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Abstract: Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a major constituent of 

rhubarb, has a wide range of therapeutic applications. Previous studies have established that 

emodin induces apoptosis in the inner cell mass and trophectoderm of mouse blastocysts and 

leads to decreased embryonic development and viability, indicating a role as an injury risk 

factor for normal embryonic development. However, the mechanisms underlying its 

hazardous effects have yet to be characterized. In the current study, we further investigated 

the effects of emodin on oocyte maturation and subsequent pre- and post-implantation 

development, both in vitro and in vivo. Notably, emodin induced a significant reduction in 

the rates of oocyte maturation, fertilization, and in vitro embryonic development. Treatment 

of oocytes with emodin during in vitro maturation (IVM) led to increased resorption of 

postimplantation embryos and decreased fetal weight. Experiments using an in vivo mouse 

model disclosed that consumption of drinking water containing 20–40 μM emodin led to 

decreased oocyte maturation and in vitro fertilization, as well as early embryonic 

developmental injury. Notably, pretreatment with a caspase-3-specific inhibitor effectively 

prevented emodin-triggered injury effects, suggesting that impairment of embryo 

development occurs via a caspase-dependent apoptotic process. 
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1. Introduction 

Emodin (1,3,8-trihydroxy-6-methylanthraquinone), one of the major chemical constituents of the 

root of rhubarb (Rheum palmatum L.), is widely used in the Orient [1], and exerts immunosuppressive, 

anticancer, antiinflammatory, antiatherosclerotic, and vasorelaxant effects [2–5]. Emodin inhibits cell 

proliferation in different cancer cell lines, including HER-2/neu-overexpressing breast cancer [6], 

hepatoma [7], leukemia [8], and lung cancer [9]. An earlier study reported that emodin-stimulated 

apoptosis is mediated via reactive oxygen species (ROS) and mitochondria-dependent pathways in 

human tongue squamous cancer SCC-4 cells [10]. Interestingly, emodin exerts both cytotoxic and 

protective effects in rat C6 glioma cells [11]. Moreover, recent experiments by our group showed that 

emodin induces a decrease in mouse embryonic development and viability in vitro and in vivo [12]. 

Interestingly, the hazardous effects of emodin on embryonic development were effectively prevented by 

caspase-9 and -3 inhibitors [12], implying that emodin triggers apoptosis of mouse blastocysts, leading 

to impairment of embryo development through intrinsic apoptotic pathways. Accordingly, we propose 

that emodin is an injury risk factor for normal embryonic development in mouse blastocysts.  

Oocyte viability is affected by the microenvironment during growth and maturation. Heat stress, 

oxygen concentration, and glucose content are key determinants of oocyte viability [13–15]. A number 

of researchers have investigated the influence of environmental biological toxins on oocyte maturation 

in vivo and in vitro. During normal embryogenesis, apoptosis (a unique morphological pattern of cell 

death) functions to remove abnormal or redundant cells in preimplantation embryos [16,17]. However, 

apoptotic processes do not occur prior to the blastocyst stage during normal mouse embryonic 

development [18], and induction of cell death during oocyte maturation and early stages of 

embryogenesis (i.e., via exposure to a teratogen) leads to developmental injury [14,19–22]. While we 

have established that emodin promotes cell apoptosis and developmental injury in blastocyst-stage 

embryos [12], the influence of this compound on early-stage embryogenesis processes, such as oocyte 

maturation, fertilization, and sequential embryo development from zygotes, is currently unclear. Here, 

we focused on ascertaining whether emodin has a hazardous effect on oocyte development. Briefly, 

oocytes were incubated with emodin for 24 h and sequential development compared with that of oocytes 

under emodin-free conditions, with the aim of determining whether short-term exposure to the 

compound at the oocyte stage has a long-term injurious impact on embryo development. Our results 

clearly demonstrate that emodin exposure during the oocyte stage not only inhibits oocyte maturation 

but also promotes injurious effects on in vitro fertilization and embryonic development.  

