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Abstract: Quantitative structure-retention relationships (QSRRs) have successfully been 

developed for naturally occurring phenolic compounds in a reversed-phase liquid 

chromatographic (RPLC) system. A total of 1519 descriptors were calculated from the 

optimized structures of the molecules using MOPAC2009 and DRAGON softwares. The 

data set of 39 molecules was divided into training and external validation sets. For feature 

selection and mapping we used step-wise multiple linear regression (SMLR), unsupervised 

forward selection followed by step-wise multiple linear regression (UFS-SMLR) and 

artificial neural networks (ANN). Stable and robust models with significant predictive 

abilities in terms of validation statistics were obtained with negation of any chance 

correlation. ANN models were found better than remaining two approaches. HNar, IDM, 

Mp, GATS2v, DISP and 3D-MoRSE (signals 22, 28 and 32) descriptors based on van der 

Waals volume, electronegativity, mass and polarizability, at atomic level, were found to 

have significant effects on the retention times. The possible implications of these 

descriptors in RPLC have been discussed. All the models are proven to be quite able to 

predict the retention times of phenolic compounds and have shown remarkable validation, 

robustness, stability and predictive performance.  
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1. Introduction 

Naturally occurring phenolic compounds are widespread among plants; they are synthesized during 

various metabolic pathways and their concentration varies over a wide range depending upon the  

plant [1–4]. They have significant importance during the current decade, due to their well-proven 

antioxidant, anti-aging, antimicrobial and immunomodulatory activities [5,6]. Phenolic compounds 

provide oxidative stability to foods and beverages, besides contributing health benefits [7–9]. A recent 

rising interest in the determination of phenolic compounds is mainly due to their potential protective 

roles against number of diseases associated with oxidative stress or initiated by free radicals, including 

coronary heart disease, stroke and cancer [10,11]. So the overwhelming beneficial attributes of 

phenolics requires detailed study of their structure and availability in different food items. For this 

purpose, separation as well as identification of these compounds is necessary. Numerous analytical 

approaches have been described in the literature for the analysis of variety of phenolics [12–15]. In this 

context, reversed-phase liquid chromatography-mass spectrometry is considered a practically  

state-of-the-art technique; as reversed-phase liquid chromatography (RPLC) provides better separation 

and mass spectrometry (MS) gives sensitive detection and confirms structures of compounds [16].  

Quantitative structure-retention relationships (QSRRs) have gained wide attention in the area of 

separation science recently. These models are based on the relationship between structures and 

properties of compounds. Retention times of different compounds can be predicted from their formulae 

and even unknown compounds can be identified by using this method. In general, QSRR models 

attempt to predict the retention time of a molecule by characterizing it with a series of molecular 

descriptors. These models can effectively be used for the prediction of molecular structures, 

determination of retention times of new analytes and to understand the separation mechanism for a 

chromatographic system [17]. Several QSRRs have been developed to predict the retention times of 

different analytes on different systems [18–24]. Applications and implications of QSRR methodology 

in chromatography has recently been thoroughly reviewed and emphasized [25,26]. No comprehensive 

report describing the QSRR study of phenolic compounds from natural sources has been presented so 

far. Naturally occurring phenolic compounds belong to varied classes, have a range of simple to 

complex structures and therefore, need a compact statistical approach of QSRRs. The aim of this study 

is to develop statistically significant QSRR models, based on structural descriptors, for the prediction 

of retention times of naturally occurring phenolic compounds in RPLC. The approach consists of 

reduction of large descriptor pool to the most relevant descriptors with minimum multicollinearity and 

redundancy. The SMLR and UFS-SMLR have been used as supervised and unsupervised-supervised 

algorithms to reduce the descriptor pool. The selected descriptors are then used to generate ANN 

models with enhanced statistical significance. The study has generated reasonably stable, robust, and 
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predictive models, which could provide an effective tool for predicting and analyzing the retention 

behavior of naturally occurring phenolic compounds in RPLC. 

2. Results and Discussion 

A total of 1519 descriptors were calculated from optimized structures of phenolics by use of 

MOPAC2009 and DRAGON version 3 softwares (Table 1). The descriptors were initially filtered by 

removing those with zero values, constant values for 50% of the compounds and variance less than 

0.0005. This pretreatment left a total of 915 descriptors in the data, which were subsequently used for 

model generation. 

