presented equal or higher γ-tocopherol contents than that of the blanched samples. Gamma irradiated 

blanched samples presented the highest content of δ-tocopherol and, in general, peeled and in-shell 

samples were not statistically different from each other. 

2.4. Oil Stability Index 

Gamma radiation decreased the induction period (h) of the crude peanut oil (p < 0.05) (Table 5), 

reducing the oxidative stability of the peanuts. According to Arranz et al. [20], crude peanut oil 

showed induction period of 14.6 h. The longer induction period (higher stability) found by the authors 
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should be due to the lower temperature applied during the analysis (100 °C), which is different from 

the current study that applied 110 °C to the samples. Even higher damage caused by gamma radiation 

was reported by Arici et al. [32]. According to the authors, cumin oil extracted from gamma irradiated 

samples presented induction period of 7.72 h (control), 5.43 h (2.5 kGy), 3.60 h (6.0 kGy), 1.92 h  

(8.0 kGy), and 0.62 h (10.0 kGy). The present study demonstrated that the induction period of gamma 

irradiated samples was highly correlated to the final (after treatment, after storage) tocopherol content 

of the samples (Table 6). 

Table 5. Induction period (h) of the crude peanut oils 1. 

Peanuts 
Dose
(kGy)

Induction period 1 (h) 
Time zero Third month Sixth month 

Peeled 

0.0 10.29 ± 0.06 A 2 a 3 9.66 ± 0.11 B a 9.80 ± 0.11 B a 
5.0 8.59 ±0.25 AB b 8.46 ± 0.04 B b 8.80 ± 0.04 A b 
7.5 8.26 ± 0.02 A c 7.89 ± 0.07 B c 8.24 ± 0.09 A c 

10.0 8.25 ± 0.03 A c 8.30 ± 0.04 A b 7.47 ± 0.04 B d 

In-shell 

0.0 10.25 ± 0.02 A a 9.12 ± 0.05 B a 10.37 ± 0.04 A a 
5.0 9.14 ± 0.03 B b 8.46 ± 0.11 C c 9.82 ± 0.05 A b 
7.5 9.11 ± 0.08 B b 8.91 ± 0.11 B ab 9.49 ± 0.01 A c 

10.0 8.68 ± 0.08 B c 8.74 ± 0.05 AB bc 8.96 ± 0.07 A d 

Blanched 

0.0 10.74 ± 0.06 B a 10.92 ± 0.13 AB a 11.12 ± 0.02 A a 
5.0 9.92 ± 0.03 B b 10.14 ± 0.02 A b 10.20 ± 0.03 A b 
7.5 9.58 ± 0.10 B c 9.63 ± 0.11 B c 9.90 ± 0.03 A c 

10.0 9.46 ± 0.12 B c 9.74 ± 0.01 A c 9.62 ± 0.03 AB d
1 Data represent the mean of triplicate analysis for each sample ± standard deviations; 2 Means with 
the same capital letters within a row are not statistically different by Tukey’s multiple test (p < 0.05); 
3 Means with the same small letter within a column are not statistically different by Tukey’s multiple 
test (p < 0.05). 

Table 6. Pearson’s correlation between gamma radiation and induction period and between 

total tocopherol and induction period. 

Related variables Peanut Time zero Third month  Sixth month

Irradiation × Induction period 
Peeled −0.93 ** −0.87 ** −0.99 ** 
In-shell −0.95 ** −0.43 ns −0.98 ** 

Blanched −0.97 ** −0.93 ** −0.99 ** 

Total tocopherol × Induction period
Peeled 0.97 ** 0.98 ** 0.93 ** 
In-shell 0.93 ** 0.72 ** 0.64 * 

Blanched 0.92 ** 0.86 ** 0.81 ** 
** significant (p < 0.01); * significant (p < 0.05); ns non significant. 