2. Results 

2.1. Effects of Emodin on Oocyte Maturation Status, Fertilization Rate, and in Vitro  

Embryo Development 

While emodin evidently induces apoptosis and developmental injury in mouse blastocysts [12], its 

effects on oocyte maturation have not been clarified to date. Oocyte nuclear maturation status was 

measured using eight independent experimental replicates, with ~250 oocytes per group. The number of 

oocytes that reached the metaphase II (MII) stage of maturation after in vitro maturation (IVM) ranged to 

about 97%. A lower maturation rate was observed in the emodin-treated oocyte group, which was 
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dose-dependent (Figure 1). Male pronucleus formation was assessed for the detection of fertilization. 

Our data showed that the ability of oocytes to be fertilized by fresh sperm was significantly decreased 

upon pretreatment with emodin, prior to IVM (Figure 1). 

We further analyzed in vitro embryo development to the two-cell and blastocyst stages. Emodin 

pretreatment led to a significant decrease in cleavage of oocytes to the two-cell stage, indicative of an 

injurious effect (Figure 1). In addition, the number of embryos cleaved to form blastocysts in the 

emodin-treated groups was markedly lower than that in untreated control groups (Figure 1). 

Figure 1. Effects of emodin on mouse oocyte maturation and embryo development in vitro. 

Oocytes were collected from 21 day-old mice, cultured for 24 h in in vitro maturation (IVM) 

medium containing emodin (5, 10 or 20 μM), fertilized in vitro, and transferred to in vitro 

culture (IVC) medium. Oocyte maturation, in vitro fertilization, cleavage and blastocyst 

development were analyzed. Values are presented as means ± SD of eight determinations. 

Data are based on 250–280 samples per group. *** p < 0.001 versus the untreated 

control group. 

 

2.2. Effects of Emodin on Cell Proliferation and Apoptosis of Embryos during Oocyte Maturation  

in Vitro 

Total blastocyst cell numbers were determined following emodin treatment during IVM of oocytes, 

with a view to establishing its effects on cell proliferation, assessed using differential staining followed 

by cell counting. Significantly lower blastocyst cell numbers were derived from emodin-pretreated 

oocytes, compared to control oocytes (Figure 2A). Additionally, the numbers of inner cell mass (ICM) 

cells in blastocysts during IVM were decreased upon emodin pretreatment, while, in contrast, 

trophectoderm (TE) cell numbers were not affected (Figure 2A).  

Apoptosis of blastocysts derived from emodin-pretreated oocytes was additionally evaluated. 

TUNEL staining revealed a dose-dependent increase in apoptosis of blastocysts from the 

emodin-pretreated oocyte group (Figure 2B). Further quantitative analysis showed a 7- to 10-fold 

increase in apoptotic blastocysts derived from emodin-pretreated oocytes, compared to the control group 

(Figure 2C).  
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Figure 2. Effects of emodin on cell number and apoptosis in embryos during IVM of 

oocytes. Oocytes were cultured for 24 h in IVM medium containing emodin (5, 10 or 20 μM), 

fertilized in vitro, and transferred to in vitro culture (IVC) medium for in vitro development. 

(A) Cell numbers of total, trophectoderm (TE) lineages and inner cell mass (ICM) were 

counted in blastocysts. (B) Apoptotic cells were examined at the blastocyst stage using 

TUNEL staining, followed by light microscopy. Positive cells are depicted in black. (C) The 

mean number of apoptotic (TUNEL-positive) cells per blastocyst was calculated. Values are 

presented as means ± SD of six determinations. Data are based on at least 200 samples in 

each group. *** p < 0.001 versus the untreated control group. 

