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Abstract: Fragment-based drug discovery (FBDD) concerns the screening of  

low-molecular weight compounds against macromolecular targets of clinical relevance. 

These compounds act as starting points for the development of drugs. FBDD has evolved 

and grown in popularity over the past 15 years. In this paper, the rationale and technology 

behind the use of X-ray crystallography in fragment based screening (FBS) will be 

described, including fragment library design and use of synchrotron radiation and robotics 

for high-throughput X-ray data collection. Some recent uses of crystallography in FBS  

will be described in detail, including interrogation of the drug targets β-secretase, 

phenylethanolamine N-methyltransferase, phosphodiesterase 4A and Hsp90. These 

examples provide illustrations of projects where crystallography is straightforward or 

difficult, and where other screening methods can help overcome the limitations of 

crystallography necessitated by diffraction quality. 

Keywords: fragment-based screening; crystallography; drug design; synchrotron  

radiation; X-ray 

 

1. Introduction 

Contemporary drug discovery efforts are aimed at modulating the activities of specific targets 

(almost always a protein that is essential to a pathogen, or a human protein that is misregulated, 

misfolded or mutated). The identification of chemical leads against these targets is a key step in the 
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drug discovery process. Starting-points for chemical leads include natural products, high throughput 

screening (HTS) of large chemical libraries, and most recently fragment-based drug discovery 

(FBDD). The latter is a method that has evolved over the past ~20 years for generating high affinity 

ligands to serve as starting points for the development of drug candidates [1]. The FBDD approach 

utilizes compounds of lower molecular weight (<~300 Da) compared to those used in high-throughput 

screening. The origins of FBDD are debatable, but it has been documented [2] that X-ray 

crystallography was first used to map the interactions of small-molecule organic solvents  

(e.g., acetonitrile and isopropanol) on protein surfaces [3,4]. In 1996, Shuker and co-workers [5] 

described “SAR by NMR”, in which NMR was used to map small organic molecules to sub-sites on a 

protein, followed by the optimization and linking of these entities to produce high-affinity ligands. In 

1998, Stout and co-workers demonstrated the additive nature of substrate fragments in crystal 

structures of thymidylate synthase in complex with fragments of deoxyuridine monophosphate [6], 

suggesting a modular approach to lead design. By the 2000s, these small organic molecules  

were referred to as “fragments” [7], “binding elements” [8] “needles” [9], “shapes” [10], or “seed 

templates” [11]. Notably, approaches using FBDD have been successful when large HTS screens have 

failed, for example, in the development of β-secretase (BACE) inhibitors [12]. 

FBDD differs with respect to the more established HTS in several aspects. The diversity of 

chemical functionality that can be sampled relative to the volume of chemical space is greater for 

fragments, giving an elevated hit-rate compared with HTS. As ligands become more complex, the 

probability of observing relevant interactions falls dramatically for a given library [13]. A consequence 

of higher chemical diversity and better hit-rates is that fragment libraries tend to be smaller in size (in 

the order of 10
3
 compounds) compared with libraries of larger compounds used in HTS (which may 

contain up to 10
6
 compounds). The smaller size of fragment libraries compared with HTS libraries 

makes FBDD accessible to small biotechnology companies and academic laboratories that do not have 

access to large compound libraries. Fragments tend to have low affinity for their targets compared with 

HTS hits, and fragment-screening techniques need sufficient sensitivity to detect hits with Kd values in 

the mM to high μM range. This low affinity is partly a consequence of overcoming a rigid body 

entropic barrier, estimated to be 15–20 kJ/mol (or 3 orders of magnitude in Kd) at 298 K [14]. This 

effect is independent of molecular weight and thus fragments that overcome this barrier form “high 

quality” interactions (highly energetically favorable interactions that overcome the entropic cost of 

binding). Fragments often bind with better “ligand efficiencies” (LE) than traditional screening  

hits [15], where LE is a function of binding free energy and the number of heavy atoms (NHA) in the 

system: LE = −∆G/NHA [16]. An important aspect of the optimization process is that, as fragments are 

developed into leads, these “high quality” interactions are maintained [17]. Thus, in the mature lead 

compound it is possible to see moieties of the fragment from which the lead grew. 

Early FBDD projects utilized crystallography [7] or NMR [10] methods as primary screening 

methods. Validation of hits is a vital component of the FBDD strategy and should include a technique 

to estimate binding affinity. Isothermal titration calorimetry (ITC) is considered by some [17] as the 

“gold standard” for validation. ITC is highly sensitive and can be used to determine the enthalpic and 

entropic contributions of a fragment to the binding free energy. Boehm and co-workers [9] used  

in silico screening followed by validation by biophysical methods including NMR for targeting DNA 
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Gyrase. More recently, thermal shift assays (TSA) [18] and surface plasmon resonance (SPR) [19] 

have been employed. 

In this review, we shall address practical considerations in FBS by crystallography and provide 

examples of its use in successful drug discovery programs, highlighting cases where complementary 

approaches have assisted the discovery process, and some potential pitfalls. 

