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Abstract: A series of recent studies demonstrated an unexpectedly high frequency of 

intronic RNA polymerase (pol) III transcription units spread throughout the human 

genome. The investigation of a subset of these transcripts revealed their tissue/cell-specific 

transcription together with the involvement in relevant physiopathological pathways. 

Despite this evidence, these transcripts did not seem to have murine orthologs,  

based on their nucleotide sequence, resulting in a limitation of the experimental approaches 

aimed to study their function. In this work, we have extended our investigation to the 

murine genome identifying 121 pairs of mouse/human transcripts displaying syntenic 

subchromosomal localization. The analysis in silico of this set of putative noncoding 

(nc)RNAs suggest their association with alternative splicing as suggested by recent 

experimental evidence. The investigation of one of these pairs taken as experimental model 

in mouse hippocampal neurons provided evidence of a human/mouse functional homology 

that does not depend on underlying sequence conservation. In this light, the collection of 

transcriptional units here reported can be considered as a novel source for the identification 

and the study of novel regulatory elements involved in relevant biological processes. 
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1. Introduction 

RNA polymerase (pol) III drives transcription from three different promoter types referred to as 

type 1, type 2 and type 3. Type 1 (only found in 5S rRNA genes) and type 2 promoters (typical of 

tRNA genes) are endowed with transcription control elements located within the transcribed portion of 

the genes. On the contrary, in type 3 promoters (such as U6 and 7SK) the regulatory elements are 

positioned upstream to the transcription start site (TSS). Indeed, the type 3-associated Proximal 

Sequence Element (PSE) maps between −66 and −46, whereas the TATA box maps around −30 in the 

case of the prototypical human U6 snRNA gene [1]. This peculiar promoter structure, its recently 

proposed cell type-specific transcription and the novel evidence for an unexpectedly high frequency of 

this motif throughout the human genome [1,2] make pol III type 3 promoters somehow similar to their 

pol II-readable counterparts [3,4].  

Our first screening in silico of the human genome, aimed to identify genomic regions possibly 

acting as substrates for pol III transcription, identified 30 putative pol III type 3 transcriptional units. 

Notably, the subsequent detailed study of a selected subset of these units disclosed their tissue-specific 

expression and their involvement as key actors in relevant physiological and/or pathological processes, 

such as the regulation of alternative splicing, ion channel gating, GABA A function and restriction of 

tumor malignancy [2,5–7].  

According to our results, more recent studies identified a remarkable number of pol III-transcribed 

ncRNAs by genome-wide location analysis of pol III machinery contributing to the growing 

appreciation of the widespread involvement of pol III in the expression of mammalian genomes [8–12]. 

Interestingly, based on their nucleotide sequence, the vast majority of the pol III type 3 transcriptional 

units identified so far does not seem to have murine orthologs, a condition that significantly limits the 

possible experimental approaches aimed to study their function.  

In this work, we extend our PSE/DSE (Distal Sequence Elements)-based approach previously  

used in humans to the identification of the pol III type 3 transcriptome in mice with the final aim to 

identify pairs of mouse/human transcripts that display syntenic subchromosomal localization and, 

possibly, to find experimental evidence of their functional homology. To this aim, we searched for a 

comprehensive panel of murine pol III type 3 transcriptional units taking advantage of a recent 

bioinformatic algorithm able to screen the murine genome in search of genomic sequence stretches 

harboring the functional consensus sequences of type 3 promoters. 

We identified 702 putative murine pol III transcriptional units whose analysis in silico supports the 

possible involvement in alternative splicing regulation and in the physio-pathology of the nervous 

system. Interestingly, by comparing this mouse collection with its human counterpart we also 

identified a set of 121 human/murine pairs of pol III type 3 transcriptional units that map in the 

corresponding subchromosomal localization within the specific hortolog genes, thus suggesting a 

possible functional homology. Exploiting a single pair of those identified as an experimental model, 
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here we provide evidence for the mouse/human functional homology of two PSE/TATA-dependent 

transcriptional units with different nucleotide sequences. 