 

(A) (B) 

 

(C) 

2.3. Developmental Potential of Blastocysts from Oocytes Treated with Emodin and in Vivo Effects of 

Emodin Intake on Oocyte Development  

Embryos were transferred to 45 recipients per group (8 per horn). A total of 40 recipients were 

pregnant in at least one horn at day 18. The implantation ratio of blastocysts derived from the oocyte 

group treated with 20 μM emodin during IVM was ~27%, which was significantly lower than that 

observed for control blastocysts (~79%) (Figure 3A). 
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Figure 3. Effects of emodin treatment or dietary emodin intake on embryo development 

during oocyte IVM. Oocytes were cultured for 24 h in IVM medium containing emodin  

(5, 10 or 20 μM), fertilized in vitro, and transferred to in vitro culture medium for 

development. (A) Implantation, resorption and surviving fetuses were analyzed, as described 

in Materials and Methods. The implantation percentage represents the number of 

implantations per number of transferred embryos × 100. The percentage of resorption or 

surviving fetuses represents the number of resorptions or surviving fetuses per number of 

implantations × 100. (B) Placental weights of 40 recipient mice were measured. (C) Weight 

distribution of surviving fetuses at 14 days post-transfer (18-day fetuses). Surviving fetuses 

were obtained via embryo transfer of control and emodin-pretreated groups, as described in 

Materials and Methods (320 total blastocysts across 40 recipients). (D) Random female mice 

(21 days old) were fed a standard diet and drinking water supplemented with emodin  

(10–40 μM) for 5 days or left untreated. Oocytes were collected for in vitro maturation,  

in vitro fertilization, cleavage, and blastocyst development analyses. Data are based on at 

least 300 samples in each group. * p < 0.05, ** p < 0.01 and *** p < 0.001 versus the 

emodin-free group. 

  

(A) (B) 

  

(C) (D) 

Embryos that implanted but failed to develop were subsequently resorbed in the uterus. The 

proportion of implanted embryos that failed to develop normally was significantly higher in the 20 μM 

emodin-treated group (~70%), compared to the control group (~36%). Moreover, the emodin-pretreated 

group displayed a higher resorption rate than the untreated control group (Figure 3A). In terms of 

embryo survival rate (surviving fetuses), 64% of the control group survived to 14 days post-transfer 

(18-day fetuses), compared to only 30% of the 20 μM emodin-treated group (Figure 3A). Interestingly, 

however, the placental weights of blastocysts derived from emodin-treated oocytes in IVM were not 
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significantly different from those of the control group (Figure 3B). Importantly, fetal weights were lower 

in the groups treated with 10–20 μM emodin, relative to the untreated control group. Furthermore, only 

9% of fetuses in the 20 μM emodin-pretreated group weighed over 600 mg, whereas 37% of control 

fetuses exceeded this threshold, an important indicator of successful embryonic and fetal development 

(Figure 3C). Our findings collectively indicate that exposure of oocytes to emodin during IVM reduces 

the potential of postimplantation development. 

In view of the injurious effects of emodin on oocyte maturation and embryo development in vitro, we 

analyzed emodin activity in vivo via intake in an animal model. Female mice were fed a standard diet 

and drinking water supplemented with emodin (10–40 μM) for 4 days, or left untreated, prior to COC 

collection. Oocyte maturation status, fertilization rate, and in vitro embryo development were evaluated. 

Dietary emodin induced a significant decrease in oocyte maturation and fertilization, resulting in 

inhibition of embryonic development from the zygote to blastocyst stage (Figure 3D). 