2. Practical Considerations in FBDD 

2.1. Library and Compound Properties 

Lead compounds must have high affinity for the target, and “drug like” physico-chemical and 

pharmacodynamic properties. Lipinski and co-workers [20] identified key features of orally 

bioavailable drugs in what is now called the “rule of five”. These are: molecular weight < 500 Da; 

calculated log partition coefficient between octanol and water (clogP, a measure of lipophilicity) < 5; 

number of hydrogen bond donors ≤ 5; number of hydrogen bond acceptors ≤ 10. Congreve and 

coworkers analyzed a diverse set of fragment hits against a range of targets and developed the  

so-called “rule of three” [21]. These are: molecular weight < 300 Da; clogP ≤ 3; number of  

hydrogen-bond donors ≤ 3; number of hydrogen-bond acceptors ≤ 3. While fragment libraries are 

designed with functional group diversity in mind, reactive and potentially toxic functional groups 

unsuitable for drugs are excluded [12]. Fragment libraries tend to be biased toward planar, achiral 

heterocycles and it has been argued recently that the use of fragments richer in sp
3
-centres should 

result in increased hits on distinct sites on biological targets [22]. 

Size estimates of chemical space vary greatly depending on the criteria used. An early (1996) study 

on the size of chemical space (i.e., the number of possible molecules) with drug-like properties  

was estimated to be as high as 10
60

 compounds [23]. A recent, much lower estimate based on a  

power-function derived from the growth of organic compounds as a function of the number of carbon 

atoms puts the size of chemical space of drug-like compounds with ≤100 carbon atoms at 3.4 × 10
9
 [24]. 

Fink and Reymond estimated that the number of chemical entities with up to 11 C, N, O and F atoms 

that follow Congreve’s rule of three to be 13.2 million [25]. 

Owing to their inherently weak binding, fragments need to be soluble at about 10 mM in crystal 

soak buffers from stock solutions in dimethylsulfoxide (DMSO) at about 0.1 M. To improve the 

efficiency of fragment soaking, cocktails containing multiple compounds are used. The number of 

fragments in the cocktail is dictated by the required concentration and the concentration of DMSO 

tolerated by the crystals. 

Several commercial fragment libraries suitable for crystallographic screening are available. Zenobia 

Therapeutics (San Diego, CA, http://www.zenobiatherapeutics.com) distributes two sets of compounds 

“Library 1” (352 compounds) and “Library 2” (286 compounds). Maybridge (Cornwall, UK, 

http://www.maybridge.com) distributes the Ro3 (Rule of 3) 2500 Diversity Fragment Library 

consisting of a “core set” of 1000 compounds with a “supplement set” of 1500 compounds. Otava 

(Kyiv, Ukraine, http://www.otavachemicals.com) supplies fragment libraries from a set of 7129 

compounds. ChemBridge (San Diego, CA, http://www.chembridge.com) distributes a >7000 

compound fragment library. All libraries use the aforementioned “rule of three” criteria [21] and in 
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several cases, additional (proprietary) filters for shape and chemistry in library development. 

Information supplied with the libraries varies with suppliers but will generally include chemical 

structures with SMILES strings [26] and three-dimensional structure files. 

2.2. The Target 

The most important requirement for crystallographic FBS is the availability of target protein 

crystals for which a structure solution is available. Crystals must be robust, stable under soaking 

conditions and diffract to beyond about 2.5 Å resolution—sufficient to place fragments unambiguously 

in electron density. Crystallization still represents a significant bottleneck in structure determination by 

X-ray diffraction techniques. Today, techniques and tools are available to aid in the crystallization of 

difficult targets. Automation in the form of robotic plate-based screening techniques or microfluidic 

platforms allow many more conditions to be sampled and for economical use (sub-microliter volumes) 

of the sample [27,28]. Furthermore, techniques in molecular biology and protein chemistry, including 

modification of the target by enzymes (“see below”) and protein engineering, can aid in the 

crystallization of difficult targets. 

Proteins produced naturally or through recombinant expression may contain flexible or disordered 

regions that hinder the formation of crystal contacts. Possibilities include the N- and C-terminal 

regions, internal loops and post-translational modifications (e.g., many eukaryotic proteins undergo N- 

and O-glycosylation). The removal of flexible and heterogeneous glycosidic groups to improve 

crystallizability is a well-established strategy [29] and numerous deglycosylating enzymes are 

commercially available. Successful strategies have been outlined for the use of proteases to form stable 

fragments of proteins for crystallization. Recently, proteolysis in situ (addition of trace amounts of 

trypsin or chymotrypsin) has been reported [30]. In such cases, flexible loops or termini regions—that 

potentially block crystal contact formation—accessible to the protease are removed. This strategy may 

fail due to incomplete proteolysis leading to sample heterogeneity. 

As most protein targets are obtained by heterologous overexpression, protein crystallizability can be 

improved by protein engineering [31]. An alternative to proteolysis is to identify the minimal 

functional fragment of the target and to design a modified gene for overexpression. As protein 

crystallizability is often hampered by the poor solubility of the target protein, strategies to replace 

hydrophobic residues (that may increase the propensity of a protein to aggregate) with hydrophilic 

ones can lead to diffraction-quality crystals. The solubility of the catalytic domain of HIV-1 integrase 

was improved by single- or multiple-point mutations of hydrophobic residues [32]: in mutants where a 

single hydrophobic amino acid was targeted, it was changed to lysine, and in mutants in which two or 

three hydrophobic amino acids were changed simultaneously, more conservative substitutions for 

alanine were made. From this work, a single-point mutant, F185K, showed a dramatically improved 

solubility and yielded X-ray-quality crystals [33]. Free surface cysteine residues may also interfere 

with crystallization through oxidation and the formation of intramolecular disulfide bonds. Mutation of 

cysteine residues to the less reactive serine can enhance crystallizability. The crystallization of human 

GSTO2-2 was achieved in part through a strategy whereby an initial model was created based on the 

homologous GSTO1-1 structure and six cysteine residues predicted to lie on the surface were mutated 

to serine [34]. Patel and coworkers [35] used several experimental approaches (including chemical 
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modification and crystallography) to show that a free cysteine residue (C162) in mitogen-activated 

protein kinase p38α was prone to modification. As a result, a C162S mutant was prepared, which 

showed improved homogeneity and stability, and gave improved crystals. 