Table 1. Descriptors used in the study. 

Method/Type Descriptors 

MOPAC2009/Quantum 
mechanical 

Total energy, electronic energy, core-core repulsion, dielectric energy, 
dipole moment, ionization energy, energies of highest occupied molecular 
orbital (EHOMO) and lowest unoccupied molecular orbitals (ELUMO), 
difference of ELUMO and EHOMO, hardness, softness, molecular mass, cosmo 
area, cosmo volume. Logarithmic transformations of dipole moment, 
ionization energy, ELUMO, difference of ELUMO and EHOMO, hardness, 
softness, molecular mass, cosmo area and cosmo volume. 

DRAGON/18 blocks of 
descriptors 

Constitutional, topological, molecular walk counts, BCUT, Galvez 
topological charge indices, 2D autocorrelations, charge descriptors, 
aromaticity indices, Randic molecular profiles, geometrical, RDF,  
3D-MoRSE, WHIM, GETAWAY, functional groups, atom-centered 
fragments, empirical and properties. 

For QSRR development, data set of 39 phenolic compounds [27] was randomly split into a training 

set of 30 molecules and an external validation set of nine molecules. For the purpose of model 

generation, retention times (RT) were used as response variables. 

2.1. Stepwise Multiple Linear Regression Model (SMLR Model) 

The 915 descriptors, survived after initial filtration, were used to construct models by SMLR 

method using a sufficiently stringent criterion (F = 6 to enter, F = 3 to remove) in order to keep less 

number of descriptors in the model so as to avoid multi-collinearity. The five descriptor model based 

on training set for predicting retention times of phenolics is 

RT = 5.527(±0.584) HNar − 3.462(±0.348) GATS2v + 4.161(±0.320) DISPe −  

1.386(±0.305) Mor32e + 1.634(±0.514) Ke − 4.451(±1.012) 

(N = 30, R2 = 0.962, PRESSint = 0.062, Q2
int = 0.941, PRESSext = 1.929, Q2

ext = 0.760) 

(1)

Equation 1 showed good stability as indicated by internal and external validation coefficients of 

determination. All the five descriptors exhibited very weak or negligible correlations with one another 

(Table 2). Of all the descriptors, Ke, which appeared in step five of SMLR, showed somewhat more 

correlations with others, though not much significant, therefore, dropping this from the equation resulted 

in another equation with less number of descriptors and still of good statistical quality (Equation 2).  
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Table 2. Correlations of the descriptors in SMLR model. 

HNar GATS2v DISPe Mor32e Ke 

HNar 1.0000 
GATS2v −0.0482 1.0000 

DISPe 0.1253 0.1566 1.0000 
Mor32e −0.4053 −0.4069 0.0784 1.0000 

Ke 0.4727 0.4644 0.1360 −0.3608 1.0000 

Dropping step four descriptor Mor32e also resulted in a good model but it was comparatively poor 

in terms of external validation (Equation 3). The four descriptor model (Equation 2) was selected as an 

optimal model. The relative significance of descriptors in this model was ascertained by test statistics 

in Minitab 15. The corresponding T- and p-values for the individual terms in Equation 2 are: HNar,  

T = 11.19, p < 0.001; GATS2v, T = −8.31, p < 0.001; DISPe, T = 11.07, p < 0.001; Mor32e, T = −3.71, 

p = 0.001. Low p-values indicate that these terms are significant in predicting retention times. 

RT = 0.771(±0.581) HNar − 0.326(±0.348) GATS2v + 0.467(±0.374) DISPe − 0.115(±0.356) Mor32e − 0.686(±1.092)  

(N = 30, R2 = 0.946, PRESSint = 0.080, Q2
int = 0.924, PRESSext = 1.847, Q2

ext = 0.770) 
(2)

RT = 7.574(±0.615) HNar − 2.242(±0.367) GATS2v + 3.792(±0.442) DISPe − 0.740(±1.149)  

(N = 30, R2 = 0.917, PRESSint = 0.116, Q2
int = 0.890, PRESSext = 2.683, Q2

ext = 0.666) 
(3)

y-Scrambling result was also encouraging for Equation 2 (Figure 1), where most of the scrambled 

models have statistical parameters clustered around zero in a symmetrical way, indicating that the 

scrambled models are of very low quality. Intercept value of the plot between R2 values of the 

scrambled models and correlation of observed and permuted responses was very low (0.141). This 

establishes the stability of model and eliminates possibility of any chance correlation.  