2.4. Effects of Emodin Intake on the Developmental Potential of Blastocyst-Stage Embryos 

To further determine the effects of emodin on embryo implantation and post-implantation 

development, we analyzed its in vivo activity via intake and transfer of blastocyst-stage embryos to the 

uterus horn using the embryo transfer assay in an animal model. Female mice were fed a standard diet 

and drinking water continuously supplemented with emodin (10–40 μM) or left untreated for 4 days 

before embryo transfer to the uterus during the experimental period. Embryos were transferred to  

50 recipients per group (8 per horn). A total of 40 recipients were pregnant at day 18. Notably, the 

implantation ratio of blastocysts in the emodin intake group was significantly lower than that of control 

blastocysts (Figure 4A). Moreover, the emodin intake group displayed a higher overall resorption rate 

than the emodin-free group (Figure 4A). The embryo survival rate of the emodin intake group was 

additionally markedly lower than that of emodin-free group (Figure 4A). However, the placental weights 

of blastocysts derived from both groups were comparable (data not shown). Finally, fetal weights were 

lower in the emodin intake (40 μM) than the untreated control group (Figure 4B). Our results 

collectively demonstrate that exposure of embryos to emodin reduces the potential of implantation and 

postimplantation development. 

2.5. Apoptotic Effects of Emodin on Oocyte Maturation Status, Fertilization Rate, and Embryo 

Development during IVM  

To further clarify the regulatory mechanisms of emodin, oocytes were pretreated with 100 μM 

Ac-DEVD-cho, a caspase-3 specific inhibitor, with the aim of preventing emodin-triggered embryo cell 

apoptosis during IVM of oocytes. Pretreatment with the caspase-3 inhibitor effectively prevented 

apoptosis of blastocysts derived from the oocyte group pretreated with 20 μM emodin (Figure 5A). 

Moreover, the caspase-3 inhibitor blocked emodin-triggered hazardous effects on oocyte maturation, 

fertilization rate, and sequential embryo development during IVM (Figure 5B), and additionally  

rescued reduction in postimplantation development potential following embryo transfer, leading to 

improvements in embryo implantation rate, fetal survival rate, and fetal development status (determined 

on the basis of fetal weight) (Figure 5C). These results strongly indicate that emodin regulation of oocyte 

development during IVM involves apoptotic processes.  
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Figure 4. Effects of dietary emodin on embryo development in mouse blastocysts. Random 

female mice (21 days old) were fed a standard diet and drinking water continuously 

supplemented with emodin (10–40 μM) or left untreated for 4 days before embryo transfer to 

the uterus during the experimental period. (A) Implantation, resorption and surviving fetuses 

were analyzed, as described in Materials and Methods. The implantation percentage 

represents the number of implantations per number of transferred embryos × 100. The 

percentage of resorption or surviving fetuses represents the number of resorptions or 

surviving fetuses per number of implantations × 100. (B) Weight distribution of surviving 

fetuses at day 18 post-coitus. Surviving fetuses were obtained by embryo transfer of  

control and emodin intake groups, as described in Materials and Methods (320 total  

blastocysts across 40 recipients). * p < 0.05, ** p < 0.01 and *** p < 0.001 versus the  

emodin-free group. 

  
A B 

Figure 5. Effects of inhibition of apoptosis on embryo development in emodin- treated 

oocytes during IVM. Oocytes were collected from 21 day-old mice, cultured for 24 h in IVM 

medium alone or that containing 100 μM Ac-DEVD-cho and 20 μM emodin, fertilized  

in vitro, and transferred to in vitro culture (IVC) medium for in vitro development.  

(A) Apoptotic cells were examined at the blastocyst stage using TUNEL staining.  

(B) Oocyte maturation, in vitro fertilization, cleavage and blastocyst development rates were 

analyzed. (C) Implantation, resorption, and surviving fetuses were analyzed with the embryo 

transfer assay, as described for Figure 3. *** p < 0.001 versus the emodin-free group.  

# p < 0.001 versus the emodin-treated only group. 

  

(A) (B) 
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Figure 5. Cont. 

