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Abstract: Extracellular signal-regulated kinases 1/2 (ERK1/2), components of the 

mitogen-activated protein kinase (MAPK) signaling cascade, have been recently shown to 

be involved in synaptic plasticity and in the development of long-term memory in the 

central nervous system (CNS). We therefore examined the ability of Citrus compounds to 

activate ERK1/2 in cultured rat cortical neurons, whose activation might have a protective 

effect against neurodegenerative neurological disorders. Among the samples tested, 

extracts prepared from the peels of Citrus grandis (Kawachi bankan) were found to have the 

greatest ability to activate ERK1/2. The active substances were isolated by chromatographic 

separation, and one of them was identified to be 3,5,6,7,8,3′,4′-heptamethoxyflavone 

(HMF). HMF significantly induced the phosphorylation of cAMP response element-binding 

protein (CREB), a downstream target of activated ERK1/2, which appears to be a critical 

step in the signaling cascade for the structural changes underlying the development of 

long-term potentiation (LTP). In addition, the administration of HMF into mice treated 

with NMDA receptor antagonist MK-801 restored the MK-801-induced deterioration of 

spatial learning performance in the Morris mater-maze task. Taken together, these results 

suggest that HMF is a neurotrophic agent for treating patients with memory disorders. 
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1. Introduction 

Evidence has begun to accumulate that indicates health-promoting effects of low-molecular weight 

and non-nutrient phytochemicals on human beings. Numerous quantitative studies have been 

conducted on flavonoids among various phytochemicals and indicate that flavonoids have anti-tumor, 

anti-inflammatory, and anti-oxidant ability as well as beneficial cardiovascular properties [1,2]. Some 

recent studies have demonstrated that flavonoids are also able to exert powerful actions on mammalian 

cognition and may reverse age-related declines in memory and learning [3]. For example, fisetin 

(3,7,3′,4′-tetrahydroxyflavone), which can be found in many plants, where it serves as a coloring agent, 

was reported to facilitate long-term potentiation (LTP) in rat hippocampal slices, and to enhance  

object recognition in mice [4]. Nobiletin (5,6,7,8,3′,4′-hexamethoxy flavone; NBT), one of the Citrus 

polymethoxyflavones especially present in Citrus unshiu and Citrus depressa Hay, has been shown to 

have a neuroprotective effect in the central nervous system (CNS); i.e., it has the ability to rescue 

rodents from Aβ-induced impairment of learning ability [5,6], bulbectomy-induced cholinergic 

neurodegeneration [7,8], and ischemia-induced learning and memory deficits [9]. 

Citrus fruits, which are cultivated all over the world, are known to be a rich source of flavonoids, 

some of which are unique to Citrus plants [10]. Thus we decided to search for health-benefiting 

flavonoids in representative Citrus species grown in Ehime Prefecture of Japan, which is an eminent 

citrus-growing district in Japan. As test samples, we prepared ethanol extracts from the peels of green 

unripe fruits. 

For the screening method, we analyzed the ability of these ethanol extracts to activate (cause the 

phosphorylation of) extracellular signal-regulated kinase (ERK) 1/2 of cultured neurons. This 

parameter was chosen because, ERK1/2, one of the most common signal transduction molecules by 

which extracellular stimuli are propagated from the cell surface to cytoplasmic and nuclear effectors, 

has been shown to be involved in synaptic plasticity and in the development of LTP in the CNS [11]. 

In the present study, we successfully identified 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF) as one of 

the Citrus substances that induce the activation of ERK1/2. 

ERK1/2 activation is known to lead to a number of cellular changes associated with the 

development of long-term memory, such as the expression of the cAMP response element-binding 

protein (CREB) [12], which is a transcription factor located within the nucleus. CREB activation 

(phosphorylation) appears to be a critical step in the signaling cascade that leads to the structural 

changes underlying the development of LTP [13]. Therefore, we also examined whether HMF could 

stimulate the phosphorylation of CREB in cultured neurons. Furthermore, we studied whether 

subcutaneous injection of HMF could rescue mice from drug-induced learning impairment. 
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2. Materials and Methods 

2.1. Preparation of Extracts from Citrus Species 

All Citrus fruits examined, 8 Citrus cultivers including tangor, mandarin, and orange groups, were 

harvested when they were still green from trees in the same field (Ehime Mandarin Research Center, 

Uwajima, Ehime, Japan) and same year (2008). Each fresh peel of Citrus fruits (100 g) was cut into 

small pieces and extracted with ethanol (ca. 500 mL) at room temperature. The extracts were 

concentrated in vacuo below 40 °C, and each extract was then tested in biological assays. 

