Next Article in Journal
Aptamer-Based Molecular Recognition of Lysergamine, Metergoline and Small Ergot Alkaloids
Next Article in Special Issue
Synthesis and Self-Organization of Fluorene-Conjugated Bisimidazolylporphyrin and Its Optical Properties
Previous Article in Journal
High Density Lipoprotein Protects Mesenchymal Stem Cells from Oxidative Stress-Induced Apoptosis via Activation of the PI3K/Akt Pathway and Suppression of Reactive Oxygen Species
Previous Article in Special Issue
Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands
Article Menu

Export Article

Open AccessReview
Int. J. Mol. Sci. 2012, 13(12), 17121-17137; doi:10.3390/ijms131217121

Natural Biomolecules and Protein Aggregation: Emerging Strategies against Amyloidogenesis

Institute of Biophysics, CNR, Italian National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy
Received: 29 November 2012 / Revised: 12 December 2012 / Accepted: 12 December 2012 / Published: 14 December 2012
(This article belongs to the Special Issue Molecular Self-Assembly 2012)
View Full-Text   |   Download PDF [281 KB, uploaded 19 June 2014]   |  

Abstract

Biomolecular self-assembly is a fundamental process in all organisms. As primary components of the life molecular machinery, proteins have a vast array of resources available to them for self-assembly in a functional structure. Protein self-assembly, however, can also occur in an aberrant way, giving rise to non-native aggregated structures responsible for severe, progressive human diseases that have a serious social impact. Different neurodegenerative disorders, like Huntington’s, Alzheimer’s, and spongiform encephalopathy diseases, have in common the presence of insoluble protein aggregates, generally termed “amyloid,” that share several physicochemical features: a fibrillar morphology, a predominantly beta-sheet secondary structure, birefringence upon staining with the dye Congo red, insolubility in common solvents and detergents, and protease resistance. Conformational constrains, hydrophobic and stacking interactions can play a key role in the fibrillogenesis process and protein–protein and peptide–peptide interactions—resulting in self-assembly phenomena of peptides yielding fibrils—that can be modulated and influenced by natural biomolecules. Small organic molecules, which possess both hydrophilic and hydrophobic moieties able to bind to peptide/protein molecules through hydrogen bonds and hydrophobic and aromatic interactions, are potential candidates against amyloidogenesis. In this review some significant case examples will be critically discussed. View Full-Text
Keywords: proteins; peptides; self-assembly; misfolding; aggregation; amyloid; fibrillogenesis; natural molecules; polyphenols; aromatic molecules proteins; peptides; self-assembly; misfolding; aggregation; amyloid; fibrillogenesis; natural molecules; polyphenols; aromatic molecules
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Sgarbossa, A. Natural Biomolecules and Protein Aggregation: Emerging Strategies against Amyloidogenesis. Int. J. Mol. Sci. 2012, 13, 17121-17137.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top