In fragment screening, crystals are typically soaked in cocktails containing 3–10 compounds  

(see above). The compositions of the cocktails are chosen so as to contain distinctive shapes that 

unambiguously define them in electron density. The hit rate should be less than one compound per 

cocktail so as to avoid ambiguous electron density resulting from multiple hits bound with partial 

occupancies [17]. Some compounds may cause crystals to crack or dissolve and the risk of crystal 

damage increases with the number of different compounds in the cocktail. An appropriate strategy for 

sensitive crystals is to keep the number of fragments in each cocktail low. 

Badger [36] describes further practical considerations in crystal preparation, soaking, 

cryoprotection, structure refinement and electron density interpretation. 

2.3. X-ray Sources, Detectors and Robots and Software 

Synchrotron radiation and robotic crystal mounting and data collection offer a significant  

advantage for crystallographic fragment screening [36]. Synchrotron beam-lines for macromolecular 

crystallography are now widespread: there are over 140 such beamlines available worldwide 

(http://biosync.sbkb.org). Several pharmaceutical interests operate dedicated beamlines. The Lilly 

Research Laboratories Collaborative Access Team (LRL-CAT) at the Advanced Photon Source, 

Argonne, Illinois, has been described in detail [37]. 

The intensity of synchrotron X-radiation facilitates short data collection times, necessitating  

fast-readout detectors and robotic sample-changing to increase data collection efficiency. The most 

popular detectors for synchrotron utilize charge-coupled device (CCD) technology. Commonly used 

CCDs are manufactured by Area Detector System Corporation (USA) and MarResearch (Germany). 

An emerging technology for diffraction data measurement is the pixel array detector (PAD). Made up 

of a two-dimensional array of p-n diodes joined to a readout chip [38], PADs enable readout times of 

less than 5 milliseconds compared with about 1 s for CCDs [37]. The ID29 beam-line at the ESRF [39] 

features a Pilatus 6M PAD, a 424 × 435 mm detector featuring 172 × 172 μm pixels, 2 ms readout time 

and is capable of recording up to 12 frames per second. 

Concomitant with the deployment of robotic systems for crystal handling has been the development 

of control and automation software. So-called “data-collection pipelines” (DCPs) automate some or all 

procedures from robot sample mounting to the production of reflection data ready for structure 

elucidation. Robot systems for sample changing on synchrotron beam-lines include the Stanford 

Automated Mounter (SAM), the ACTOR™ system (Rigaku, Carlsbad, CA, USA), and the ALS 

Automounter. A common feature of these systems is the use of specialized cassettes for sample 

storage, shipping and robot handling. By way of example, SAM allows up to 288 crystals to be 

screened without human intervention [40]. Sample pins holding crystals are mounted in cylindrical 

cassettes containing 96 ports, and the robot can access three such cassettes at any one time. On 

synchrotron beamlines utilizing the SAM sample changer, diffraction experiments and data collection 

runs can be controlled at the synchrotron or remotely using the Blu-Ice/Distribute Control System [41]. 

At the European Synchrotron Radiation Facility (ESRF), an automatic data-collection system can track 
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samples, control crystal mounting and alignment, determine experimental strategies based on initial 

images, collect the diffraction data. It can integrate, scale and reduce the experimental intensities [42]. 

Several programs are available for building ligands into electron density. Commercial packages 

include PrimeX by Schrödinger (New York, NY, USA), Rhofit by Global Phasing (Cambridge, UK) 

and Afitt by OpenEye (Santa Fe, NM, USA). Programs from academic laboratories include  

COOT [43], the Phenix suite [44] and ARP/wARP [45]. The AutoSolve platform developed by Astex 

Therapeutics automates X-ray data processing, structure solution and the interpretation of electron 

density maps [46]. For ligand fitting, AutoSolve implements a novel fitting procedure that 

automatically determines the compound identity (in the case of fragment cocktails) and binding mode 

that best explains the available electron density. Chemical information in the form of favorable 

interactions with the target is accounted for. 

2.4. Potential Pitfalls in X-ray Based Screening 

Historically, a crystal structure model is the result of one worker’s subjective interpretation of an 

electron density map [47]. Thus, the use of X-ray crystal structures in fragment screening and lead 

design is non-trivial and depends on the skill of the crystallographer, who should strive to model 

macromolecules, ligands and solvent molecules in electron density as accurately as the data will allow. 

While the automation of electron density maps (such as that provided by the aforementioned 

AutoSolve platform) is inherently objective, unambiguous interpretations of electron density maps can 

only be produced if recognizable shapes are present in the difference maps [46]. In section 3.3 below, 

we describe a recent case where cooperative binding of two fragments led to a false positive and how 

this was detected. 