2. Results and Discussion 

2.1. The Screening in silico of the Mouse Genome Discloses a Large Number of Putative snRNA-Like 

Transcriptional Units That Map Preferentially in Intronic Regions of Protein-Coding Genes 

In order to design a PSE consensus sequence suitable for a bioinformatic search of type 3 promoters 

in the mouse genome, we aligned the PSE consensus sequences of three well-assessed human pol  

III-transcribed elements (H1, U6 and 7SK) with their murine counterparts. Since these consensus 

sequences are extremely conserved between the two species, to screen the mouse genome we used the 

human PSE consensus template together with the other parameters previously used for the search of 

the type 3 promoters in humans such as: (a) a PSE consensus sequence (TYACCNTAAC, obtained 

aligning H1, U6 and 7SK PSE sequences); (b) a PSE/TATA spacer (35 ± 25 nt); (c) a TATA box 

consensus sequence (TATA); (d) a transcribed portion length (350 ± 200 nt); and (e) a mammalian pol 

III transcription termination signal (TTTT) (Figure 1A). To perform our analysis we took advantage of 

COMPASSS, a recent software able to identify genomic regions characterized by the simultaneous 

occurrence of PSE, TATA and transcriptional termination sequences within specific nucleotide 

distances [13]. We found 2333 putative transcriptional units uniformly spread throughout the mouse 

genome (Table S1).  

Figure 1. (A) 38B transcriptional unit and its functional elements: TYACCNTAAC, 

putative PSE; TATA, putative TATA box; (B) Significant positive correlation between the 

number of pol II-transcribed protein-coding genes and the novel transcriptional units in the 

murine chromosomes. 

 

 



Int. J. Mol. Sci. 2012, 13 14816 

 

 

In order to verify the possible correlation between the presence of protein-coding genes and novel 

pol III transcriptional units, we crossed the number of items in the single chromosomes with the 

number of protein-coding genes that it contains. We found a significant positive correlation between 

the occurrence in the same genomic regions of pol II-transcribed protein-coding genes and pol III type 3 

transcriptional units that overlap spatially (linear regression coefficient (R) = 0.65, degrees of freedom 19; 

p < 0.01) suggesting that protein-coding genes and pol III transcription units might be spatially 

correlated (Figure 1B, Table S2). 

Next, we selected the subset of items that map in intronic portions of coding genes and, by using 

BLAST algorithm, we analyzed their subchromosomal localization. We found that 702 transcriptional 

units (out of 2333, (30.1%); Table S3) maps preferentially in protein-coding genes rather than in 

intergenic regions. This result suggests a functional correlation between the pol III type 3 

transcriptional units and their protein-coding “host” genes (Chi-square test, p < 0.001; details on  

Chi-square test are shown in Tables S4 and S5).  

This set of transcriptional units was further restricted since the elements were grouped in intronic 

and exonic transcription units by the means of their localization within the genomic portions of the 

protein-coding genes using the algorithm BLAST. We found that 61 out of 702 transcriptional units 

(8.7%) map in exons whereas 641 (91.3%) map in introns (results for each chromosome are shown in 

Table S6). Since the analysis by the Chi-square test revealed a positive correlation between introns and 

the novel transcription units (p < 0.005) (Table S7), we propose that the novel elements map 

preferentially within the intronic portions of the coding genes. Therefore, our analysis identified 702 

possible transcription units that map in 531 coding genes (several protein-coding genes harbor more 

then one pol III transcriptional unit) whose possible functional activities deserve further investigation 

(Tables S8 and S9).  

2.2. Significant Association to “Alternative Splicing” and “Brain” Functional Annotations of Coding 

Genes Hosting Pol III Transcriptional Units 

Besides the subchromosomal localization we also tested our collection for possible recurrent 

functional annotations associated to the protein-coding genes that contain pol III transcriptional units. 

To this aim, we took advantage of the algorithm DAVID that allowed us to assess the possible 

enrichment in genes involved in the same cellular processes/molecular pathways and/or characterized 

by the same tissue specificity of expression [14,15]. Results, based on the most recurrent functional 

annotations obtained, demonstrated that the set of protein-coding genes hosting a pol III type 3 

transcription units is particularly enriched in genes involved in or subjected to alternative splicing and 

expressed in brain (Tables 1 and S10). This result is relevant in light of our recent finding that several 

human pol III type 3 elements actively participate in alternative splicing regulation of the 

corresponding pol II-transcribed genes and are involved in processes that take place in the central 

nervous system [6,7]. Thus, considering the above results together with our recent findings, we 

propose an active role of pol III type 3 transcripts in the regulation of alternative splicing of the 

protein-coding genes in which they map, possibly contributing to physiopathological processes 

occurring in the nervous system.  
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Table 1. The most recurrent functional annotation genes hosting pol III transcriptional 

units. The table represent a schematic view of the output obtained by DAVID analysis. 

