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Abstract: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) in humans, 

following hematoablative treatment, results in biological chimeras. In this case, the 

transplanted hematopoietic, immune cells and their derivatives can be considered the donor 

genotype, while the other tissues are the recipient genotype. The first sequel, which has 

been recognized in the development of chimerical organisms after allo-HSCT, is the graft 

versus host (GvH) reaction, in which the new developed immune cells from the graft 

recognize the host’s epithelial cells as foreign and mount an inflammatory response to kill 

them. There is now accumulating evidence that this chronic inflammatory tissue stress may 

contribute to clinical consequences in the transplant recipient. It has been recently reported 

that host epithelial tissue acquire genomic alterations and display a mutator phenotype that 

may be linked to the occurrence of a GvH reaction. The current review discusses existing 

data on this recently discovered phenomenon and focuses on the possible pathogenesis, 

clinical significance and therapeutic implications. 
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1. Introduction 

Over the last 30 years, allo-HSCT has become a standard treatment for many hematological 

malignancies and is now increasingly used also as immunotherapy for the treatment of solid  

tumors [1,2]. During allo-HSCT, the recipient receives a preparative conditioning regimen  

(e.g., chemotherapy, radiotherapy) to destroy his hematopoiesis and immune system. This practice is 

followed by the administration of Hematopoietic Stem Cells (HSC) harvested from the donor. The 

donor’s HSC engraft, proliferate and finally reconstitute hematopoiesis in the recipient [3,4]. The 

result is the creation of a biological chimera, a term used to describe the presence of tissues of different 

genetic origin in the same organism; the hematopoietic cells derive from the donor, while the other 

tissues (e.g., epithelium) are genetically derived from the patient-recipient. This unphysiological 

formation of biological chimeras is not free of consequences. After allo-HSCT, epithelial tissues 

become injured through the preparative regimen and are then potentially attacked by allo-reactive T 

cells. The net effect of these allo-antigeneic reactions is tissue stress and apoptosis, which we 

recognize clinically as Graft-versus-host Disease (GvHD) [5]. 

DNA is a reactive molecule and is constantly attacked and modified by external and internal agents. 

A mammalian DNA molecule can undergo about 100,000 modifications per day and replicates with an 

error rate of one error per 1010 nucleotides [6]. Genome integrity is a basic element of cellular 

homeostasis. To maintain genome integrity and ensure its stable inheritance during replication, cells 

are equipped with several mechanisms, including DNA repair, cell-cycle checkpoints and programmed 

cell death [7]. The term genomic instability (GI) describes the failure to transmit an accurate copy of 

the entire genome from one cell to its two daughter cells. The existence of genomic instability is a sign 

of the failure of the protection mechanisms and has been correlated with cancer and cancerous 

transformation [8].  

Microsatellites are short tandem repeat sequences (repeat units range from 1–6 bp in length) 

dispersed throughout the genome. There are more than 1 million microsatellite loci in the human 

genome, which comprises approximately 3% of the genome. Microsatellite sequences are among the 

most variable types of DNA sequence in the genome. Their polymorphism derives mainly from 

variability in length, rather than in primary sequence. Though highly polymorphic, as their length 

varies in a population, they are inherited stably and are unique to each individual, which means that the 

length of a microsatellite is the same in all the cells of the same person [9]. For this reason, the 

detection of different MS polymorphisms with PCR-based assays can be used for linkage mapping, 

paternity testing and forensic purposes, as well as for chimerism quantification after allo-HSCT [9,10]. 

The term microsatellite instability (MSI) describes alterations in the length of a microsatellite locus 

detected by PCR amplification of an individual’s DNA [7]. Such length alterations could refer to 

insertion or deletions of repetitive units, which may be the result of polymerase slippage during DNA 

replication [11]. The repetitive nature of microsatellites makes them especially prone to such  

damage [11,12]. According to several studies, there are indications that the DNA structure of these 

repetitive sequences is not in the normal B-conformation in vivo and, therefore, binds poorly to DNA 

repair enzymes [13], which makes it susceptible to DNA damage. Therefore, the detection of MSI 

indicates a general GI, where mutations in DNA can be accumulated and which may be related to 

carcinogenesis [9,14]. MSI was first detected and described in individuals with a type of hereditary 
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colon cancer (HNPCC, hereditary non-polyposis colorectal carcinoma), which is caused by mutation 

of the DNA-mismatch-repair gene MSH2 [14]. In addition to HNPCC, MSI has also been reported in 

several sporadic cancers (colorectal, bladder, skin, lung and ovarian) [14–17]. Recently, MSI has  

also been observed in chronic inflammatory diseases, such as ulcerative colitis and rheumatoid  

arthritis [18,19]. The exact mechanisms through which chronic inflammation may lead to these 

genomic alterations are the subject of continuing debate. The biologic significance of genomic 

instability in chronic inflammation settings is yet unknown. In ulcerative colitis, MSI has been 

associated with increased cancer risk [20], while there is no such indication in rheumatoid  

arthritis [19].  