2.2. Preparation of Extracts of Citrus Grandis (Kawachi bankan) 

Fresh peels (110 g) of C. grandis were homogenized in ethanol (600 mL). The filtered homogenate 

was concentrated in vacuo below 40 °C to give an ethanol extract (7.8 g). A part (5.0 g) of the ethanol 

extract was dissolved in water (50 mL), and successively extracted with n-hexane (50 mL × 5) and 

ethyl acetate (50 mL × 5) to yield n-hexane (285.3 mg), ethyl acetate (461.0 mg), and water (4.1 g) 

extracts. The extracts were concentrated in vacuo below 40 °C, and each extract was then subjected to 

biological assays. 

2.3. Analysis of n-hexane Extracts of Citrus Grandis 

The n-hexane extract (225 mg) was applied to a chromatography column containing silica gel 

(Nacalai Tesque, Kyoto, Japan: 75 μm, 1.5 i.d. × 40 cm) and eluted with n-hexane containing 

increasing proportions of ethyl acetate to give HMF (8.5 mg), together with auraptene (AUR; 39 mg), 

tangeretin (5,6,7,8,4′-pentamethoxyflavone, TGN; 2.7 mg), and NBT (1.1 mg). The compounds were 

identified by comparison with their spectral data reported in the literature. The NMR and MS data on 

HMF, which were determined with Brucker AVANCE500 and Brucker micrOTOF-Q instruments, 

respectively, were the following: 1H NMR (500 MHz, CDCl3) δ 7.83 (1H, d, J = 2.0 Hz, H-2′), 7.80 

(1H, dd, J = 2.0, 9.5 Hz, H-6′), 7.00 (1H, d, J = 9.5 Hz, H-5′), 4.08, 3.99, 3.958, 3.957, 3.93, 3.87 (each 

3H, s, –OCH3). 
13C NMR (126 MHz, CDCl3) δ 151.1 (C-2), 140.9 (C-3), 174.0 (C-4), 144.0 (C-5), 

138.0 (2C, C-6, 8), 151.4 (C-7), 148.3 (C-9), 115.2 (C-10), 123.6 (C-1′), 111.1 (C-2′), 148.9 (C-3′), 

153.2 (C-4′), 111.2 (C-5′), 122.1 (C-6′), 62.4, 62.0, 61.9, 61.7, 59.9, 56.1, 56.0 (–OCH3).  

ESI-MS m/z 433 [M + H]+. 

2.4. Preparation of HMF from Orange Oil 

Commercial orange oil [500 mL; Wako (Osaka, Japan)] was applied to a silica gel column (Nacalai 

Tesque; 75 μm, 5.0 i.d. × 67 cm) and eluted with n-hexane containing increasing amounts of ethyl 

acetate to provide HMF (944.8 mg). 

2.5. Cell Cultures and Reagents 

For the preparation of neuron cultures, the neocortices of 18-day-old embryonic Wistar rats 

(Charles River Japan, Inc., Yokohama, Japan) were dissected out; treated with phosphate-buffered 

saline (PBS) containing 0.25% trypsin, 10 mM glucose, and DNAase (6 μg/mL, Sigma, St. Louis, MO, 
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USA); and mechanically dissociated. Following centrifugation (900 × g, 3 min), the cell pellet was 

resuspended in Dulbecco’s modified Eagle’s medium (Sigma) containing 5% fetal bovine serum (ICN 

Biochemicals, Aurora, OH, USA); and the resuspended cells were plated in culture dishes precoated 

with poly DL-ornithine (Sigma). After a 24-h culture period, the medium was changed to Neurobasal 

medium (Invitrogen, Carlsbad, CA, USA) containing B27 supplement (Invitrogen), 2 mM glutamine; 

and the cells were then cultured for 3 days. Brain-derived neurotrophic factor (BDNF) was purchased 

from Pepro Tech. (Rocky Hill, NJ, USA). AUR, NBT, and TGN used for assay were purchased from 

Wako. U0126 and PD98059 were obtained from Wako and Sigma, respectively. 