Figure 1. Representative y-scrambling plot (SMLR model). 

 

Unsupervised Forward Selection-Stepwise Multiple Linear Regression Model (UFS-SMLR Model) 

The 915 descriptors left after pretreatment were subjected to UFS algorithm with R2
max = 0.90, that 

decreased the data set to only 22 linearly independent descriptors with minimum multi-collinearity and 

redundancy (Table 3).  
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Table 3. UFS selected descriptors with R2
max = 0.90. 

Descriptors Name Type 
IDM Mean information content on the distance magnitude Topological 
MATS6p Moran autocorrelation-lag6/weighted by atomic 

poloarizabilities 
2D-autocorrelations 

Mp Mean atomic polarizability (scaled on carbon atom) Constitutional 
E1e 1st component accessibility directional WHIM 

index/weighted by atomic Sanderson electronegativities 
WHIM 

MATS6e Moran autocorrelation-lag6/weighted by atomic Sanderson 
electronegativities 

2D-autocorrelations 

Mor30m 3D-MoRSE-signal 30/weighted by atomic masses 3D-MoRSE 
AROM Aromaticity Aromatic indices 
E3u  3rd component accessibility directional WHIM 

index/unweighted 
WHIM 

Mor22v 3D-MoRSE-signal 22/weighted by atomic volume 3D-MoRSE 
Mor28e 3D-MoRSE-signal 28/weighted by atomic Sanderson 

electronegativities 
3D-MoRSE 

Mor29m 3D-MoRSE-signal 29/weighted by atomic masses 3D-MoRSE 
DISPm d COMMA2 value/weighted by atomic masses Geometrical 
PJI3 3D petijean shape index Geometrical 
G3s  3rd component accessibility directional WHIM 

index/weighted by atomic electrotopological states 
WHIM 

MATS5e Moran autocorrelation-lag5/weighted by atomic Sanderson 
electronegativities 

2D-autocorrelations 

PJI2 2D petijean shape index Topological 
SIC4 Structural information content (neighbourhood symmetry 

of 4-order) 
Topological 

E2p 3rd component accessibility directional WHIM 
index/weighted by atomic poloarizabilities 

WHIM 

Mor12e 3D-MoRSE-signal 12/weighted by atomic Sanderson 
electronegativities 

3D-MoRSE 

IVDE Mean information content vertex degree equality Topological 
SPI Superpendentic index Topological 
HATS7p Leaverage-weighted autocorrelation of lag 7/weighted by 

atomic poloarizabilities 
GETAWAY 

The SMLR method applied to UFS-selected descriptors produced a six descriptors model  

(Equation 4). This model is quite good in terms of the entire applied statistical criterion, though, less 

significant than SMLR model as indicated by the PRESS and co-efficient of determination statistics.  

RT = 29.480(±2.997) Mp + 0.208(±0.056) IDM + 0.208(±0.033) DISPm − 2.704(±1.121) Mor22v − 

1.650(±0.445) Mor28e + 4.819(±1.610) HATS7p − 18.788(±1.974)  

(N =30, R2 = 0.912, PRESSint = 0.155, Q2
int = 0.852, PRESSext = 2.293, Q2

ext = 0.715) 

(4)

Selecting a five descriptor model (Equation 5), after removal of step six descriptor, Mor28e, also 

showed a good predictive ability. The T- and p-values for individual terms in Equation 5 are: Mp,  

T = 9.30, p < 0.001; IDM, T = 9.30, p < 0.001; DISPm, T = 5.08, p = 0.003; Mor22v, T = −2.64,  

p = 0.014; Mor28e, T = −3.33, p = 0.003. The Mor22v descriptor has slightly higher p-value, however, 

all terms appeared to be significant in predicting retention times. The predictions made by Equations 2 

and 5 are given in Figure 2.  
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RT = 31.412(±3.376) Mp + 0.216(±0.065) IDM + 0.186(±0.037) DISPm − 3.350(±1.270) Mor22v − 

1.707(±0.513) Mor28e − 19.576(±2.258)  

(N = 30, R2 = 0.877, PRESSint = 0.189, Q2
int = 0.820, PRESSext = 1.906, Q2

ext = 0.763) 

(5)

Figure 2. Experimental and predicted retention times (RT) for training and validation sets. 