Faber et al. [21] hypothesized that the chronic tissue stress resulting after allo-HCT may cause 

genomic alterations in host epithelium. The donor-derived lymphocytes may interact with and damage 

recipient epithelial cells at the molecular level in these chimeric individuals. Examination of tissues 

isolated from patients treated with allo-HCT revealed frequent genomic alterations, which were 

detected as microsattelite instability (MSI). These genomic alterations were found only in allogeneic 

transplanted patients, but not after autologous HSCT or intensive chemotherapy, and therefore,  

they suggested that factors implicated in the alloreactive microenvironment after allo-HSCT are 

substantially involved in the mutation process. Further analyses performed by our group [22] in 

patients who underwent allo-HSCT also confirmed the presence of frequent MSI in the non-neoplastic 

tissues of allogeneic transplanted patients. This was most frequently found in older patients, in males 

transplanted with cells from female donors and in patients that experienced an extreme GvH reaction. 

In an in vitro mutation analysis system, we found that allostimulated mixed lymphocyte cultures may 

induce MSI in co-cultured epithelial cells [22]. These results were independently confirmed by 

subsequent studies from other groups, which reported that the detection of MSI [23] and chromosomal 

instability [24] in the epithelial tissues of patients after allo-HSCT was correlated to the presence of 

GvHD inflammation. 

2. What Does the MSI Found in Non-Neoplastic Tissues after Transplantation Point Out?  

Replication errors during DNA synthesis occur with a defined probability in all cells and may result 

in a change in the length of microsatellite loci. The mismatch repair (MMR) system recognizes and 

corrects these genomic alterations [6]. Whenever a DNA error cannot be repaired, apoptosis pathways 

are activated [7]. Thus, cells with microsatellite alterations, which escaped repair, will not replicate 

and, therefore, in molecular studies, should not become apparent among the large excess of the 

surrounding normal cells [25]. However, if deficient DNA repair is coupled with a failure to elicit an 

apoptotic response, this association may result in a growth advantage sufficient to generate a detectable 

clonal population of cells that share genetic alterations. Therefore, the detection of MSI in clinical 

samples indicates the presence of a cell population, which (i) was exposed to a factor that caused MSI, 

(ii) failed to repair the genetic damage through normal DNA repair mechanisms, (iii) were not 

eliminated by apoptosis via activation of DNA-damage checkpoints and finally (iv) multiplied, and 

perhaps acquired, a growth advantage so as to create a detectable clonal population (Figure 1). 
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Figure 1. Emergence of genomic instable clones after allogeneic HSCT. (1) A cell 

population is constantly exposed to an allogeneic factor that causes DNA damage;  

(2) Some cells fail to repair DNA damage through DNA repair mechanisms; (3) Failure of 

apoptosis of damaged cells through DNA-damage checkpoints activation; (4) Proliferation 

of damaged cells, and perhaps acquisition, of growth advantage so as to create a detectable 

clonal population. 

 

3. Possible Mechanisms Explaining Genomic Instability after Allo-HCT 

3.1. Factors Inducing GI in the Allotransplanted Recipients 

As mentioned before, MSI in non-neoplastic epithelial tissues has been found only in patients 

treated with myeloablative or reduced-intensity chemotherapy and allogeneic HSCT, but not in 

patients after myelosuppressive chemotherapy or myeloablative chemotherapy combined with 

autologous HSCT. In addition, MSI was found many years after HSCT [21]. It is very likely that the 

alloantigeneic GvH reactions and the following tissue stress could be the driving force in producing 

detectable MSI in the allografted patients. Several hypotheses could be made on which of the elements 

of this inflamed environment could be responsible for causing MSI and by which mechanism. During 

GvHD, donor activated lymphocytes and macrophages are recruited in the patient’s tissues [5,26]. 