The results regarding storage period do not allow the correlation between storage time with 

induction period of the crude peanut oils. On the contrary of what was expected, the induction period 

of the blanched peanut oils did not decrease during storage (Table 5). The present results are in good 

agreement with those of Sanders et al. [33]. By means of the analysis of oxidative stability index and 

peroxide value, the authors showed that the blanching process did not cause reduction in quality of 
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peanuts. According to Cammerer and Kroh [34], with increasing roasting temperature and time, the 

oxidative stability of peanuts was improved and shelf life prolonged. This can be attributed to the 

formation of antioxidant Maillard reaction products. 

Table 6 shows Pearson’s correlation between gamma radiation and induction period as well as 

between total tocopherol contents and induction periods. 

Negative correlation was found between gamma radiation doses and the induction period. On the 

contrary, a positive correlation was found between total tocopherol content and induction period. 

According to Lee et al. [35], irradiation with doses up to 5.0 kGy greatly increased oxidation of 

soybean, cottonseed, and corn oils, as well as linoleic acid. Ascorbyl palmitate was extremely effective 

at minimizing oxidation in all oils, and its effectiveness was concentration-dependent. Furthermore, 

ascorbyl palmitate showed significantly greater antioxidative activity than α-tocopherol for the reduction 

of oxidation in all oils. 

Figure 3. Induction period (h) of oils extracted from peeled, in-shell and blanched peanuts 

on time zero (A), after three (B) and six months storage (C). Error bars represent standard 

deviations of triplicate measurements. Means with the same letter within a gamma 

radiation dose are not statistically different by Tukey’s multiple test (p < 0.05). 

 

Since the concentration of tocopherols from the blanched samples was lower than that of peeled and 

in-shell samples (Table 3), induction periods presented at Figure 3 suggest that this behavior is due to 

the presence of Maillard compounds, which are known by their antioxidant properties. Maillard 

compounds probably were generated by the heating during the blanching process. When peeled and  

in-shell samples are compared with each other, it is possible to notice that, in general, the lowest 
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induction period is attributed to the first one. It suggests that in-shell gamma irradiated peanuts are 

more stable to termoxidation than peeled peanuts. 

2.5. UV Absorption 

Tables 7 and 8 show, respectively, absorptivity at 232 and 270 nm, indicating the presence of primary 

(dienes) and secondary oxidation products (aldehydes and ketones). Both primary and secondary 

oxidation products have had their concentration increased by gamma radiation (p < 0.05). The higher 

the dose the larger was the production of oxidation products. 

Table 7. Primary oxidation products (E232nm) 1. 

Peanut 
Dose 
(kGy)

E232nm 
Time zero Third month Sixth month 

Peeled 

0.0 1.016 ± 0.028 B 2 d 3 1.443 ± 0.053 A c 1.062 ± 0.010 B d
5.0 1.594 ± 0.092 A c 1.701 ± 0.072 A b 1.191 ± 0.012 B c 
7.5 1.955 ± 0.079 A b 1.880 ± 0.078 A b 1.349 ± 0.019 B b

10.0 2.287 ± 0.027 B a 2.581 ± 0.157 A a 1.392 ± 0.010 C a 

In-shell 

0.0 1.502 ± 0.004 A d 1.430 ± 0.002 B bc 1.185 ± 0.027 C d
5.0 1.650 ± 0.067 A c 1.321 ± 0.020 B b 1.289 ± 0.004 B c 
7.5 1.872 ± 0.043 A b 1.461 ± 0.033 B b 1.398 ± 0.011 B b

10.0 2.173 ± 0.019 A a 1.610 ± 1.610 B a 1.443 ± 0.008 C a 

Blanched 

0.0 3.622 ± 0.001 A c 3.643 ± 0.080 A b 3.032 ± 0.102 B a 
5.0 3.508 ± 0.004 B c 3.815 ± 0.053 A b 2.758 ± 0.005 C bc
7.5 3.946 ± 0.126 B b 4.403 ± 0.033 A a 2.716 ± 0.001 C c 

10.0 4.513 ± 0.008 A a 4.408 ± 0.178 A a 2.852 ± 0.003 B b
1 Data represent the mean of triplicate analysis for each sample ± standard deviations; 2 Means with 
the same capital letters within a row are not statistically different by Tukey’s multiple test (p < 0.05); 
3 Means with the same small letter within a column are not statistically different by Tukey’s multiple 
test (p < 0.05). 