For every atom, the structure will contain the atomic coordinates and a B-factor (“temperature 

factor”) to model static and dynamic disorder. Note that the precision to which coordinates are 

reported (to 0.001 Å) is the same regardless of resolution. At resolutions lower than about 2.5 Å, the 

details of a protein structure (e.g., side-chain placement and the modeling of loop) may be ambiguous. 

The uncertainty in the position of the individual atoms could be over 0.5 Å or more below 3 Å 

resolution [48]. Even at moderate resolution (1.5 to 2.5 Å), uncertainties in the placement of 

asparagine, glutamine and histidine occur because of their internal pseudo-symmetry. In the case of 

asparagine and glutamine, the side-chain N and O atoms will have similar electron densities, and in the 

case of histidine, the N and C atoms of the imidazole ring will usually be indistinguishable (and 

consequently the side-chains of these residues can typically be built in two orientations). A careful 

investigator will account for this ambiguity by choosing a conformation on the basis of hydrogen-bond 

donors and acceptors surrounding the side-chains of these residues. Changes in the solvent structure 

that occur due to ligand binding may help to unravel unusual thermodynamic observations [49]. 

Interpretation of solvent binding in crystal structures becomes more difficult as resolution decreases.  

Errors in the placement of ligands (including fragments) in macromolecular crystal structures can 

arise from several causes. Non-covalently bound ligands may exhibit greater thermal motion or 

conformational disorder than the surrounding protein, leading to poor electron density. Uncertainties or 

ambiguities in the stereochemistry or tautomeric state of a ligand may also lead to an incorrect  

model [50]. For fragments with internal pseudo-symmetry, considerations of hydrogen bonding, 
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hydrophobicity, etc., can assist in the interpretation of ambiguous electron density. For example, the 

location of the nitrogen atom in a pyridine ring will be ambiguous if electron density alone is 

considered. (This is similar to the ambiguity noted above for the placement of histidine, asparagine and 

glutamine sidechains noted above.). The structures of ligands found in complexes with biological 

molecules may be less reliable than those of the macromolecule itself due to the fact that model 

building and validation tools for macromolecular structures are well developed compared to those for 

ligands [51]. Furthermore, geometric constraints (bond lengths, bond angles, planar and chiral 

restraints) applied to molecules during refinement are more thoroughly optimized for biological 

polymers compared with other entities. Crystal structure modeling programs, e.g., COOT [43] are able 

to generate geometric restraints for ligands based on SMILES strings. 

Apart from pitfalls associated with the accurate interpretation of electron density, artifacts may be 

generated by the crystallization process itself. Potential blocking of the target site by crystal contacts 

can result in false-negatives upon soaking ligands. Similarly, residues surrounding the site of interest 

could be held in an inappropriate conformation for ligand binding, or could be blocked by other 

ligands. For example, crystals of the drug target, lactose dehydrogenase A were not appropriate for 

soaking because the active site loop was held open by crystal contacts and the substrate site was 

occupied by citrate from the crystallization buffer or phosphate from the purification buffer [52]. 

Additionally, crystals grown at extremes of pH may not yield ligand-binding modes observed at 

physiological pH due to protonation/deprotonation of susceptible side-chains. For example, at  

pH 3, the protonation of aspartate and glutamate side-chains will be significant and will alter the 

charge and hydrogen-bonding characteristics of the protein. Some structures undergo pH dependant 

conformational changes. For example, the severe acute respiratory syndrome coronavirus (SARS-CoV) 

main protease shows substantial differences at pH 6.0, 7.6 and 8.0 [53]. 

3. Examples of Crystallography in FBDD 

In this section, we describe some recent examples of FBDD against protein targets and the 

techniques (in addition to crystallography) brought to bear to screen fragments and assay binding. 

Table 1 lists several recent projects and the various techniques used for screening and assays. The use 

of FBS in lead development of inhibitors of β-secretase (Section 3.1) represents a classic example of 

crystallography in FBDD and will be discussed in detail. In Section 3.2, fragment screening against 

phosphodiesterase 4—where crystals were not of sufficient quality for direct use in screening—is 

described. Here, a new technology for high-throughput calorimetry (enthaply arrays) was used for  

pre-screening fragments for crystallography. Fragment screening against human phenylethanolamine  

N-methyltransferase by crystallography (Section 3.3) provides an interesting case of cooperative 

fragment binding (from fragments soaked into crystals in cocktails). Finally, the complementary use of 

NMR and crystallography in the development of Hsp90 inhibitors is described (Section 3.4). 
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Table 1. Recent examples of fragment-based screening. 