2.6. Immunoblot Analysis 

Cells in 6-well plates (105 cells/cm2) were incubated with test compounds for 30 min, and the cell 

extracts were prepared as previously described [14]. Proteins (20 μg) in each cell extract were 

separated on an SDS-polyacrylamide gel and electroblotted onto an Immuno-BlotTM PVDF Membrane 

(BIO-RAD, Hercules, CA, USA). The primary antibodies used in immunoblotting analysis were rabbit 

antibody against MAPK 1/2 (Erk1/2-CT), which recognizes the C-terminal 35 amino acids of the rat 

44-kDa MAPK1/ERK1 and 42-kDa MAPK2/ERK2 (Upstate, Lake Placid, NY, USA); rabbit antibody 

against phospho-p44/42 MAPK (Thr202/Tyr204), which recognizes phosphorylated ERK1/2 

(pERK1/2); and rabbit antibodies against CREB and phosphorylated CREB (Ser-133; Cell Signaling, 

Woburn, MA, USA). The secondary antibody was horseradish peroxidase (HRP)-linked anti-rabbit 

IgG (Cell Signaling). The blots were developed by use of the chemiluminescence method with Plus 

Western Blotting Detection Reagents (Amersham, Piscataway, NJ, USA). 

2.7. MTT Assay 

Cells were plated in 96-well plates, and the MTT assay was performed as described previously [14]. 

2.8. Animals and Drugs 

Eight-week-old male C57BL/6 mice (Japan SLC, Shizuoka, Japan) were used. The mice were 

housed under conditions of controlled temperature and humidity (23 ± 1 °C and 50 ± 10%) on a  

12-h light/12-h dark cycle with ad libitum access to food and water. HMF was delivered through Alzet 

osmotic minipumps (DURECT Corp., Cupertino, CA, USA) implanted subcutaneously in the back of 

the animals. The actual concentration of HMF for pump delivery was calculated on a weight basis, in 

such a way as to obtain a steady release of 50 mg/kg/day for 7 days. Control animals received the HMF 

vehicle (DMSO/PEG300, 1:1). NMDA receptor antagonist MK-801 (Sigma) diluted in saline was 

intraperitoneally (i.p.) injected at the concentration of 0.05 mg/kg, 30 min before behavior test. For  

sham-operated mice, saline was injected. All experiments were performed in accordance with the Guide 

Lines for Animals Experimentation prepared by Animal Care and Use Committee of Matsuyama University. 

2.9. Morris-Type Water Maze (MWM) Test 

We conducted the MWM test [15] using modifications as described below. The water maze pool 

was a circular tank of 110 cm in diameter and 60 cm in depth. The pool was filled with tap water  
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(24–25 °C) and a 10-cm diameter round-shaped platform was hidden at a fixed position 1.5 cm under 

the surface of water. Training sessions were carried on 3–6 days after pump implantation. Each mouse 

performed 5 trials per day. We defined a successful escape, i.e., standing on the platform, as a stop for 

more than 5 s with all limbs on the platform. The cut-off time in a trial was set at 60 s. When the 

mouse failed to reach the platform in 60 s, it was picked from the water and placed on the platform for 

10 s to memorize the location. In such a case, the time needed to escape to the platform (escape latency) 

was recorded as 60 s. The interval of each trial was 15 min. Probe test was conducted 7 days after the 

implantation of the osmotic pump, during which the mice swam for 60 s in the absence of the platform. 

The water maze activity was analyzed by using a video-tracking system, ANY-Maze (Stoelting, Wood 

Dale, IL, USA). Five mice were used in each group. 

3. Results and Discussion 

3.1. ERK1/2 Activation in Neuron Cultures by Citrus Extracts 

Ethanol extracts of Citrus species were prepared by the homogenization of the Citrus peels in 5 volumes 

of ethanol followed by the concentration in vacuo to put away ethanol. The powdered ethanol extracts 

were then dissolved in dimethyl sulfoxide (DMSO) at the concentration of 100 mg/mL, and its 

required amount (one thousandth) for a final concentration (100 μg/mL) was added to the medium, as 

it is well known that various cells are not influenced by DMSO at the concentration of 0.1%. 