(a) SMLR model (b) UFS-SMLR model. 

 

y-Scrambling result for UFS-SMLR was found similar to SMLR model, though slightly of less 

quality with R2 value 0.172.  

2.2. Artificial Neural Network 

The network architecture and validation statistics are given in Table 4.  

Table 4. Architecture and validation statistics of the optimal ANNs. 

 SMLR-ANN UFS-SMLR-ANN 
No. of neurons in the input layer 4 5 
No. of neurons in the hidden layer 6 5 
No. of neurons in the output layer 1 1 
Hidden weight decay 0.01 0.01 
Output weight decay 0.01 0.01 
Hidden activation function Tanh Exponential 
Output activation function Tanh Logistic 
PRESSext 1.4841 1.1021 
Q2

ext 0.8145 0.8622 
Training error 0.0013 0.0047 
Test error 0.0021 0.0009 
Validation error 0.0042 0.0031 

In this study, the whole data has been divided into three sets: training, test and validation sets. A test 

set is used for early stopping of training in order to avoid overfitting. Sometimes the test data alone 

may not provide an evidence of a good generalization an ANN e.g., it can be just a coincidence. To 

make sure that this is not the case, another validation set was used. This puts an extra check on the 

performance and generality of ANN. To make things clearer, the training, test and validation sets have 

been marked in Table 5. ANN models are better than both SMLR and UFS-SMLR models. Though, 

SMLR model is comparable to SMLR-ANN model, nevertheless, the real strength of artificial neural 

network mapping technique was observed for UFS-SMLR-ANN model, which showed considerably 
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better prediction ability than the simple UFS-SMLR model as depicted by Q2
ext. In ANN models, the 

global sensitivity analysis was performed which ranked the descriptors of SMLR-ANN model as  

HNar > DISPe > GATS2v > Mor32e and UFS-SMLR-ANN model as Mp > DISPm > Mor22v > IDM 

> Mor28e. The predictions of SMLR-ANN and UFS-SMLR-ANN are presented in Figure 3. 

Table 5. Experimental and predicted retention times (RT) of naturally occurring phenolic compounds. 

Sr No. Compound 
Experimental 

RT (min) 

Predicted RT (min) 