Reference Article title Target protein 

Primary/secondary 

FBDD screening 

method 

Binding/activity 

assay 

[54,55] Application of Fragment Screening by X-ray 

Crystallography to the Discovery of 

Aminopyridines as Inhibitors of -Secretase 

β-Secretase X-ray crystallography Fluorescence-based 

activity assay 

[56]  Missing fragments: detecting cooperative 

binding in fragment-based drug design 

hPNMT X-ray crystallography ITC/Molecular 

dynamics free energy 

calculation 

[57] Fragment-based screening for inhibitors of 

PDE4A using enthalpy arrays and X-ray 

crystallography 

Phosphodiesterase 

4A 

High-throughput 

calorimetry/X-ray 

crystallography 

High-throughput 

calorimetry 

[58,59] Fragment-Based Drug Discovery Applied to 

Hsp90. Discovery of Two Lead Series with 

High Ligand Efficiency 

Hsp90 NMR/X-ray 

crystallography 

ITC/Bioassay 

[60] Fragment-Based Discovery of Bromodomain 

Inhibitors Part 1: Inhibitor binding modes and 

implications for lead discovery 

Bromodomain Fluorescence anisotropy 

assay/X-ray 

crystallography 

Fluorescence 

anisotropy assay 

[61] Fragment-Based Discovery of Bromodomain 

Inhibitors Part 2: Optimization of 

Phenylisoxazole Sulfonamide 

Bromodomain/ 

AcK pocket 

Fluorescence anisotropy 

assay/Modelling X-ray 

crystallography 

SPR/Thermal shift 

assay 

[62] Structure-based design of potent and  

ligand-efficient inhibitors of CTX-M class A  

β-lactamase 

β-lactamase  

CTX-M 

Docking/X-ray 

crystallography 

UV-absorbance  

based bioassays/ 

Antibacterial activity 

[63] Discovery of 1,2,4-triaine derivatives as 

adenosine A2A antagonists using structure 

based drug design 

Adenosine A2 

receptor 

Docking/X-ray 

crystallography 

SPR 

[64] Discovery and Optimization of New 

Benzimidazole- and Benzoxazole-Pyrimidone 

Selective PI3Kβ Inhibitors for the Treatment 

of Phosphatase and TENsin homologue 

(PTEN)-Deficient Cancers 

PI3K In vitro enzyme 

assay/Cell based assay 

X-ray crystallography 

In vitro enzyme 

assay/Cell-based 

assay 

[65] Synthesis, Structure–Activity Relationship 

Studies, and X-ray Crystallographic Analysis 

of Arylsulfonamides as Potent Carbonic 

Anhydrase Inhibitor 

Carbonic 

anhydrases 

Docking/X-ray 

crystallography 

Stopped-flow kinetic 

assay 

[66] Implications of Promiscuous Pim-1 Kinase 

Fragment Inhibitor Hydrophobic Interactions 

for Fragment-Based Drug Design 

Pim-1 Kinase Docking/X-ray 

crystallography 

Mobility shift assay 

3.1. β-Secretase 

Amyloid plaques and associated neurofibrillar tangles are known to occur in the brains of 

Alzheimer’s disease (AD) patients. These plaques are composed of β-amyloid peptides derived from 

amyloid precursor protein by the activity of β- and γ-secretases. β-Secretase is known to cleave 
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amyloid precursor protein to yield the N-terminus of the β-amyloid peptides. Beta secretase-1  

(BACE-1) is an aspartyl protease responsible for β-amyloid production and this enzyme is a potential 

therapeutic target for treatment of AD. Figure 1 shows BACE and its active site in complex with a 

peptidomimetic inhibitor [67]. 

Figure 1. Structure Beta secretase-1 (BACE-1). (a) Overall fold showing location of active 

site; (b) Active site residues; (c) Hydroxyethylamine-based peptidomimetic inhibitor;  

(d) Same compound shown in BACE-1. Sub-sites are labeled according to the amino-acids 

either side of the cleavage site (S2, S1, S1', S2', etc.). 

 

Murray and co-workers [54] have used crystallography for FBS against BACE-1. A library 

containing 347 fragments was screened in cocktails containing six compounds. Two hits containing 

aminopyridine motifs were found that formed hydrogen bonds with catalytic aspartate residues D32 

and D228 (Figure 2a,b). The hits form nearly identical interactions with BACE-1. In both cases the 

amine groups form hydrogen bonds with D228 and the protonated pyridine group donates a hydrogen 

bond to D32. This charged bidentate interaction had not been described previously in aspartyl 

proteases. The hydrophobic S1 and S3 pockets adjacent to these ligands are essential for substrate 

peptide binding. Murray and co-workers sought to identify further fragments based on the 

aminopyridine motif seen in Figure 2a,b that would allow access to the S1 and S3 regions. Docking 

calculations were used to select another 65 compounds for screening, including a focused set of 

fragments containing 2-aminopyridine motifs, and cyclic secondary amines (shown to interact with 

catalytic aspartate residues in renin) were also selected. Compounds were docked into multiple  

protein conformations of BACE-1 using a modified version of the GOLD software [68]. Thus, 

fragments were ranked and 65 were selected for crystallographic screening against BACE-1.  
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2-Amino-3-(benzylamino)pyridine (Figure 2c) was found to bind with an IC50 of 310 μM (estimated 

from a BACE assay utilizing a fluorescently labeled peptide). Interestingly, the aminopyridine moiety 

of the compound changed orientation relative to the fragment hits (cf. Figure 2a,b), allowing an 

additional hydrogen bond between the 3-amino group and D32. A cyclic secondary amine,  

4-(4-fluorobenzyl)piperidine (Figure 2d) was also identified from virtual screening. 

Figure 2. Crystal structures of fragment complexes with BACE-1. The chemical  

structures of the protonated forms of the compounds are shown, and, where determined, 

IC50 values are shown. (a) 1-aminoisoquinoline; (b) 2-aminoquinoline; (c) 2-amino-3-

(benzylamino)pyridine; (d) 4-(4-fluorobenzyl)piperidine. 