When the neurons were cultured for 30 min in the presence of each ethanol extract prepared from 

various Citrus peel, most of them showed the ability to phosphorylate ERK1/2, but the activity of the 

extract of Citrus grandis (Kawachi bankan) was higher than that of the other citrus extracts (Table 1). 

Table 1. Effect of extracellular signal-regulated kinase (ERK) 1/2 activation by Citrus extracts. 

Scientific Name Conventional Name Activity 

Citrus unshiu Unshu mikan + 

Citrus reticulate Imadsu Ponkan + 

Citrus reticulata Mandarin Orange (Kara) + 

Citrus iyo Miyauchi Iyo − 

Citrus sinensis Blood Orange (moro) + 

Citrus sinensis Blood Orange (tarocco) ± 

Citrus grandis Kawachi bankan ++ 

Citrus depressa Hay Flat Lemon + 

0.1% DMSO  − 

The neurons were cultured for 30 min in the presence of the ethanol extracts, and then equal amounts of 

protein were analyzed by immnoblot analysis with antibody against phospho-ERK1/2 along with antibody 

against the unphosphorylated form of the protein. 

Table 1 also shows that 0.1% DMSO had no effect on the phosphorylation of ERK1/2. The MTT 

assay showed that the cell viability was unchanged when the cells were treated with 100 μg/mL of a 

given extract (data not shown). 

The ethanol extract of C. grandis (Kawachi bankan) was further partitioned into n-hexane, ethyl 

acetate, and water-soluble portions. Each extractive portion was evaporated to dryness in vacuo and 
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then dissolved in DMSO at the concentration of 100 mg/mL. When the cells were treated with  

100 μg/mL of each extract for 30 min, only the n-hexane extract had the ability to phosphorylate 

ERK1/2 (Figure 1). These results suggest that some non-polar compound(s) of C. grandis (Kawachi 

bankan) had this ability. 

Figure 1. Effects of ethyl acetate (Ac-OEt), n-hexane and H2O (H2O) extracts of  

Citrus grandis (Kawachi bankan) on ERK1/2 activation in rat cortical neurons. Cells were 

treated with 100 μg/mL of each extract for 30 min or 50 ng/mL brain-derived neurotrophic 

factor (BDNF) for 10 min, and then equal amounts of protein were analyzed by  

immnoblot analysis. 

 

3.2. Identification of the Components from Citrus grandis Peel 

We then isolated and characterized the active compound(s) in the hexane extract of C. grandis. 

Chromatographic separation of the hexane extract revealed 4 known compounds, which were 

characterized by spectroscopic analysis as a coumarin derivative with a monoterpene unit (AUR) and 3 

polymethoxyflavones (TGN, NBT, and HMF; Figure 2). 

Figure 2. Chemical structure of 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF). 
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3.3. HMF-Mediated ERK1/2 Activation in Neuron Cultures 

We obtained HMF in sufficient amount for evaluation of its biological potency from commercially 

available orange oil, as described in Materials and Methods, and examined its ability to cause the 

phosphorylation of ERK1/2 in cultured neurons. 

At first, we performed a dose-response experiment using the purified HMF and cultured neurons. 

Although neurons have both ERK1 and ERK2, and both of them are phosphorylated by BDNF or 

Citrus compounds (Figure 1), only the ERK2 isoform has been suggested to be attributable to 

neurogenesis and cognitive function [25]. We therefore analyzed the ratio of phosphorylated ERK2 

(pERK2) to total ERK2 (ERK2) hereafter. As shown in Figure 3A, the phosphorylation of ERK2 in 

neurons occurred in a dose-dependent manner when the cells were cultured with various concentrations  

(0, 0.1, 1.0, 10, and 100 μM) of HMF for 30 min. Significant toxicity was not detected even at the 

concentration of 100 μM, as evidenced by the results of the MTT assay (data not shown). 