SMLR UFS-SMLR SMLR-ANN UFS-SMLR-ANN 

1 Gallic acid 1.63 1.82 2.12 1.94 2.54 

2 Gentisic acid 3.02 3.36 3.65 3.28 3.49 

3 Protocatechuicacid b 2.43 2.61 3.04 2.67 2.94 

4 Salicylic acid a 3.96 3.93 4.23 3.89 4.04 

5 Syringic acid  3.27 3.36 2.58 3.10 2.61 

6 Vanillic acid  3.14 3.29 3.05 3.07 2.93 

7 2,4-Dihydroxybenzoic acid b 3.26 2.67 3.13 2.76 3.05 

8 3-Methoxybenzoic acid 4.32 4.25 3.53 4.37 3.31 

9 4-Hydroxybenzoic acid 2.94 2.88 3.60 2.90 3.45 

10 Caffeicacid a 3.24 2.69 3.31 2.74 3.08 

11 Chlorogenic acid 3.07 3.26 3.13 3.16 2.78 

12 Ferulicacid b 3.80 3.84 4.11 3.84 3.89 

13 m-Coumaric acid 3.88 3.69 3.94 3.67 3.71 

14 o-Coumaric acid 4.07 4.39 4.42 4.31 4.37 

15 p-Coumaric acid 3.63 3.47 3.70 3.45 3.54 

16 Sinapic acid  3.85 3.86 3.80 3.89 3.59 

17 trans-Cinnamicacid b 4.69 4.80 4.38 4.69 4.14 

18 Dihydrocaffeic acid  3.00 2.84 2.52 2.85 2.57 

19 Homovanillicacid a 3.22 3.29 3.08 3.14 3.00 

20 DOPAC 2.34 2.11 2.27 2.19 2.59 

21 4-hydroxyphenylacetic acid b 2.92 3.34 2.64 3.28 2.79 

22 Ellagic acid 3.80 3.90 3.65 4.07 3.27 

23 Vanillin 3.49 3.52 3.18 3.45 3.05 

24 Tyrosol 2.73 3.00 2.80 3.05 2.77 

25 Apigenin b 5.14 5.01 4.88 5.16 4.99 

26 Chrysin a 5.92 6.18 5.78 5.77 5.62 

27 Luteolin b 4.76 4.33 4.82 4.45 4.90 

28 Luteolin-7-O-glucoside 3.81 4.10 4.32 4.10 4.24 

29 Kaempferide 6.06 5.65 5.91 5.66 5.74 

30 Myricetin 4.28 3.98 4.03 3.98 4.00 

31 Quercetin b 4.76 4.28 4.87 4.39 4.89 

32 Rutin 3.73 3.91 3.62 3.82 3.62 

33 Hesperidin 3.94 3.71 4.23 3.73 4.26 

34 Isosakuranetin 5.94 5.74 5.45 5.68 5.43 

35 Naringenin 5.11 5.05 4.87 5.20 5.04 

36 (+)-Catechin b 2.99 3.91 4.07 3.89 3.63 

37 (−)-Epicatechin a 3.26 3.66 3.67 3.63 3.28 

38 Genistein 5.09 5.15 5.12 5.37 5.21 

39 (+)-Taxifolin 3.85 3.57 4.02 3.51 3.78 

For ANN models, compounds labelled with letter a represent molecules in the test set, while those with b represent 

molecules in the validation set and unlabelled compounds are in training set. 
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Figure 3. Experimental and predicted retention times (RT) for training, test and validation 

sets. (a) SMLR-ANN model (b) UFS-SMLR-ANN model. 

 

2.3. Interpretation of the Models 

In case of selected SMLR model (Equation 2), HNar and GATS2v are 2D descriptors derived from 

molecular graph. HNar is the Narumi harmonic topological index related to molecular branching  

and represents the number of non-hydrogen atoms divided by the reciprocal vertex degree [28]. Its 

positive coefficient suggests that increase in HNar leads to an increase in RT. GATS2v is the Geary 

autocorrelation-lag2 weighted by atomic van der Waals volumes. The autocorrelation descriptors show 

the distribution of a certain property in the topological structure [29]. The GATS2v descriptor shows 

the distribution of atomic volume at a distance of two bonds in the topological structure of molecule. 

The negative coefficient of GATS2v is an indicative of decrease in RT with an increase in lag2 

autocorrelations of atomic volumes on molecular graph. The descriptors DISPe and Mor33e are 

derived from three dimensional structures of the molecules. DISPe is the d COMMA2 value weighted 

by atomic senders on electronegativities and it represents the displacement between the geometric and 

the electronegativity centers of the molecule [30]. The positive coefficient of DISPe indicates that 

molecules with increased displacement between the geometric and the electronegativity centers will 

take more time to elute. Mor32e is the 3D-MoRSE signal-32, weighted by atomic Sanderson 

electronegativities. The 3D-MoRSE signals give three dimensional molecular representation of 

structure based on electron diffraction and contain information on mass distribution and branching 

within a molecule [31]. The negative coefficient for Mor32e suggests an inverse relation with RT. It 

follows, therefore, that molecule with more branching, less lag-2 autocorrelation of atomic volumes, 

enhanced displacement between the geometric and the electronegativity centers and low value of 

Mo32e descriptor will have more retention times in RPLC.  

For UFS-SMLR selected model (Equation 5), Mp is a constitutional descriptor while IDM is a 2D 

topological descriptor. Mp is the mean atomic polarizability scaled on carbon atom, IDM is the mean 

information content on the distance magnitude. DISPm, and 3D-MoRSE signals are 3D descriptors. 

DISPm is the d COMMA2 value weighted by atomic masses, Mor22v and Mor28e are the  

3D-MoRSE signals, 22 and 28, weighted by atomic van der Waals volumes and atomic Sanderson 

electronegativities, respectively. UFS-SMLR model also emphasized the importance of topological 

descriptor (IDM), atomic volume and atomic electronegativity based 3D descriptors of molecules for 
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the retention behavior of phenolic compounds, as was observed in SMLR selected descriptors. Despite 

the weighing schemes, the behavior of three dimensional descriptors was similar in both approaches. 