 

In the companion paper, Congreve and coworkers [55] describe the synthesis of series of 3- and  

6-substituted 2-aminopyridine derivatives with a view to making compounds that occupy the S1 pocket 

in addition to blocking the catalytic aspartate residues. A phenyl group was predicted to make  

suitable hydrophobic interactions with the S1 region and the compound phenylethyl-2-aminopyridine  

(Figure 3a) was synthesized (IC50 > 2 mM). The next compound synthesized was the  

indole-substituted aminopyridine (IC50 = 94 μM) (Figure 3b), which displayed more favorable 

interactions with the S1 pocket compared with the phenyl-substituted compound. A polar interaction 

was observed between the indole NH and the carbonyl oxygen of residue G230. The greatly improved 

IC50 value indicated that the S1 was a useful area to target in the next iteration of design. Derivatives 

were synthesized including one in which a 3-methoxy-biaryl group replaced the indole substituent  

(IC50 = 25 μM) (Figure 3c) which also made favorable interactions with the pocket; the biaryl motif 

was judged suitable for further modification. By combining the biaryl moieties of these hits with the  

2-amino-3-(benzylamino)pyridine hit (Figure 2c), biaryl substituted 2,3-diaminopyridines were 

synthesized to better fit the S1-S3 pocket (Figure 3d–f). The 3-pyridyl group introduced into these 

compounds appeared to form favorable contacts with the pocket. The best compound in this series had 

an n-propyloxy group in place of the methoxy group (Figure 3f) (IC50 = 24 μM). This compound was 

considered to be a high quality lead and was prioritized for further development. 
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Figure 3. Chemical structures of BACE-1 inhibitors developed from fragment hits. The 

structural formulae of the protonated forms of the compounds bound are shown, and, 

where determined, IC50 values and crystal structures of complexes with BACE-1 are 

shown. (a) 2-amino-6-phenethylpyridine; (b) 2-(2-(1H-indol-6-yl)ethyl)-6-aminopyridine; 

(c) 2-amino-6-(2-(3'-methoxy-[1,1'-biphenyl]-3-yl)ethyl)pyridine; (d) 2-amino-3-((3-

(pyridin-3-yl)benzyl)amino)pyridine; (e) 2-amino-3-((3-(5-methoxypyridin-3-yl)benzyl) 

amino)pyridine; (f) 2-amino-3-((3-(5-propyloxypyridin-3-yl)benzyl)amino)pyridine. 

 

Compounds with indolyl groups substituted for the 3-pyridyl ring were made to better occupy the S3 

pocket (Figure 4a–c). The indolyl group in these compounds occupied the S3 pocket and formed a new 

hydrogen bond between the indolyl-NH and the G230 carbonyl group (IC50 = 9.1 μM). Next, the  

ortho-position of the phenyl ring (adjacent to the methylene linker), was targeted with a view to 

occupying the S2' sub-site. Two ligands were made containing a 2-pyridinylmethyloxy group or 

benzyloxy group (Figure 4b,c). The benzyloxy-containing compound was too insoluble to allow  

high-quality crystal structure determination, but it is the most potent inhibitor with IC50 of 690 nM. 
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Figure 4. Chemical structures of high-affinity BACE-1 inhibitors. The structural formulae 

of the protonated forms of the compounds bound are shown, and, where determined, IC50 

values and crystal structures of complexes with BACE-1 are shown. (a) 3-((3-(1H-indol-6-

yl)benzyl)amino)-2-aminopyridine; (b) 3-((5-(1H-indol-6-yl)-2-(pyridin-2-ylmethoxy) 

benzyl)amino)-2-aminopyridine; (c) 2-amino-3-((2-(benzyloxy)-5-(1H-indol-6-yl)benzyl) 

amino)pyridine. 

 

These structures show the evolution of fragment hit to nanomolar-inhibitor. These compounds 

include a binding motif not previously observed in aspartic protease inhibitors: the aminopyridine 

motif that interacts with the catalytic aspartate residues. 

3.2. Phosphodiesterase 4A 

The cAMP-degrading phosphodiesterase 4 (PDE4) family of enzymes is a potential target for 

therapeutics for the treatment of chronic obstructive pulmonary disease (COPD), asthma, depression 

and neurodegenerative diseases. Human PDE4A (Figure 5) is difficult to crystallize, making screening 

by crystallography impractical. Recht and co-workers [57] have used enthalpy arrays (i.e., arrays of 

nanocalorimeters) to perform enzyme activity-based fragment screen for inhibitors of PDE4A activity. 
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Figure 5. (a) Structure of human PDE4A in cartoon form; (b) Active-site of PDE4A in 

complex with inhibitor pentoxifylline; (c) Structure of pentoxifylline. 

 

The fabrication of 96-channel enthalpy arrays for the measurement of thermodynamic and  

kinetic parameters of molecular interactions was described by Torres and co-workers [69]. The  

array uses small sample volumes (250 nL) and short assay times (typically 5 to 10 min) not possible in 

conventional calorimetry. The assay used for PDE4 was based on the hydrolysis of cAMP measured at 

21 °C. The assay was validated using the nonselective phosphodiesterase inhibitors pentoxifylline 

(Figure 5c) and 3-isobutyl-1-methylxanthine (IBMX). Initially, a 160-compound fragment library was 

screened for competitive inhibitors. From the calorimetric data, the change in KM in the presence of the 

fragment was used to determine KI. Eleven fragments with KI values between 320 and 1800 μM were 

selected for crystallography, and complexes with fragments were obtained by co-crystallization with 

diffraction quality apparently dependent on ligand potency. High-quality diffraction was obtained with 

one potent ligand, pentoxifylline (KI 72 μM) (Figure 5b,c). It is noteworthy that six of the fragment 

hits contain functional groups that contain purine-like or quinoline-like features (Figure 6). 