These activated cells produce mediator molecules, such as cytokines (IFN-γ, TNF-α, IL-1 etc.), and 

reactive oxygen species (ROS), such as H2O2, OH·, O2·. These factors have been shown to cause DNA 

damage in hematopoietic cells of mice with GvHD [27] and in various other experimental systems [28]. 

ROS can cause base pair mutations, deletions and insertions among other DNA structural 

alterations through different mechanisms [28]. Oxidants have been shown to induce mutations directly 

by chemical modification of DNA bases or conformational change of DNA that diminishes the 

accuracy of DNA polymerases [28]. In vitro experiments demonstrated that H2O2 can cause induction 

of MSI, not only in MMR-deficient, but also at higher concentrations in MMR-proficient human 

colorectal cancer cell lines [29]. Thus, even with an intact MMR system, free radicals produced in 

inflamed tissues could cause such direct DNA damage, which overwhelms the capacity of repair 

pathways. Oxidants may also facilitate the accumulation of mutations and the creation of MSI 

indirectly by oxidative damage of DNA repair proteins [30] or through DNA methylation and silencing 

of DNA repair genes [31]. Besides the effect of oxidants in the DNA repair machinery, ROS may also 
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alter the DNA-damage checkpoints, such as p53, facilitating in this way the survival of cells with 

genomic alterations [32].  

Inflammatory cytokines may also induce DNA damage in epithelial cells [33,34]. A nitric oxide 

(NO) pathway is mainly involved in the cytokine-induced DNA damage. Cytokines, such as TNF-α 

and IFN-γ, which are released in increased amounts in GvHD areas, may cause activation of nuclear 

factor κB (NFκB), which induces the expression of iNOS (inducible NO synthase) in the epithelial 

cells. NO produced by cytokine activated cells can be auto-oxidized, leading to the formation of 

reactive radicals, called reactive nitrogen species (RNS), which, like ROS, are mutagenic agents with 

the potential to chemically modify DNA bases by deamination, nitration or oxidation. In addition, NO 

may affect DNA repair processes by inhibiting DNA repair enzymes through sulfhydryl-nitrosylation 

of cystein residues of their DNA binding sites [28,33]. Therefore, NO might be another key player in 

the induction of MSI after allo-HCT. NO may indeed be the link between chronic alloantigeneic 

stimulation, relaxation of DNA repair mechanisms and GvHD induced genomic instability. NO has 

been shown to be an important mediator in GvHD pathology [26]. Increased levels of circulating NO 

characterize GvHD and iNOS inhibition leads to decreased GvHD severity in animal models [35,36]. 

In addition, plasma levels of NO have been associated with GvHD severity in humans [37]. 

Taken together, oxidative stress, like the one produced in the biological chimera due to the 

interaction between donor T cells and host epithelium, may lead to accumulation of genomic 

alterations in the recipient cells, either by overwhelming the capacity for DNA repair or by directly 

inactivating DNA repair pathways.  

3.2. Failure of DNA Repair 

The presence of MSI in non-neoplastic tissues after allo-HSCT means that a replication error 

occurred and escaped from the DNA repair mechanisms. As mentioned before, oxidative stress may 

influence the function of the DNA repair machinery. The normal function of the MMR system has 

been identified as crucial to microsatellite stability [6,11]. It consists of several proteins (MSH2, 

MSH3, MSH6, MLH1 and PMS2) with different functions that recognize base-base mismatches or 

insertion-deletion loops and correct them [38] (Figure 2). It has been shown that mutation rates of MS 

are increased in MMR deficient cell lines compared to MMR proficient ones [39]. MMR deficiency 

could be attributed to mutations, epigenetic changes or post-translational modifications, as mentioned 

previously. MSI in HNPCC has been correlated to mutations within MMR genes [14], and suppressed 

expression of MMR proteins has been found in several types characterized as MSI-high cancers and 

cancer cell lines [40–42]. Suppressed expression of MMR could also be due to epigenetic changes, as 

many MSI-high sporadic cancers have been found to lack hMLH1 expression because of methylation 

of hMLH1 gene promoter [43,44]. Although mutations and silencing of MMR genes are usually 

responsible for high levels of MSI, low levels of MSI have been observed in some cancers with no 

known MMR mutations or promoter hypermethylation [14] thus, proving the existence of alternative 

mechanisms of DNA repair deactivation. MMR deficiency can be attained also without mutation or 

epigenetic change through a deregulation of expression of one of its subunits. MSH2 forms two 

different complexes with MSH3 and MSH6 with different activity. MSH3 and MSH6 compete with 

each other for binding with MSH2. Thus, overexpression of either of MSH3 or MSH6 can lead to 
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decreased activity of the other’s complex with MSH2 [6]. Very recently, miR-155, a micro-RNA, 

which is over-expressed in MSI-high colorectal cancers, was found to down-regulate MMR protein 

levels and leads to MSI induction, suggesting that MMR levels could also be regulated in a post-

transcriptional level [45]. In the subset of chronic tissue stress, ROS (reactive oxygen species) or RNS 

(reactive nitrogen species) may impair MMR function by post-translational modifications of MMR 

proteins [28]. 