3D-MoRSE descriptors related negatively and 3D geometrical DISP descriptors related positively with 

the retention times in both types of models. This corresponds to similar effects of 3D descriptors in 

developed QSRRs. A positive coefficient for Mp is an indication of increase in retention time with 

increase in mean atomic polarizability. In phenolics, oxygen atom is largely present either as hydroxyl 

group (independent or as a part of carboxyl group) or as ether linkage. Based on the relative nature of 

carbon, hydrogen and oxygen, it is expected that a decrease in number of hydroxyl groups increases 

the Mp value. It therefore, suggests that molecules with more hydroxyl group will have low values of 

Mp and hence they are eluted earlier with the polar mobile phase due to greater number of polar 

hydroxyl groups in them and hence have less retention times. This behavior can be well observed in 

case of Gallic acid, Gentisic acid and Salicylic acid (Table 5, Table S1 supplementary data) containing 

four, three and two hydroxyl groups with Mp values 0.64, 0.65 and 0.67, respectively. The other 

descriptor IDM also relates directly to RT suggesting an increase in RT with increase in its value. This 

descriptor provides mean information content on distance magnitude and it is expected to increase with 

increase in number of atoms in a molecule. Another descriptor DISPm is an indicative of 

conformational features of molecules. It is generally suggested that rigid molecules have low values of 

DISPm [29]. This descriptor relates directly to RT which suggests that rigid molecule will have less 

retention time. The foregoing discussion revealed that generally molecules with more hydroxyl groups, 

less number of atoms, rigidity and high values of 3D-MoRSE descriptors are eluted faster than others. 

Mathematical detail of the molecular descriptors is available in the Handbook of Molecular 

Descriptors [32]. 

Quantum mechanical descriptors failed to make any impact, whatsoever, on the models. Equations 

2 and 5 and optimal artificial neural networks (Table 4) were used to predict the retention times of 

naturally occurring phenolic compounds. The predicted results are presented in Table 5, Figures 2 and 3 

and residual plot for the developed models is presented in Figure 4. 

Figure 4. Residual plot for QSRR models. 

 

3. Experimental Section 

3.1. Data for Retention Times of Phenolic Compounds 

Data used to generate structure-retention relationship of phenolic compounds were obtained from a 

recently developed sharp method of their analysis in RPLC-MS system [27]. Briefly, the compounds 
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were separated by gradient elution, using a reversed-phase C18 analytical column (50 × 2 mm, 2.5 µm 

particle size; Phenomenex Synergi Fusion-RP100A) with a C18 guard column (4 × 2 mm; Phenomenex 

Fusion-RP) maintained at 35 °C. The mobile phase used was deionized water (A) and acetonitrile (B); 

each containing 0.1% (v/v) formic acid in a linear gradient from 1% to 100% B during 9.5 min. 

3.2. Descriptor Computation 

Three dimensional structures of phenolic compounds, created by using Chemsketch, were 

optimized by the use of semi-empirical PM6 Hamiltonian with eigen vector following (EF) algorithm 

implemented in MOPAC2009 software [33]. Calculation of numerical descriptors from optimized 

geometries was performed usingMOPAC2009 and DRAGON, version 3 [34] softwares. Total number 

of calculated descriptors was 1519. Molecular weight (MW) descriptor was duplicated in both the 

softwares, therefore, MW only from MOPAC2009 was used in this study. Dragon was used to 

compute 1497 descriptors divided into 18 logical blocks and 23 descriptors were obtained from 

MOPAC2009 (Table 1).  

3.3. Feature Selection and Model Generation 

Step-wise multiple linear regression (SMLR) and unsupervised forward selection followed by  

step-wise multiple linear regression (UFS-SMLR) was used for feature selection. UFS is a technique to 

remove redundant and multi-collinear descriptors from the data set [35]. UFS was performed with  

ufs-1.8, obtained from the Centre for Molecular Design (CMD), University of Portsmouth, using  

R2
max = 0.9. The subset of descriptors produced by UFS was later used to develop model by SMLR 

method. Before applying the regression method, all the data were standardized to zero mean and unit 

variance in order to avoid any biased nature of the calculated descriptors, which may lead to series 

errors in generation and application of the models. The standardized data were subjected to SMLR 

method for model generation.  