Figure 6. (a) Adenine component of cAMP; (b) Purine-like hits; (c)  

4-[3-(methoyxphenyl)amino]-6-(methylsulfonyl)quinoline-3-carboxamide; (d) quinoline-like 

hits. Analogous nitrogen atoms are highlighted in blue. 
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While the natural substrate (cAMP) contains a purine ring (Figure 6a), the known PDE inhibitors 

including 4-[3-(methoxyphenyl)amino]-6-(methylsulfonyl)quinoline-3-carboxamide contain a quinoline 

system (Figure 6c). Although it was not possible to obtain crystal structures of PDE4A with all 

fragments, complexes of PDEs with substrates and inhibitors suggest a common binding mechanism 

whereby ligand nitrogen atoms accept a hydrogen bond from active-site residue Q581. 

The use of enthalpy arrays in fragment screening has several benefits: the number of X-ray 

structures to be determined is reduced (which may be necessitated where structural characterization is 

challenging), and the type of binding (competitive, uncompetitive, etc.) can be elucidated. 

3.3. A Case of Cooperative Fragment Binding: hPNMT 

Human phenylethanolamine N-methyltransferase (hPNMT) catalyses the last step in adrenaline 

synthesis: the conversion of noradrenaline to adrenaline, utilizing S-adenosyl-methionine (SAM) as the 

methyl-group donor. Adrenaline in the central nervous system is implicated in a range of physiological 

and pathological conditions including Parkinson’s and Alzheimer’s diseases and PNMT inhibitors are 

of potential therapeutic value. Drinkwater et al. [70] used 96 cocktails of four fragments each (a total 

of 384 compounds) for screening against hPNMT by crystallography. A cocktail was considered to be 

a false positive if examination of the electron density failed to identify a specific fragment, and if no 

density was observed when fragments were soaked into the crystal separately. A total of 12 

compounds were ultimately identified, binding in the noradrenaline-binding site. ITC was used to 

confirm the hits, and 3 compounds were ruled out. Subsequent analysis revealed that some of the  

false-positive hits from cocktail soaking was due to cooperative binding: Nair and co-workers used 

molecular dynamics (MD) to show that one false positive was actually two fragments cooperatively 

bound in the active-site [56]. Figure 7 shows the compounds in one of the cocktails used to soak 

hPNMT crystals. 

Figure 7. (a) Resorcinol; (b) Imidazole; (c) 6-Chlorooxindole; (d) (S)-2-amino-3-(1H-

inden-3-yl)propanoic acid. 

 

Electron density was initially interpreted as compound 6-chlorooxindole (Figure 7c), but binding 

could not be validated by ITC [70]. Nair et al. performed MD simulations of the PNMT/ 

6-chlorooxindole complex, showing that the compound was ejected from the binding pocket on  

50−100 ps of simulation [56]. A series of simulations and re-assessment of the electron density led to a 



Int. J. Mol. Sci. 2012, 13 12871 

 

 

model in which compounds shown in Figure 7a,b are bound cooperatively. The structures 

corresponding to these structural interpretations are shown in Figure 8. 

Figure 8. (a) PNMT with 6-chlorooxindole (6CO) and S-adenosyl-homocysteine (SAH) 

modelled in the active site (based on PDB entry 3KPY); (b) Same structure after 

reassignment of density to imidazole (IMI) and resorcinol (RCO) (based on PDB entry 

4DM3). Protein backbone is shown in ribbon form, with residues shown in stick form. 

Ligands are drawn in stick form with carbon atoms colored orange. 

 

3.4. Heat Shock Protein 90 (Hsp90) 

Hsp90 is an ATP dependent molecular chaperone that modulates protein stability and is a key 

component of the heat-shock response [71]. Many client proteins of Hsp90 have been identified and 

several are involved in cellular signaling (e.g., kinases and transcription factors) and play critical roles 

in cancer progression [72]. Over-expression of Hsp90 has been demonstrated in cancer types such as 

advanced malignant melanoma, oesophageal squamous cell carcinoma, non-small cell lung cancer and 

pancreatic carcinoma [73]. Hsp90 is an attractive target for chemotherapy: inhibition of its activity 

affects multiple signaling pathways or cellular processes required for cancer cells to survive under 

stress [74]. Furthermore, Hsp90 inhibitors work synergistically with several other drugs in the 

treatment of both solid tumors and leukemias. Inhibiting Hsp90 with small molecules has been a 

popular area of research interest over the last decade and progress had been made in diversifying 

available chemotypes [75]. 