 

(C) 

3. Discussion 

During the complex and precisely orchestrated process of oocyte maturation and early-stage 

embryonic development, chemical or physical injury can affect normal progression and lead to 

malformation or miscarriage of the embryo. Thus, it is crucial to ascertain the possible teratogenic 

effects of various agents on oocyte maturation and early-stage embryonic development. Emodin is a 

natural chemical compound in the root of rhubarb widely used in Chinese medicine. Recently, Wei and 

colleagues (2011) demonstrated that emodin not only induces apoptosis of cancer cells directly but also 

enhances the anticancer effects of gemcitabine in pancreatic cancer. Specifically, treatment with 

gemcitabine in combination with emodin efficiently inhibited tumor growth in mice inoculated with 

pancreatic tumor cells. The combination therapy induced a reduction in Akt and NF-κB activation and 

the Bcl-2/Bax ratio, and increase in caspase-9 and -3 activation, as well as cytochrome C release from 

the mitochondria to cytosol [23]. Thus, emodin appears to function as a chemopreventive and/or 

chemotherapeutic agent in different cancer types by decreasing cell viability, inhibiting cell proliferation 

and increasing apoptosis. A previous investigation by our group showed that co-incubation of embryos 

with emodin for 24 h triggers apoptosis in mouse blastocysts [12], in turn, suppressing cell viability. 

Measurement of embryo cell numbers of blastocysts using dual differential staining revealed 

emodin-induced cell loss and apoptosis in both ICM and TE cell populations [12]. In this report, we have 

examined the possible cytotoxic effects of emodin on oocyte maturation, fertilization, and sequential 

embryo development.  

Oocyte maturation, fertilization, and embryonic development are complex processes during which 

chemical injury can lead to developmental problems or embryonic malformation. Previously, we 

reported that emodin induces apoptosis, impairment of blastocyst development from the morula and 

promotion of early-stage mouse blastocyst death [12]. In view of these findings, it is important to 

establish whether emodin has possible teratogenic effects. Here, we have shown for the first time  

that emodin inhibits mouse oocyte maturation, fertilization, and sequential embryonic development  

(Figure 1). Importantly, the emodin-pretreated oocyte group displayed a significant decrease in cell 

number and increased apoptosis (Figure 2A,B). In our experiments, cumulus-oocyte complexes (COCs) 

were isolated from female hybrid ICR mice (21 days old) injected with 5 IU human chorionic 
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gonadotropin (hCG), 44 h prior to oocyte collection. Our coworkers additionally collected COCs from 

42 day-old ICR mice. Importantly, no differences were observed in emodin-induced hazardous effects 

on mouse oocyte maturation and sequent embryonic development between oocytes from 21 and  

42 day-old female mice (data not shown). The results collectively indicate that emodin treatment at the 

oocyte stage triggers both oocyte maturation injury and abnormal apoptosis of cells at the blastocyst 

stage, an important step in embryo implantation. 

The TE arises from the trophoblast at the blastocyst stage, and develops into a sphere of epithelial 

cells surrounding the ICM and blastocoel. These cells contribute to the placenta, and are required for 

mammalian conceptus development [24]. Reduction of cells from the TE and/or ICM lineage leads to 

suppressed implantation and lower embryonic viability [25,26]. ICM and total blastocyst cell numbers 

are positively correlated with embryonic development during the embryo transfer assay [27]. In our 

experiments, application of emodin during oocyte maturation had no effect on the TE cell number of 

blastocysts, but induced a dramatic decrease in ICM and total (TE plus ICM) cell numbers (Figure 2). 

Our results imply that emodin treatment during IVM causes mortality and/or developmental delay in 

postimplantation mouse embryos via ICM cell death or decreased proliferation (Figures 2 and 3). 

Interestingly, blastocysts derived from emodin-treated oocytes appeared to undergo decreased 

implantation, and exhibited increased embryo resorption and lower fetal survival rate (Figure 3A),  

but comparable placental weights to the control group. TE cells of embryos play important roles in 

implantation and placental development. Our data showed that emodin does not exert a hazardous effect 

on TE cells of blastocysts, and consequently has no effect on placental development. Based on these 

findings, we propose that the decrease in ICM cell number induced by emodin during oocyte maturation 

is the major injurious factor leading to inhibition of embryonic development. 