Figure 3. Time- and dose-dependent phosphorylation of ERK2 after HMF treatment of 

cultured rat cortical neurons. (A) The cells were treated for 30 min with various 

concentrations (0, 0.1, 1.0, 10, and 100 μM) of HMF or BDNF (50 ng/mL) for 10 min, and 

cell lysates were then prepared and applied to immunoblot analysis; (B) Cells were treated 

with 100 μM HMF for various times (0, 10, 30, 60, and 90 min) or with BDNF (50 ng/mL) 

for 10 min, and the cell lysates were then prepared for immunoblot analysis. The density 

ratio of pERK2 to total ERK2 in untreated cultures was expressed as 1 arbitrary unit. 

Results represent mean ± SEM (n = 4, different cultures). Significant difference in values 

between the compound-treated and non-treated cells: * P < 0.05; ** P < 0.01; *** P < 0.01 

(Student’s t test). 
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We then examined the pERK2/ERK2 levels in cultured neurons when the cells were cultured for 

various times (0, 30, 60, and 90 min) in medium containing 100 μM HMF. Enhancement began at  

10 min, and the signal was strengthened until 90 min after the start of HMF exposure (Figure 3B). In 

contrast, BDNF caused a rapid phosphorylation of ERK2 within 10 min (hatched bar). These 

observations demonstrate that HMF caused the phosphorylation of ERK1/2 with a time-course 

different from that of BDNF. 

It is known that neurotrophic factors induce the activation of MEK1/2, which are MAPK kinases 

that phosphorylate ERK1/2 [26]. We then pretreated the cells with U0126 or PD98059, both of which 

are inhibitors of the ERK1/2 upstream kinase MEK, 30 min before incubation in the presence of HMF. 

As shown in Figure 4, the pretreatment of neurons for 30 min with either U0126 (A) or PD98059 (B) 

significantly abolished the HMF-induced increase in ERK2 phosphorylation. Figure 4 also shows that 

these inhibitors themselves had no effect on the basal level of the pERK2/ERK2 ratio. These results 

suggest that HMF could activate MEK1/2, resulting in the phosphorylation of ERK1/2. 

Figure 4. Effects of MEK inhibitors on HMF-induced ERK2 activation in cultured rat 

cortical neurons. Cells were sequentially pretreated for 30 min with 10 μM PD980059 (A) 

or 10 μM U0126 (B) and then incubated for 30 min with or without 50 μM HMF. 

Thereafter they were subjected to the immunoblot analysis. The ratios of the value for the 

drug-treated cells to that value for the control cells were calculated, and are shown on the 

ordinate. Values are presented as the mean ± SEM (n = 4). Significant difference in values 

between the HMF-treated and non-treated cells (** P < 0.01, *** P < 0.001; Student’s t test) 

and in those indicated by the brackets (# P < 0.05, ## P < 0.01; Student’s t test) are shown. 
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HMF is one of the Citrus polymethoxyflavones, and has 7 methoxy groups. We then examined the 

effect of its structurally related compounds, NBT and TGN, which have 6 and 5 methoxy groups, 

respectively. When the neurons were cultured for 30 min with a 50 μM concentration of these 

compounds, there was no significant difference among them in their phosphorylation-inducing ability 

(Figure 5). These results indicate that there was no correlation between the number of methoxy 

residues and the ERK1/2-activating ability of these compounds in neurons. A previous report [7] 

compared the effect of NBT and its analogues (5-demethylnobiletin, TGN, sinensetin, 6-demethoxy 

TGN, and 6-demethoxy NBT), which have 5 or fewer methoxy groups, on CRE-dependent 

transcription and neurite outgrowth in PC12D cells. That study revealed that all of them enhance both 

CRE-dependent transcription and neurite outgrowth and that NBT, with 6 methoxy groups, shows the 

most potent activity. These observations indicate that the extent of ERK1/2-activating ability of 

polymethoxyflavones in neurons was not correlated with that of their neuritegenic activity (neuronal 

differentiation) observed in PC12D cells. 