“Category” indicates the original database or resource where the terms orient; “Term” 

column lists the enriched terms associated with the gene list; “Count” and “%” are the 

number/percentage of the genes enriched in a term; “p-Value” indicates the statistical 

significance of the enrichment; “List total” is the number of the genes recognized by the 

Category; “Pop Hits” is the number of genes enriched by a term in a Category; “Pop Total” 

is the total number of genes in a Category; “Bonferroni” and “Benjamini” are two different 

coefficients that indicate the statistical significance of the enrichement respect to the Category. 

Category Term Count % p-Value 
List 

Total 

Pop 

Hits 

Pop 

Total 
Bonferroni Benjamini 

SP_PIR_KEYWORDS 
alternative  

splicing 
227 44.77 4.64 × 10−29 464 4481 17854 1.48 × 10−26 1.48 × 10−26 

UP_SEQ_FEATURE splice variant 223 43.98 1.46 × 10−24 442 4448 16021 2.37 × 10−21 2.37 × 10−21 

UP_TISSUE Brain 273 53.85 1.44 × 10−17 493 7313 19868 2.28 × 10−15 2.28 × 10−15 

UP_SEQ_FEATURE 
domain:  

EGF-like 1 
21 4.14 8.94 × 10−12 442 106 16021 1.45 × 10−8 7.23 × 10−9 

SP_PIR_KEYWORDS phosphoprotein 229 45.17 3.63 × 10−10 464 6311 17854 1.15 × 10−7 5.77 × 10−8 

UP_SEQ_FEATURE 
domain:  

EGF-like 2 
17 3.35 3.65 × 10−10 442 79 16021 5.89 × 10−7 1.96 × 10−7 

GOTERM_BP_FAT 
GO:0007155 

~cell adhesion 
43 8.48 5.00 × 10−10 352 561 13588 8.32 × 10−7 8.32 × 10−7 

GOTERM_BP_FAT 

GO:0022610 

~biological  

adhesion 

43 8.48 5.30 × 10−10 352 562 13588 8.83 × 10−7 4.41 × 10−7 

SP_PIR_KEYWORDS 
egf-like  

domain 
26 5.13 7.54 × 10−10 464 222 17854 2.40 × 10−7 7.99 × 10−8 

UP_TISSUE Cerebellum 80 15.78 1.33 × 10−9 493 1580 19868 2.10 × 10−7 1.05E × 10−7 

UP_SEQ_FEATURE 

compositionally  

biased region:  

Ser-rich 

34 6.71 5.78 × 10−9 442 380 16021 9.35 × 10−6 2.34 × 10−6 

2.3. 38B ncRNA Is the Murine Functional Homolog of the Human 38A ncRNA 

By comparing the list of mouse intronic pol III transcriptional units with the corresponding human 

dataset [16] we found 121 protein-coding genes that host one or more pol III transcriptional units both 

in humans and in mice, suggesting that 17% of the human pol III type 3 transcripts may have a 

possible functional homolog in mouse (Table S11).  
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Figure 2. (A) Subchromosomal localization of the mouse 38B transcription unit. The 

functional consensus sequences are indicated in bold. Green, Proximal Sequence Element. 

Red, TATA box. Blue, Transcription Termination signals. The putative transcription 38B 

start site, located 29 bp downstream of the start of the TATA element, is also in bold and 

underlined; (B) In vitro transcription products of 38B. A HeLa cell nuclear extract was 

programmed with either pEGFP-N1 vector (lane 2), the same vector carrying the 38B 

transcription unit (lanes 3,4) or the human tRNA gene TRNAV18 carried by pGEM-T-Easy 

vector (lane 1). The length of 38B-specific transcripts (indicated by arrowheads on the 

right) was estimated on the basis of the migration positions of the three main TRNAV18 

transcripts, generated by termination at different termination signals [17]. 