Table 8. Secondary oxidation products (E270nm) 1. 

Peanut 
Dose E270nm 
(kGy) Time zero Third month Sixth month 

Peeled 

0.0 0.024 ± 0.001 C 2 c 3 0.448 ± 0.025 A b 0.095 ± 0.040 B b
5.0 0.102 ± 0.003 C b 0.561 ± 0.014 A b 0.168 ± 0.030 B ab
7.5 0.186 ± 0.001 B a 0.573 ± 0.044 A b 0.231 ± 0.009 A a

10.0 0.196 ± 0.007 B a 0.884 ± 0.085 A a 0.235 ± 0.029 B a 

In-shell 

0.0 0.048 ± 0.001 B d 0.149 ± 0.018 A b 0.055 ± 0.018 B c 
5.0 0.087 ± 0.007 B c 0.140 ± 0.008 A b 0.142 ± 0.016 A b
7.5 0.105 ± 0.005 C b 0.224 ± 0.017 A a 0.194 ± 0.007 B a 

10.0 0.119 ± 0.006 C a 0.252 ± 0.012 A a 0.174 ± 0.015 B ab

Blanched 

0.0 0.130 ± 0.001 B d 0.536 ± 0.021 A a 0.184 ± 0.038 B c 
5.0 0.182 ± 0.003 C c 0.591 ± 0.047 A a 0.291 ± 0.011 B b
7.5 0.208 ± 0.006 C b 0.631 ± 0.034 A a 0.335 ± 0.021 B ab

10.0 0.421 ± 0.008 B a 0.650 ± 0.078 A a 0.364 ± 0.025 B a 
1 Data represent the mean of triplicate analysis for each sample ± standard deviations; 2 Means with 
the same capital letters within a row are not statically different by Tukey’s multiple test (p < 0.05);  
3 Means with the same small letter within a column are not statistically different by Tukey’s multiple 
test (p < 0.05). 
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According to Bhatti et al. [28], gamma radiation (8.0 kGy) increased primary and secondary oxidation 

products of peanuts. Furthermore, the concentrations of the secondary grew faster. The authors reported 

that gamma radiation increased dienes from 1.51 to 2.69 (cv. Golden) and from 1.71 to 3.25 (cv. Bari). 

Trienes ranged from 0.11 to 0.51 (cv. Golden) and from 0.12 to 0.63 (cv. Bari). The same behavior 

was noticed in the present study right after the radiation process (time zero). When control samples are 

compared to gamma irradiated (10.0 kGy) there was an increase by 125.1% (peeled), 44.7% (in-shell) 

and 24.6% (blanched) regarding primary oxidation compounds, against 716.7% (peeled); 147.9%  

(in-shell) and 223.8% (blanched) in relation to the secondary compounds. 

Volatile secondary compounds such as aldehydes, ketones and alcohols have had their concentration 

increased in peanuts, pistachio and cashew nuts submitted to gamma radiation with doses up to  

7.0 kGy [11,36], which indicated increase of lipid oxidation. On the third and sixth months of storage 

there was an increase on the concentration of primary and secondary oxidation products when 

compared to time zero (Table 7). According to Anwar et al. [37], soybean oil stored during six months, 

under room temperature, had their diene concentration increased from 0.08 to 23.97 and their triene 

increased from 0.04 to 13.81. 

Primarily, due to oxidative reactions of lipids, peanuts shelf life as well as its sensory quality 

decreases with storage time [34]. According to Jensen et al. [14], the light accounted for the greatest 

systematic variation of the relative levels of free radicals in peanuts, whereas the oxygen availability 

had the largest influence on the formation of hexanal. In the present study there was oscillation on the 

concentration of secondary products during the storage. The same was noticed on peanut storage 

studies from Nepote et al. [38]. The volatile nature of the secondary products could be responsible for 

that oscillation. 