Figure 5. Effects of HMF, nobiletin (NBT) and tangeretin (TGN) on ERK2 activation in 

rat cortical neurons. Cells were treated with a 50 μM concentration of each compound for 

30 min, and harvested for immunoblot analysis using antibodies against phosphorylated 

ERK1/2 and unphosphorylated ERK1/2. When cells were treated with 50 ng/mL BDNF, 

the incubation time was 10 min. The density ratio of pERK2 to total ERK2 in untreated 

cultures was expressed as 1 arbitrary unit. Results represent the mean ± SEM (n = 4, 

different cultures). Significant difference in values between the compound-treated and non-

treated cells: * P < 0.05; ** P < 0.01 (Student’s t test). 
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signaling cascade that leads to the structural changes underlying the development of LTP [12]. We 

thus examined the effect of HMF on the phosphorylation of CREB in neuron cultures. Figure 6 shows 

that the treatment with 100 μM HMF for 30 min resulted in significant phosphorylation of CREB. Our 

preliminary examination with PC12 cells showed that HMF enhanced the phosphorylation of the 

substrates of protein kinase A (PKA, data not shown). These results suggest that, like that of NBT [27,28] 

and fisetin [4], the effect of HMF might be mediated by the PKA/ERK/CREB signaling pathway. 

0

1

2

3

4

5

none BDNF HMF NBL TNG

p
E

R
K

/E
R

K

**

* * *

none          BDNF        HMF         NBT         TGN   
0

1

2

3

4

5

none BDNF HMF NBL TNG

p
E

R
K

/E
R

K

**

* * *

none          BDNF        HMF         NBT         TGN   



Int. J. Mol. Sci. 2012, 13 1841 

 

 

Figure 6. Effects of HMF on cAMP response element-binding protein (CREB) activation in 

rat cortical neurons. Cells were incubated with or without HMF at the concentration of  

100 μM for 30 min, and the cell lysates were prepared and applied to immunoblot analysis. 

Values are presented as the mean ± SEM (n = 4). Significant difference in values between 

the HMF-treated and non-treated cells: ** P < 0.01 (Student’s t test). 
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Figure 7. Effects of HMF on deterioration of spatial learning performance in MK-801-treated 

mice. (A) The time schedule of injection of HMF/MK-801 and the MWM test are shown; 

(B) Columns indicate the mean ± SEM (n = 5). Significant differences in values between 

the MK-801-treated and vehicle-treated (* P < 0.05; followed by Bonferroni’s Multiple 

Comparison Test), and HMF-treated (# P = 0.05). 

 

Figure 7B shows the performance during the first trial of the sixth day of the training period. The 

MK-801-injected mice (shaded bar) spent more time to get the hidden platform (33.6 ± 11.0 s;  

* P < 0.05) than the sham group (open bar; 11.6 ± 2.94 s), whereas the time to escape of the HMF-treated 

mice (closed bar) was reduced to that of the sham group (11.3 ± 2.50 s; # P < 0.05). These results 

indicate that HMF prevented the MK-801-induced impairment of spatial memory. 

Twenty-four hours after the training period (Day 7), the hidden platform was removed; and the 

animals’ ability to remember the location of the platform was then assessed (probe test). During this 

time, animals spent more time searching for previous location of the hidden platform than for other 

locations. Neither MK-801 treatment nor HMF treatment significantly affected the time that the 

animals spent in looking for the previous location of the hidden platform (data not shown). In this 

study, the mice were not treated with MK-801 immediately before the probe test; and probably the 

cognition impaired by MK-801 was restored to normal before the start of the probe test, as the effect of 

MK-801 is transient. 

We are now addressing whether HMF can improve brain ischemia-induced learning and memory 

deficits and whether it can rescue ischemia-induced neuronal death in the hippocampal region. We will 

show in the near future that HMF, as well as NBT, is beneficial for the treatment of neurological 

disorders such as Alzheimer’s disease and brain ischemia. 
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4. Conclusions 

This study demonstrates that HMF present in Citrus grandis (Kawachi bankan) had the ability to 

induce activation of ERK1/2 and CREB in cultured neurons. The injection of HMF into mice that had 

been treated with the NMDA receptor antagonist MK-801 restored the MK-801-induced deterioration 

of spatial learning performance in the Morris water-maze task. These results suggest that HMF, a 

Citrus polymethoxyflavone, is a neurotrophic agent for treating patients with memory disorders, such 

as Alzheimer’s disease. 
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