 

 

A 

 

 

B 

 

Next, we focused on the possible functional homology between human and murine pol III type3 

transcriptional units. To test this hypothesis, we selected 38A (human) and 38B (murine) pol  

III-transcribed RNAs as possible pair with homology of function. 38A is a well characterized ncRNA 
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that maps within intron 1 of KCNIP4 (Potassium Channel Interacting Protein 4) and plays a role in 

alternative splicing regulation of this protein in brain [6]. Similarly, 38B transcriptional unit maps 

within intron 1 of KCNIP4 (Potassium Channel Interacting Protein 4) gene in antisense configuration 

recapitulated the subchromosomal localization of its functionally active human counterpart 38A 

(Figure 2A). As shown in Figure 2B, in vitro transcription of plasmid-borne 38B by a HeLa cell 

nuclear extract, under conditions known to abolish pol II while preserving pol III transcription activity, 

produced three main specific transcripts (compare lanes 3–4 with lane 2) whose sizes, estimated on the 

basis of migration on the same gel of pre-tRNA
Val

 (AAC) transcripts of known size [17], perfectly 

matched those predicted for 38B transcripts starting at the A residue located 29 bp downstream of the 

TATA (underlined in Figure 2A) and ending at one of the first three termination signals (either 

canonical or noncanonical, in blue in Figure 2A [17]. The pol III-specific promoter and terminator 

elements of 38B thus appear to be efficiently recognized by the human pol III trasnscription 

machinery, with the production of ncRNAs with sizes ranging from 27 to 159 nucleotides. Notably, we 

have recently demonstrated that 38A, whose expression is upregulated by IL1-α, drives the synthesis 

of an alternative splicing form of KCNIP4. The production of this protein variant (variant C) is 

detrimental to brain physiology as it triggers the blockade of the fast kinetics of type A,  

voltage-dependent potassium channels, needed for brain physiology [18,19]. The analysis of the 

sequences of KCNIP4 alternative protein variants showed a very high homology between human and 

mouse thus suggesting that the splicing regulation driven by 38A RNA in humans might occur in mice 

driven by 38B RNA (Table S12). 

2.4. The Expression of 38B RNA Is Specifically Associated to the Brain 

In order to test the expression of 38B ncRNA we measured by Real Time RT-PCR its amount in 

different tissues obtained from a pool of C57/BL6 mice. Results (after normalization to the heart 

sample) showed that 38B is poorly expressed in testis, intestine and spleen whereas its synthesis is 

strongly increased in cerebellum and in total brain extracts, matching with the expression pattern of 

KCNIP4 protein [20] (Figure 3). Therefore, the overlap of 38B tissue expression profile with KCNIP4 

protein further suggest their possible synergistic action in mouse, as documented in humans. 

Figure 3. 38B ncRNA expression in different mouse tissues. Results were normalized to 

the heart sample. 
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2.5. 38B Expression Leads to the Synthesis of KCNIP4 Alternative Variant C in Mouse 

In order to assess if the synthesis of 38B drives to KCNIP4 alternative splicing (thus recapitulating 

its human counterpart 38A) we analyzed the possibly increased expression of the alternative KCNIP4 

variant C in hippocampal neurons overexpressing 38B RNA. To this aim, we generated a plasmid 

construct harboring the whole 38B transcription unit (hereafter referred to as p38B-EGFP-N1) together 

with a GFP cassette. The plasmids (and the empty vector pMock control) were transfected in primary 

cultures of hippocampal neurons and the amount of 38B ncRNA, KCNIP4 variants A and C were 

measured by Real Time RT-PCR in both samples (Figure 4A–C). Results showed that the 

overexpression of 38B drives to an unconventional unbalance of the amount of the two protein variants 

as the variant A (the ortholog of the human KCNIP4 canonical variant I) is strongly inhibited by the 

overexpression of 38B RNA, whereas the alternative variant C (the ortholog of the human alternative 

protein variant IV) is strongly increased in the same condition (Figure 4C). These data demonstrate 

that in primary cultures of murine hippocampal neurons, the overexpression of 38B intronic pol  

III-transcribed ncRNA in antisense configuration with respect to Kcnip4 intron 1 favors a splicing shift 

leading to the maturation of an alternative form of KCNIP4 endowed with a peculiar N-terminal 

fragment. Therefore, the effect of 38B expression on splicing regulation in mice recapitulates that of 

38A in humans, and similar biological consequences are expected by its overexpression.  