Table 9 presents the correlation results between oxidation products and gamma radiation doses. In 

general there was a positive correlation between doses and production of oxidation compounds. 

Table 9. Pearson’s correlation between gamma radiation and oxidation products. 

Related variables Peanut Time zero Third month  Sixth month

Irradiation × Primary oxidation products 
Peeled 0.99 ** 0.89 ** 0.98 ** 
In-shell 0.94 ** 0.57 ns 0.98 ** 

Blanched 0.79 ** 0.89 ** 0.63 * 

Irradiation × Secondary oxidation products
Peeled 0.98 ** 0.84 ** 0.90 ** 
In-shell 0.99 ** 0.82 ** 0.90 ** 

Blanched 0.84 ** 0.73 ** 0.95 ** 
** significant (p < 0.01); * significant (p < 0.05); ns non significant. 

Figure 4 presents the effect of gamma radiation on the oxidation compounds with focus on the 

storage condition. According to Mexis et al. [39], aldehydes such as acetaldehyde, hexanal, nonanal 

and decanal as well as ketones such as 2-butanone and 2-propanone were formed in almond kernels 

especially at higher doses (7.0 kGy) as a result of lipid oxidation due to irradiation. 
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Figure 4. Primary oxidation products on time zero (A), after three (B) and six months 

storage (C). Secondary oxidation products on time zero (D), after three (E) and six months 

storage (F). Error bars represent standard deviations of triplicate measurements. Means 

with the same small letter within a gamma radiation dose are not statistically different by 

Tukey’s multiple test (p < 0.05). 

 

In general, the presence of primary and secondary oxidation products was higher in blanched samples, 

irradiated or not. In relation to the secondary compounds it is clear that in-shell peanut samples were the 

less damaged by gamma radiation. During the whole storage, even at higher doses, in-shell gamma 

irradiated peanuts presented lower secondary oxidation compounds than that of the non-irradiated 

blanched peanuts. Commercialization of blanched peanuts is already done successfully. In turn, if the 

presence of volatile compounds is considered as a rejection issue by the consumers it is possible to 

suggest that there is a small chance in-shell gamma irradiated peanuts may be rejected by them. 

3. Experimental Section 

3.1. Material 

Samples of in-shell, peeled and blanched cv. IAC-Runner 886 (crop year 2009/2010) were obtained 

from CAP—Agroindustrial, Dumont, São Paulo State, Brazil. 
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3.2. Methods 

3.2.1. Irradiation Process 

In-shell, peeled and blanched peanut samples were separated into 1.5 kg portions and placed in 

polyethylene plastic bags. The bags were irradiated at doses of 0.0, 5.0, 7.5, and 10.0 kGy at a dose 

rate of 7.5 kGy/h. Irradiation process was carried out in the city of São Paulo, São Paulo State, Brazil, 

using a multipurpose Cobalt-60 γ-irradiation facility from Nuclear Energy Research Institute (IPEN). 

IPEN is an autarchy, associated to the University of São Paulo—supported and operated technically and 

administratively by the National Nuclear Energy Commission (CNEN). The samples were irradiated 

under air atmosphere and room temperature (25 °C). The samples were stored for six months at room 

temperature and analyses were performed at the beginning of the study and after three and six months of 

storage. The storage temperature was monitored by thermo-hygrometer (RH520A, Extech Instruments, 

Nashua, NH, USA) and ranged from 22.80 to 28.98 °C during the experiment. 

3.2.2. Proximate Composition 

Ash, lipids, protein, and fiber and carbohydrates in peanut samples were determined according to 

AOAC methods [40]. Total carbohydrates were calculated by difference. 

3.2.3. Oil Extraction 

For analysis of the lipid fraction of peanuts, samples were cold pressed with a Carver Press (Carver, 

Inc., Wabash, IN, USA). After pressing, crude peanut oil samples were filtered and transferred to amber 

bottles, nitrogen was injected and the oil samples were frozen (−18 °C) until analysis. 