Emodin-pretreated oocytes displayed significantly decreased fertilization rates and cleavage to 

two-cell and blastocyst stages, compared to untreated control groups (Figure 1), indicating that emodin 

induces loss of fertilization and sequent embryonic development. Moreover, in an embryo transfer study, 

mouse blastocyst stage embryos derived from emodin-pretreated oocytes displayed lower implantation 

and higher resorption rates than control blastocyst-derived untreated oocytes (Figure 3A). Further 

experiments demonstrated significantly lower embryo implantation rates and fetal weights and higher 

resorption rate of blastocyst stage embryo transfer to mouse uterus in the emodin intake group, 

compared to those of the emodin-free control group (Figure 4A,B). Emodin has been shown to inhibit 

proliferation and induce apoptosis with an IC50 value of 20 μM in Jurkat cells [28]. Preliminary 

experiments by our group further revealed that emodin triggers mouse embryonic stem cell (ESC) 

apoptosis in a dose-dependent manner with an IC50 value of 12 μM, as determined from the MTT assay 

after 24 h of exposure (data not shown). In addition, our initial HPLC results disclosed serum emodin 

levels of about 8.7 μM in mice drinking water supplemented with 40 μM emodin over 4 days (data not 

shown). Our data showed that 10–20 μM emodin induces significant cytotoxic effects, i.e., reduction in 

the rates of oocyte maturation, fertilization, and in vitro embryonic development. Accordingly, we 

propose that emodin suppresses oocyte maturation and in vitro fertilization and promotes early 

embryonic developmental injury at concentrations that may be attained via dietary intake. Clearly, 

emodin has potential hazardous effects on early-stage oocyte maturation and fertilization. 

Emodin has been reported to trigger apoptosis of SCC-4 cells via mitochondria-dependent signaling 

pathways, and mitochondrial dysfunction as a result of Bcl-2 and Bax modulation, mitochondrial 



Int. J. Mol. Sci. 2012, 13 13920 

 

cytochrome c release and caspase activation [10]. Recent research in our laboratory demonstrated that 

pretreatment of cells with specific inhibitors against caspase-9 (Z-LEHD-FMK) and caspase-3 

(Z-DEVD-FMK) effectively blocks apoptosis in mouse blastocysts [12]. In the current investigation, we 

showed that pretreatment of oocytes with emodin leads to decreased cell number, apoptosis, and delay in 

postimplantation development of blastocysts, compared to the control group. These injurious effects 

were prevented by pretreatment of oocytes with a caspase-3 inhibitor to suppress blastocyst apoptosis 

(Figure 5). Treatment with the caspase-3 inhibitor additionally rescued emodin-induced reduction in 

postimplantation development potential following embryo transfer, leading to improvements in embryo 

implantation rate, fetal survival rate, and fetal development status. Our results indicate that emodin 

triggers improper cell apoptotic processes in early-stage embryos, leading to loss of embryo cell 

numbers and suppression of post-implantation development, further supporting its role as a teratogen 

through apoptosis induction in early-stage cells. Accordingly, we conclude that developmental injury by 

emodin occurs via induction of apoptosis processes in oocyte maturation and early-stage embryos.  

4. Experimental Section 

4.1. Chemicals and Reagents 

Dulbecco’s modified Eagle’s medium (DMEM), emodin, and pregnant mare serum gonadotropin 

(PMSG) were obtained from Sigma (St. Louis, MO, USA). Human chorionic gonadotropin (hCG) was 

purchased from Serono (NV Organon, Oss, The Netherlands). TUNEL in situ cell death detection kits 

were acquired from Roche (Mannheim, Germany), and CMRL-1066 medium from Gibco Life 

Technologies (Grand Island, NY, USA). Acetyl Asp-Glu-Val-Asp aldehyde (Ac-DEVD-cho) was  

from Calbiochem. 