2.6. The Increased Transcription of 38B Affects Fast Inactivation of Mouse A-Type K
+
 Channels 

In a previous work we demonstrated that the synthesis of the human KCNIP4 alternatively spliced 

Variant IV protein (promoted by the over expression of 38A RNA) in human neuroblastoma cells 

exerts a deep effect on their excitatory properties, abolishing the fast inactivation of A-type potassium 

channels. Indeed, in that work, we transfected transiently human cells with a plasmid construct 

expressing 38A ncRNA detecting the alternative splicing of KCNIP4 and the consequent abolishment 

of type A voltage-dependent current [6]. Since the alteration of these excitatory properties has been 

repeatedly associated to neurodegenerative processes [21] we here hypothesize that it may also drive to 

the perturbation of the excitatory properties of synapses in neurons.  

Therefore, in order to reproduce these results in a neuron, we measured the inactivation kinetics of 

A-type K channels in 38B-transfected primary cultures of mouse hippocampal cells and/or in pMock 

controls. Figure 5A,B show the outward potassium current elicited in a mock and in a  

38B-transfected cell, respectively, as obtained in response to voltage steps from −50 mV to +50 mV 

starting from a holding potential of −100 mV. The fast inactivating component of the outward K 

current, representing about 30% in the mock K current, was decreased in the transfected cell, whereas 

the inactivation time constant estimated at +50 mV was found to be around 250 ms in the 38B cell, as 

opposed to the 55 msec of the control cell current. Similar results have been obtained in another  

six transfected cells, suggesting that 38B exerts in mice the same effect elicited by 38A in humans, and 

thereby strengthening the hypothesis of a mouse/human functional homology of type 3 ncRNAs. 
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Figure 4. Hippocampal neurons after 6 (A) and 12 (B) days of in vitro culture; (C) The 

overexpression of 38B promotes the synthesis of an alternative KCNIP4 protein form as 

detected by Real Time RT-PCR analysis. Mock, pMock-transfected cells, 38B,  

p38B-transfected cells. The dissociation curves of the single amplification products are 

reported in the insets to demonstrate the single molecular species amplified. 

 

Figure 5. Expression of 38B eliminates fast inactivation of outward K
+
 current. Traces 

were obtained from a control neuron (A) and from a neuron transfected with 38B ncRNA (B). 

Current were evoked by 200 ms long voltage steps from –50 mV to +50 mV in 10 mV 

increments, after a prepulse at –100mV, starting from a holding potential of –100 mV 
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3. Experimental Section  

3.1. Screening of the Mouse Genome with COMPASSS and Identification of Pol III Type 3 

Transcriptional Units 

The screening of the mouse genome to search for putative pol III type 3 transcriptional units was 

carried out by means of the algorithm COMPASSS (COMplex Pattern of Sequence Search Software) [13]. 

The input sequences were the contigs of the 21 murine chromosomes obtained by the National Centre 

for Biotechnology Information (NCBI). In order to identify the pol III type 3 that map in pol II genes 

we used the algorithm Basic Local Alignment Search Tool (BLAST) under “Nucleotide”, database 

“Mouse genomic + transcript”, program “Megablast” [22]. 

3.2. Statistical Analysis  

Data on genes number for each chromosome and data used in attended calculation in Chi-square 

test (Table S4) were all obtained by the NCBI databases.  

3.3. Gene Annotations  

Gene annotations were obtained through the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) [14,15]; tool “functional annotation chart”, background Mus musculus, threshold 

EASE 0,001. Gene list submitted was composed by the 531 genes containing pol III transcription units 

and 507 of them were recognized by DAVID as DAVID IDs.  

3.4. 38B Plasmid Constructs Generation  

In order to clone 38B transcriptional unit into pEGFP-N1 vector, the insert containing 38B (composed 

by the type 3 TATA/PSE-dependent promoter and the transcribed portion of 38B) was obtained amplifying 

1442 bp of the murine genome with Forward oligo 5'-AGTCATTAATCCTAGATATCAAAAGGATGG-3' 

and as reverse oligo 5'-AGTCATTAATTACAGATTTAGCATTATACTAA-3'. The insert was then 

digested with AseI (New Labs) and subcloned into pEGFP-N1 plasmid vector (Clontech) following 

molecular cloning procedures described elsewhere [23]. 

3.5. In vitro Transcription 

In vitro transcription reactions were carried out using a HeLa cell nuclear extract exactly as 

described [6], using 1.5 μg of template DNA in a final volume of 25 μL. 