3.2.4. Fatty Acid Composition 

Peanut crude oils were methylated according to Hartman and Lago [41] and analysed as described 

by method Ce 1f-96 from AOCS [42]. Tridecanoic acid was used as an internal standard. An HP 5890 

Series II gas chromatograph (Hewlett-Packard, Palo Alto, CA, USA) equipped with a flame ionization 

detector (FID) and a split injector was used. Separation was done in a capillary fused silica column 

(100 m × 0.25 mm × 0.2 μm, Agilent J&W GC Columns, Palo Alto, CA, USA) at 130 °C (isothermal). 

Hydrogen set at a flow rate of 1.5 mL/min was the carrier gas. The injection temperature was 270 °C, 

and the detector temperature was 280 °C. 

3.2.5. Tocopherols 

Tocopherol quantification was carried out as described by Ce 8-89 official method from AOCS [43]. 

A normal phase high performance liquid chromatography (HPLC) was utilized. The HPLC system 

consisted of the LC-6AD, equipped with a fluorescence detector RF-10AXL, automatic interjector  

SIL-10AF (Shimadzu Scientific Instruments Inc., Columbia, MD, USA), Shimadzu software CLASS-VP 

and column (Lichrospher Si60, 5 μm, 25 cm × 4 mm i.d., E. Merck, Darmstadt, Germany) connected to 

a LiChroCART guard column (LiChrospher Si 60, 5 m, 4 cm × 4 mm i.d., E. Merck, Darmstadt, 

Germany). The excitation and emission wavelengths for the fluorescent determination of tocopherol 
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isomers were 290 and 330 nm, respectively. Standards of α, γ and δ-tocopherol (Sigma-Aldrich, St 

Louis, MO, USA) and rac-β-tocopherol (Supelco, Bellefonte, PA, USA) were utilized for the 

calibration curve. The standards were prepared right before the analysis and corrected as recommended 

by the official method using a UV mini 1240 Shimadzu spectrophotometer (Shimadzu, Tokyo, Japan).  

Ten microliters of sample extract or of tocopherol standard solution were injected per run. An isocratic 

mobile phase comprising 99:1 (v/v) isopropanol in hexanes at a flow rate of 1.0 mL/min was utilized. 

3.2.6. Oil Stability Index 

The induction period was determined by official method Cd12b-92 from AOCS [44]. A sample of 

5.00 g of oil was heated at 110 °C under a dry airflow of 9 L/h in a tube inserted into a 743 Rancimat 

equipment (Metrohm Corporation, Herisau, Switzerland). The induction period was expressed  

as hour (h). 

3.2.7. UV Absorption 

This analysis determines the presence of primary and secondary oxidation products, such as 

conjugated dienes and trienes, aldehydes and ketones. The specific absorbances at 232 and 270 nm were 

determined using a UV mini 1240 Shimadzu spectrophotometer (Shimadzu, Tokyo, Japan) following the 

method Ch 5-91 from AOCS [45]. 

3.2.8. Statistical Analysis 

A completely randomized design with three replicates per treatment was used. Analysis of variance 

and the Tukey test (p < 0.05) were performed with SAS software and correlation analysis were carried 

out with ASSISTAT 7.6 program. 

4. Conclusions 

As expected a negative correlation was found between irradiation and tocopherol contents as well as 

irradiation and induction period. Positive correlation was found between gamma radiation and 

oxidation products as well as the induction period and tocopherol contents. Just moderated decrease in 

tocopherols was found with storage time. Furthermore, α-tocopherol was the most gamma radiation 

sensitive. In relation to tocopherol contents, peeled samples were the least recommended feedstock, 

while in-shell and blanched samples were the best. Gamma radiation and storage time increased the 

oxidation products of the peanuts. In-shell samples presented the least oxidative damage. Thus, for 

gamma irradiated peanuts, in-shell samples are the best feedstock. 
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