4.2. COC Collection and in Vitro Maturation (IVM) 

ICR mice were acquired from the National Laboratory Animal Center (Taiwan). This research was 

approved by the Animal Research Ethics Board of Chung Yuan Christian University (Taiwan).  

All animals received humane care following Principles of Laboratory Animal Care (National Institutes 

of Health publication 85–23, revised 1996 [29]). Mice were maintained on breeder chow  

(Harlan Teklad chow) with food and water available ad libitum. Housing was provided in standard  

28 cm × 16 cm × 11 cm (height) polypropylene cages with wire-grid tops, and maintained under a  

12 h day/12 h night regimen. Cumulus-oocyte complexes (COCs) were obtained according to a previous 

protocol [14]. Briefly, COCs were isolated from female hybrid ICR mice (21 days old) injected with  

5 IU human chorionic gonadotrophin (hCG) 44 h prior to oocyte collection. COCs were collected in 

HEPES-buffered α minimum essential medium (MEM) (containing 50 μg/mL Streptomycin sulfate,  

75 μg/mL Penicillin G, and 5% fetal bovine serum) by gently puncturing visible antral follicles present 

on the ovary surface. Germinal vesicle stage oocytes containing an intact vestment of cumulus cells were 

collected and pooled in at least 10 animals. For oocyte maturation, one drop (~100 μL) of buffer  

(αMEM supplemented with 50 μg/mL Streptomycin, 75 μg/mL Penicillin G, 5% FBS and 50 mIU/mL 

recombinant human FSH) containing 10 COCs was added under oil in 35 mm culture dishes. COC 

maturation was analyzed following treatment with or without various concentrations of emodin (5, 10 or 
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20 μM) for 24 h under an atmosphere of 5% O2, 6% CO2 and balance of N2 at 37 °C. 

4.3. Maturation Status Assessment 

After in vitro maturation (IVM), COCs of each group were treated with 50 U/mL ovine hyaluronidase 

and gently pipetted for the removal of all cumulus cells. Denuded oocytes were collected, and washed 

with fresh medium, followed by phosphate-buffered saline (PBS). Oocytes were fixed in ethanol:glacial 

acetic acid (1:3) for 48 h, and stained with 1% aceto-orcein solution. Nuclear structures were visualized 

using phase-contrast microscopy.  

4.4. In Vivo Maturation 

For obtaining in vivo matured oocytes, 21 day-old mice were injected with 5 IU equine chorionic 

gonadotrophin (eCG) and 5 IU hCG, 61 and 13 h prior to fertilization, respectively. Mature ova were 

collected from the oviduct into HEPES-buffered in MEM medium. 

4.5. Effects of Emodin Intake on Oocyte Maturation in an Animal Model  

The effects of emodin on oocytes were analyzed in 21 day-old ICR virgin albino mice. Female mice 

were randomly divided into two groups of 20 animals each, and administered a standard diet with or 

without 10–40 μM emodin in drinking water for 4 days. COCs were collected by pre-treatment with 5 IU 

human chorionic gonadotrophin (hCG) for 44 h prior to oocyte collection, and analyzed for oocyte 

maturation, in vitro fertilization, and embryonic development. 

4.6. In Vitro Fertilization 

For in vitro fertilization, ova were washed twice in bicarbonate-buffered α-MEM medium (containing 

50 mg/mL Streptomycin, 75 mg/mL Penicillin G and 3 mg/mL fatty acid free bovine serum albumin), 

and fertilized in the same medium with fresh sperm (obtained from a CBAB6F1 male donor). After 

incubation with sperm for 4.5 h, eggs were washed three times in potassium simplex optimized medium 

(KSOM) without amino acids in the presence of L-alanyl-L-glutamine (1.0 mM). Next, eggs were placed 

in 20 mL drops of KSOM under oil, and cultured overnight. During cleavage to the 2-cell stage, embryos 

were transferred to a fresh drop of KSOM under oil, and cultured for another 72 h. All fertilization steps 

and embryo culture were additionally carried out under 5% O2, 6% CO2 and balance of N2 at 37 °C. 