3.6. Hippocampal Neurons Preparation and Transfection  

Hippocampal neurons were isolated from four seven-day-old mice C57/BL6. Hippocampi were 

removed, placed in 4 mL HBSS (bicarbonate-free Hank’s balanced salt solution, Invitrogen,  

cat.no.14185-052, Carlsbad, CA, USA) and 0.5 mL of 2.5% trypsin (Invitrogen, cat.no.15090-046, 

Carlsbad, CA, USA) and incubated for 15 min in a water bath at 37 °C. Next, trypsin solution was 

removed and the hippocampi washed gently two times for 5 min at room temperature. Hippocampi 
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were dissociated by repeated pipetting in a Pasteur pipette and put in culture immediately onto  

20 μg/mL polylysine-treated glass coverslip (for patch clamp experiments) and/or in a pretreated  

six-well plate (for RNA extraction). Neurons were plated in MEM, supplemented with glucose (0.6%) 

and containing 10% horse serum; after 1 day, once the cells were attached, the coverslip was 

transferred to a new plate with maintenance medium Neurobasal/B27, prepared according to the 

manufacturer’s instructions (supplementing Neurobasal medium (Invitrogen, cat.no.21103-049, 

Carlsbad, CA, USA) with L-Glutammine and B27 (Invitrogen, cat.no.17504-044, Carlsbad, CA, USA)). 

After 8 days of culture, the neurons were transfected using Lipofectamine 2000 (Invitrogen, 

cat.no.11668, Carlsbad, CA, USA) with pEGFPN1 (mock) and pEGFPN1-38B (38B) according to 

manufacturer’s instructions. The ratio used for transfection were (6:1:1) (μL lipofectamine: μg DNA: 

μL Plus reagent) in Neurobasal (1:200) (μg DNA: μL medium). The medium was removed after 7 h 

and replaced with complete Neurobasal/B27. 48 h after transfection neurons were analyzed by patch 

clamp and the RNA was extracted with TRIzol
®

 reagent (Invitrogen, Carlsbad, CA, USA) according 

manufacturer’s instructions. 

3.7. Real Time Quantitative RT PCR Analysis  

Total RNAs from samples (hippocampal neurons and mouse tissues (obtained by adult male 

C57BL/6 mice)) were extracted using TRIzol
®
 reagent (Invitrogen, Carlsbad, CA, USA) as described 

elsewhere [23] and subjected to reverse transcription by Transcriptor First Strand cDNA Synthesis Kit 

(Roche Applied Science, Mannheim, Germany) following manufacturer’s instructions. The total RNA 

from samples was measured by real-time quantitative RT-PCR using PE ABI PRISM@ 7700 

Sequence Detection System (Perkin Elmer, Wellesley, MA, USA) and Sybr Green method following 

procedures previously described [24]. The sequences for mouse G3PDH (mG3PDH) forward and 

reverse primers were: 5'-TGTGTCCGTCGTGGATCTG-3' and 5'-GATGCCTGCTTCACCACCTT-3'. 

The sequences for 38B forward and reverse primers were 5'-TGAGTATGTCGATGGAATG 

TTTTCTAA-3' and 5'-GGGTCTCTAGTGGCAGGTTTGT-3'. The sequences for mouse KCNIP4 (Var 

A) forward and reverse primers were: 5'-GTGAGAAGGGTGGAAAGCATCT-3' and 5'-AATGCT 

GCGCTTGGTGTTG-3'. The sequences for mouse KCNIP4 (Var C) forward and reverse primers were:  

5'-GGAACAGTTTGGGCTGATTGA-3' and 5'-GTAGCCATCTCCAGCTCATCTTC-3'. Relative 

transcript levels were determined from the relative standard curve constructed from stock cDNA 

dilutions, and divided by the target quantity of the calibrator as described elsewhere [23]. 

3.8. Electrophysiology 

Total membrane currents were measured in the whole-cell configuration of the patch-clamp method 

as previously described [25]. Whole-cell voltage-clamp recordings were made using an Axopatch 

200A amplifier (Axon Molecular Devices, Sunnyvale, CA, USA). Stimulation and acquisition were 

performed by a PC through a Digidata 1440 interface and Pclamp10 software (Molecular Devices). 

Traces were sampled at 5 kHz and low-pass filtered at 2 kHz. 