Figure 2. Representation of MMR system’s mechanism of action. DNA damage 

recognition is mediated through the binding of MutSa (MSH2-MSH6) or MutSβ  

(MSH2-MSH3) complex. Consecutively, the MutLa (MLH1-PMS2) complex binds to the 

machinery. After the binding of both complexes, the machinery moves across the DNA by 

using ATP molecule hydrolysis and recruits EXO1, which excises the damaged DNA part. 

Finally, the correct new DNA is reconstructed by Polδ. 

 

Although the MMR system is responsible for correcting DNA strand loops typical for MSI, recent 

studies suggest that the different DNA repair systems do not act independently and that MSI may be 

attributable to alterations in DNA repair pathways distinct from MMR [46,47]. In addition, since all 

the types of DNA repair mechanisms use the same types of polymerases for final DNA synthesis [38], 

excess activity of one repair mechanism may result in reduction of the activity of the other.  

Hofseth et al. demonstrated in an elegant study that the chronic inflammation in ulcerative colitis leads 

to MSI through excessive activity of BER enzymes and, therefore, insufficient MMR activity [46]. It 

has been also shown that imbalanced expression of Polβ can be associated with MSI and chromosome 

instability [47,48]. The exact DNA repair defect behind the observed genomic instability found in 

allotransplanted patients needs to be elucidated. Interestingly, according to a recent study, patients  

with specific SNPs in BER genes exhibited higher risk for severe acute GvHD and chronic GvHD 

occurrence [49]. In addition, normal human CD34+ hematopoietic progenitors were found to lose 

MLH1 expression due to acquired promoter hypermethylation in the process of normal aging and 
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exhibit MSI [50]. These data indicate that GvHD may develop in an already defective DNA repair 

cellular background.  

3.3. Failure of DNA Damage Checkpoints 

Besides the DNA repair proteins, cells are equipped with additional DNA protective mechanisms 

(ATM, p53 etc.), which detect unrepaired DNA and lead the cell to cycle arrest or apoptosis [7]. So, 

even in the case of repair mechanisms failure to correct DNA damage, cells which exhibit genomic 

instability (GI) will not further proliferate, and thus, they shouldn’t be detected among the rest of the 

normal cells, which proliferate normally. Inactivation of p53 and the failure of cellular demise have 

been suggested to play a mechanistic role in the occurrence of MSI in sporadic tumors and in 

chronically inflamed tissue [14,19,51–53]. It has been reported that cells with defective MMR genes 

fail to initiate cell cycle arrest in response to DNA damage. The molecular basis of this phenomenon is 

not completely known, however it has been shown that MMR deficient cells fail to phosphorylize p53 

and p73 after DNA damage [38]. Furthermore, it is interesting that solid tumors post-transplant exhibit 

p53 mutations [22,54]. The pattern of p53 expression in GvHD-affected and genome instable epithelium 

in allotransplanted patients needs further evaluation.  

3.4. Growth Advantage of GI Clones in the Allotransplanted Recipients 

Another interesting hypothesis is whether cells with instable MS gain an immunologic survival 

advantage in contrast to normal cells, and thus, they can be detected after allo-HSCT. In vitro 

experiments have shown that cells that display MSI can escape T-cell mediated destruction through 

inhibition of HLA antigen expression and abnormal presentation of peptide fragments [55,56]. The 

inhibition of HLA expression can be caused by mutations in HLA transcriptional areas or by instability 

of microsatellites located near the HLA gene complex. After allogeneic HCT, the recipient’s epithelial 

cells stimulate through the HLA system the new immune system, which derives from the donor. This 

could lead to immune mediated epithelial cell destruction, which we recognize clinically as GvHD. 

Therefore, if genomic instable cells reduce expression of HLA genes, then they will acquire an 

immunologic survival advantage. Whilst the normal cells will undergo destruction by the donor-derived 

immune system, the MSI displaying cells will not be recognized by the donor’s T-cells. This 

hypothesis is surely challenging and should be further investigated.  