ANN is a powerful multivariate data analysis technique, capable of both linear and non-linear 

modeling and has been widely used in modeling structure-property relationships [22,36,37]. An ANN 

mathematical model mimics the human brain intelligence system and consists of various 

interconnecting neurons organized in a sequential manner into an input layer, one or more hidden 

layers and an output layer. Each interconnection of the neurons has some numerical value (weight) 

associated with it. The signals are transmitted from the input layer to output layer through the neurons. 

The whole network is first trained on some data by adjusting the interconnection weights and is 

subsequently used to make predictions for external data. In the present study, optimal number of 

descriptors, selected by SMLR and UFS-SMLR techniques, was entered as continuous input signals 

into ANNs and output was the response variable RT. 500 ANNs were trained in both cases by the use 

of Statistica 8.0 automated artificial neural network implementation. Multilayer perceptrons (MLP) 

type network with feed-forward topology, Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and 

normal randomization were used for ANNs training and sum-of-squares error function was used to test 

their performances. Identity, logistic, exponential and tanh activation functions both for hidden and 

output layer and number of hidden units from 3 to 8 were used in ANNs building. The models, 

exhibiting least external validation errors, were selected as optimal models. In ANNs building process, 
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an early stopping technique was employed to avoid over-training of the ANN models. For this 

purpose, the training set was further sub-divided randomly into a subset of 25 molecules for training 

the ANNs and a subset of five molecules as a test set to avoid over-fitting. In the development of both 

SMLR descriptors based ANN (SMLR-ANN) and UFS-SMLR descriptors based ANN (UFS-SMLR-

ANN), same subsets of training set were used. Further, for external validation of all the models, same 

external validation set of nine molecules was used.  

3.4. Model Validation 

Model validation is a requisite to assess the applicability of generated models. Several techniques 

are in use in chemometrics [38–41]. In the present study, models were validated both internally as well 

as externally and any chance correlation was tested by the use of a y-scrambling technique: a method 

frequently used for this purpose. Internal validation was performed by leave-one-out cross validation 

and external validation by applying the model on external validation set of nine molecules. The 

statistical quality of the model was judged by considering the sum of squares of prediction errors and 

the validation correlation coefficients Q2
int & Q2

ext for internal and external validation respectively 

(Equations 6 and 7, respectively).  

PRESS ൌ෍ሺݕො௜ െ ௜ሻଶݕ
௡

௜ୀଵ

 (6)

ܳଶ ൌ 1 െ
∑ ሺݕො௜ െ ௜ሻଶݕ
୬
୧ୀଵ

∑ ሺݕ௜ െ ത୲୰ୟ୧୬ሻଶ௡ݕ
௜ୀଵ

 (7)

where ŷi is the predicted value, yi is the observed value for ith case in training or validation set as the 

case may be, and ўtrain is the mean of the training set. In above expressions, mean of the training set 

was used in order to have same standard reference for both internal and external validation statistics. 

However, using mean of validation set made almost no difference in the present study. For example, in 

case of SMLR model, Q2
ext using training set mean was 0.769, while using validation set mean, it was 

0.770. y-Scrambling was performed 500 times for the models in order to establish the stability of 

model and to negate any chance correlation. The statistical quality parameters of the scrambled models 

were compared with those of the original models. Performance of the selected ANN models was 

judged by the Q2
ext statistics. All the statistical calculations were performed using Statistica 8.0 and 

MS Excel® 2007. 

4. Conclusions 

SMLR, UFS-SMLR and ANN directed QSRR models have successfully been developed for 

predicting the retention times of naturally occurring phenolic compounds in the RPLC system. ANN 

models are more authentic in prediction of retention times of phenolics in RPLC than the other two 

approaches. SMLR model is comparable to SMLR-ANN, however, UFS-SMLR model was found less 

predictive than others. The models identified Mp, IDM, HNar, DISP, GATS2v and 3D-MoRSE 

(signals 22, 28 and 32), descriptors responsible for the retention of phenolic compounds. These 

descriptors signify the importance of branching, size, hydroxyl groups and 3D geometric, 
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electronegativity and mass distribution features within phenolics. The models were found predictive  

and robust. 
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