4.7. Fertilization Assessment 

For the examination of fertilization, ova were incubated with sperm for 4.5 h, followed by 3 h of 

culture in fresh medium. Zygotes were assessed for the presence of the male pronucleus with orcein 

staining, as described previously [14]. 

4.8. Cell Proliferation 

Cell proliferation was analyzed by dual differential staining, which facilitated the counting of cell 

numbers in inner cell mass (ICM) and trophectoderm (TE) [25,30,31]. Blastocysts were incubated with 
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0.4% pronase in M2–BSA medium (M2 medium containing 0.1% bovine serum albumin) for the removal 

of zona pellucida. Denuded blastocysts were exposed to 1 mM trinitrobenzenesulfonic acid (TNBS) in 

BSA-free M2 medium containing 0.1% polyvinylpyrrolidone (PVP) at 4 °C for 30 min, and washed with 

M2 [32]. Blastocysts were further treated with 30 μg/mL anti-dinitrophenol-BSA complex antibody in 

M2-BSA at 37 °C for 30 min, followed by M2 supplemented with 10% whole guinea pig serum as a 

source of complement, along with 20 μg/mL bisbenzimide and 10 μg/mL propidium iodide (PI) at 37 °C 

for 30 min. The immunolysed blastocysts were gently transferred to slides, and protected from light 

before observation. Under UV light, ICM cells (which take up bisbenzimidine but exclude PI) appeared 

blue, whereas TE cells (which take up both fluorochromes) appeared orange-red. Since multinucleated 

cells are not common in preimplantation embryos [33], the number of nuclei represent an accurate 

measurement of cell number. 

4.9. TUNEL Assay of Blastocysts 

For TUNEL staining, embryos were washed in emodin-free medium, fixed, permeabilized, and 

subjected to labeling using an in situ cell death detection kit (Roche Molecular Biochemicals, Mannheim, 

Germany), according to the manufacturer’s protocol. Photographic images were obtained with a 

fluorescence microscope under bright-field illumination. 

4.10. Blastocyst Development Following Embryo Transfer 

To determine the ability of expanded blastocysts to implant and develop in vivo, embryos generated 

were transferred to recipient mice. ICR females (6–8 week-old, white skin) were mated with 

vasectomized males (C57BL/6J; black skin; National Laboratory Animal Center, Taiwan) to produce 

pseudopregnant dams as recipients for embryo transfer. To ensure that all fetuses in pseudopregnant 

mice were derived from embryo transfer (white color) and not fertilization by C57BL/6J (black color), 

we examined skin color at day 18 post-coitus. To assess the impact of emodin on postimplantation 

growth in vivo, COCs were exposed to 0–20 μM emodin for 24 h, followed by fertilization and in vitro 

maturation to the blastocyst stage. Subsequently, 8 untreated control embryos were transferred to the left 

uterine horn, and 8 emodin-treated embryos to the right uterine horn in day 4 pseudopregnant mice. 

Forty surrogate mice were analyzed and killed on day 18 post-coitus, and the frequency of implantation 

calculated as the number of implantation sites per number of embryos transferred. The incidence rates of 

resorbed and surviving fetuses were calculated as number of fetuses per number of implantations, 

respectively. The weights of the surviving fetuses and placenta were measured immediately  

after dissection. 

4.11. Statistical Analysis 

Data were analyzed using one-way ANOVA and t-tests, and presented as means ± SD. Data were 

considered statistically significant at p <0.05. 
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5. Conclusions 

Here, we have shown for the first time that emodin exerts injurious effects on oocyte maturation, 

fertilization, and embryonic development, which clearly suggesting that emodin is a risk factor for 

normal embryonic development that may reduce oocyte maturation in infertile couples. Further studies 

are required to determine the possible teratogenic actions of emodin on human oocyte maturation  

and embryogenesis. 
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