4. Clinical Significance of GI in Allotransplanted Patients 

MSI has been shown to be an indicator of genomic instability [9]. It is very likely that mutations 

occur not only in non-transcribed MS, but also in coding regions of the genome [57]. Mutations in 

coding genes might be responsible for the protean post-transplant GvHD-related clinical syndromes 

and phenotypes, such as scleroderma, Sjögren syndrome, musculoskeletal or pulmonary disease and 

many others. In addition to serving as an indicator for genomic instability, mutations of microsatellites 

may directly contribute to evolution of post-transplant diseases. Although microsatellites are thought to 

be part of the “junk” DNA dispersed in non-coding regions throughout the genome, there is now 

growing evidence that non-coding DNA distribution is not random. As shown by the accumulating 
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data of the ENCODE project, the previously thought to be “useless” DNA in fact contains functional 

elements rich in protein and RNA binding sites and brings them to the ideal conformation to regulate 

the function and expression of protein-coding genes [58]. Therefore, it seems that a potential change of 

a microsatellite length could end up in possible relevant changes of the cellular phenotype. In addition, 

it is already known that there are microsatellite sequences within genes, which play a regulatory role in 

gene expression [11]. TGFRII, IGFIIR and BAX genes are paradigms of transcribed genes, which 

contain microsatellites within their coding regions [14,57]. Changes in the lengths of these repetitive 

sequences, when found within coding regions of specific genes, have been shown to result in gene 

inactivation or modification of function of the gene and cause disease in humans such as Huntington’s 

disease and myotonic dystrophy [57].  

The detection of MSI in clinical samples has been mainly associated with cancer [14] or cancer risk 

in chronic inflammatory diseases [20]. In hereditary nonpolyposis colorectal carcinoma, the MMR 

deficiency plays an aetiological role in the development of MSI and carcinogenesis [14]. Microsatellite 

alterations are also common in various sporadic cancers, such squamous cancers [14]. It is interesting 

that squamous cell carcinomas are the most common secondary tumors after allogeneic HSCT [59]  

and are associated with chronic alloantigeneic stimulation through GvHD. Statistical analysis of  

clinical data in a recent study by our group showed a significant correlation of MSI detection in the 

epithelium of allotransplanted patients and the development of secondary squamous cell neoplasia. 

This observation enhances the possibility of a pathogenetic role of MSI in secondary malignancy 

development. Deeg et al. found in eight post-transplant tumors a p53 expression indicative for 

mutations of the p53 gene [54]. Themeli et al. [22] found p53 mutations in two out of four  

post-transplant tumors, but no p53 mutations in six samples where MSI was detected. These findings 

indicate that MSI occurrence is an early phenomenon after allo-HSCT. Therefore, the hypothesis that 

MSI may characterize a precancerous state of the epithelial cell seems logical. The mutator phenotype 

may further contribute to the development of new mutations in coding regions with important function, 

such as p53 gene, and promote carcinogenesis. Genome-wide analyses in allografted recipients may 

indeed identify specific genomic alterations, which might be responsible for or used as molecular 

biomarkers of post-transplant diseases, including secondary cancer. 

5. Conclusions 

Taken together, it seems that in the GvHD tissue environment cytokines, ROS and NO induce 

genomic alterations in epithelium by acting through several different, but communicating, pathways. 

The oxidative stress damages the DNA, causing mutations, such as microsatellites length alterations. 

The induction of mutations is facilitated by a relaxation of DNA repair system mediated by NO or 

ROS. The cells may survive due to a possible inactivation of the DNA-checkpoint apoptotic 

mechanisms. Furthermore, the donor-derived immune system in an allogeneic setting may attack the 

recipient-derived normal epithelial cells, yet spare cells with an MSI phenotype, providing in this way 

a selective growth advantage for the cells with novel repeat lengths (Figure 3). Elucidating the ultimate 

mechanisms underlying the genomic instability following alloantigeneic reactions in the chimeric 

organism is a major challenge. Findings may provide more information about GvHD pathology and 

pathogenesis of post transplantation clinical outcomes, such as secondary malignancies and GvHD 
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related syndromes. Focusing on the pathways through which the alloantigeneic reaction causes 

genomic instability may bring up novel therapeutic targets for the protection of the epithelium during 

GvHD and the prevention of malignant transformation. 

Figure 3. Schematic representation of a possible GI induction mechanism in epithelial 

tissues by an alloreactive microenvironment. 
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