The standard extracellular bath solution contained (in mM): 140 NaCl, 5.4 KCl, 2 CaCl2, 1 MgCl2, 

10 Glucose, 5 4-(2)hydrohyethyl)1-piperazineethanesulphonic acid (HEPES). The pH was adjusted at 
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7.35 with NaOH. The intracellular solution for contained (in mM): 142 KCl, 10 HEPES, 2 EGTA,  

2 MgCl2 pH 7.3 with KOH.  

The external solution was applied to the cell bath by gravity flow perfusion. The potassium currents 

were elicited from a holding potential of −100 mV by applying voltage pulses 200 ms long from  

−50 mV to +50 mV in 10 mV increments. The depolarizing voltage pulses of 200 ms duration was 

applied every 5 s. A best-fit exponential function was used to determine the time constant of the  

current inactivation. 

Traces were analyzed by pClamp10 software (Clampfit) or by ANA, software developed by 

Michael Pusch, as previously described [25]. All subsequent analysis work and graphing was 

performed using Sigma Plot (SPSS Science, Chicago, IL, USA) sofware. Data are shown as  

mean ± standard error (SE). 

4. Conclusions  

One of the most relevant discoveries of the postgenomic era is that the mammalian genomes are 

almost entirely transcribed producing a panoply of different classes of noncoding RNAs with 

regulatory features [26–28]. In our previous works, we suggested that an unexpectedly high fraction of 

the human transcriptome might be synthesized by pol III, thus being subjected to pol III-specific 

regulatory features [2,3]. Our research approach was based on the identification of genomic regions 

endowed with pol III type 3 regulatory consensus sequences in specific configurations that can 

virtually compose functional pol III type 3 promoters. This first step was then followed by the 

experimental determination of the transcriptional activities of the promoters and by the detailed study 

of the function of the molecules of interest. As a proof of validity of this approach, our recent 

experimental studies demonstrated that all the ncRNAs so far studied were biologically active and 

involved in relevant regulatory processes of the cell [5–7]. In this work, taking advantage of recent 

software, we expand our analysis to the mouse genome, providing a comprehensive list of 702 murine 

transcriptional units. The bioinformatic analysis of their characteristics suggested functional 

homologies between the same transcripts in the two species. Interestingly, our results show that a high 

fraction of pol III transcriptional units map within introns of protein-coding genes whose biological 

functions are associated to the nervous system and, in particular, to brain physio-pathology. This 

finding is even more relevant in light of a second peculiar feature of these ncRNAs revealed by our 

recent experiments, such as their involvement in alternative splicing regulation [6,7]. Indeed, the 

concomitant enrichment of “splicing” and “brain” annotations in protein-coding genes that host pol III 

transcriptional units of our collection is in line with other works that indicate brain as a major site of 

alternative splicing events [29,30] and associates an active role of pol III type 3 transcription units with 

this process. Altogether, these findings suggest a novel scenario where RNA polymerase III affects the 

synthesis of proteins involved in alternative splicing, thus acting as an upstream regulator of gene 

expression. In this setting, even the fact that we identified at least one putative transcriptional unit in 

the 1.6% of murine protein-coding genes supports their possible splicing regulated by the novel pol  

III-transcribed ncRNAs. 

A further relevant aspect of our work is the isolation and functional characterization of 38B in 

hippocampal neurons. Indeed, these experiments demonstrated that the pol III-dependent regulation of 
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alternative splicing occurring in human KCNIP4 gene takes also place in mice, supporting the use of 

our promoter-based approach to identify mouse functional homologs of human type 3 transcripts also 

in the lack of sequence homology between human and mouse ncRNAs. This lack of homology, in spite 

of functional similarity, might be related to the intronic location of the pol III transcriptional units, and 

is in agreement with the recent suggestion that extended regions of human and mouse introns are 

involved in conserved functional links that do not depend on underlying sequence conservation [31]. 

Therefore, the experiments reported here show that our promoter-based approach is suitable for the 

identification of mouse functional homologs of human pol III-transcripts allowing the generation of 

mouse experimental models for the study of pol III elements.  

In conclusion, besides the above mentioned functional studies, the mouse collection of pol III 

transcriptional units here provided is a valuable source for (1) the identification of novel small RNAs 

that affect splicing regulation and, (2) in light of the increasing evidence supporting the cell  

type/stage-specific regulation of pol III transcription, as a novel tool for gene-silencing presidium in 

therapy and research. 
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