Murray and co-workers have applied fragment-based screening to Hsp90 using NMR, ITC and  

X-ray crystallography [58,59]. About 1600 compounds were screened against Hsp90 in cocktails using 

ligand observed NMR via waterLOGSY. Favorable compounds were further characterized by an NMR 

assay measuring displacement by fragments of ADP in Hsp90’s nucleotide binding site. Based on the 
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NMR assay and considerations of structural diversity, 125 fragments were selected for crystallography, 

resulting in 26 crystal structures. One of these was an aminopyrimidine compound (Figure 9a) with 

measured affinity of 250 μM (estimated by ITC). The pyrimidine moiety binds in a structurally 

analogous way to the purine ring of ADP. The molecule forms an extensive network of hydrogen 

bonds with the side chain of D93 and water molecules. Development of the fragment proceeded by 

expansion of the compound to better fill the lipophilic pocket occupied by the pyridine moiety and by 

reduction of the internal strain due to the torsion angle of the two rings. The crystal structure  

(Figure 9a) shows that the pyridine and pyrimidine rings are rotated by 47.6° along their connecting 

bond, whereas the optimal geometry for such systems should be close to 0°. Structure-activity relation 

(SAR) analysis with quantum mechanical calculation of the torsional contribution and subsequent 

modification led to compounds with the pyridine ring substituted for phenyl groups with methoxy- and 

chloro- substitutions at the 2- and 6-positions. These substitutions both relieved the strain and better 

filled the proximal lipophilic pocket. A 4-chloro-substitution on the ring further improved occupancy 

of the lipophilic pocket. The solubility of the compounds was increased in order to improve cell-based 

activity. The result of these efforts was the incorporation of an N-ethylmorpholino-group at the  

5-position of the phenyl ring. The resulting compound, shown in Figure 9b, has an IC50 of 4.8 nM  

(ITC estimate). It is noteworthy that the orientation of this compound is essentially the same as the 

starting fragment while the interactions are maintained. 

Figure 9. (a) Hsp90 with pyrimidine fragment bound, and (b) with 4-chloro-6-(2,4-

dichloro-5-(2-morpholinoethoxy)phenyl)pyrimidine-2-amine bound. 
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Similar strategies were applied to a phenol-based fragment hit (Figure 10a, IC50 = 790 μM by ITC). 

The structure of the complex of this fragment with Hsp90 indicated that the methoxy-group could be 

replaced with substituents that occupied the proximal lipophilic pocket. A tert-butyl or isopropyl group 

at this position improved the affinity 100-fold. Scaffolds with these substitutions were advanced to 

synthetic efforts focused on the diethylamide group, while the carbonyl group was kept to maintain  

the hydrogen-bond with an adjacent threonine residue and adjacent water molecules. An isoindoline 

group replacing the diethylamide group delivered an affinity improvement of several-hundred-fold. 

Eventually the phenol core was converted to a resorcinol core due to its similarity with the natural 

product radicicol, a known Hsp90 inhibitor. The final lead (Figure 10b, IC50 = 0.54 nM by ITC) was 

further developed into drug candidates under clinical trial [59]. 

Figure 10. (a) Hsp90 with phenol-based fragment bound, and (b) with (2,4-dihydroxy-5-

isopropylphenyl)(isoindolin-2-yl)methanone bound. 

 

4. Conclusions 

FBDD is a flexible and potent tool for the creation of small molecules with potential for 

development into drugs. Coupled with high-resolution structures of protein–fragment complexes, 

focused strategies for medicinal chemistry for fragment evolution can be derived. There are many 

possible work-flow designs for fragment screening that can be utilized in drug discovery and 

contemporary efforts typically use more than one biophysical method. Thanks to advances in 

automation software and robotics, crystallography can be used as the primary screening technique and 
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for the determination of the topology of the binding of fragment to the target protein. However, to 

determine binding affinities of hits, other techniques should be applied. The general ease of access to 

synchrotron radiation and attendant robotic infrastructure makes this approach broadly accessible. 

Here we have described four cases where crystallography has contributed to FBS and where successes 

and pitfalls are highlighted. In the case of BACE-1 inhibitors, crystallography was straightforward and 

contributed to the development of nanomolar IC50. In the case of PDE4A, crystallography was 

challenging and the screening program benefited from the new enthalpy array technology to pre-select 

fragments for further study. Finally, FBS against Hsp90 revealed multiple hits that gave rise to 

alternative nanomolar-IC50 inhibitors. FBS against hPNMT demonstrated a case of cooperative 

fragment binding and its diagnosis by MD simulations. In spite of some disadvantages described in the 

article, crystallography plays a central role in structural biology and drug discovery processes. The 

ultimate value of X-ray crystallography is in the visualization of fragment binding details that can 

indicate vectors for the expansion and evolution of hits. Orthogonal screening techniques are of value 

for ruling out false positives. 

Acknowledgment 

This work was supported by ARC Future fellowship (FT0990287) and Discovery Project grant 

(DP110100660) to AJO. 

Conflict of Interest 

The authors declare no conflict of interest. 

References 

1. Larsson, A.; Jansson, A.; Aberg, A.; Nordlund, P. Efficiency of hit generation and structural 

characterization in fragment-based ligand discovery. Curr. Opin. Chem. Biol. 2012, 15, 482–488. 

2. Davies, T.G.; Tickle, I.J. Fragment screening using X-ray crystallography. Top. Curr. Chem. 

2012, 317, 33–59. 

3. Fitzpatrick, P.A.; Steinmetz, A.C.; Ringe, D.; Klibanov, A.M. Enzyme crystal structure in a neat 

organic solvent. Proc. Natl. Acad. Sci. USA 1993, 90, 8653–8657. 

4. English, A.C.; Done, S.H.; Caves, L.S.; Groom, C.R.; Hubbard, R.E. Locating interaction sites on 

proteins: The crystal structure of thermolysin soaked in 2% to 100% isopropanol. Proteins 1999, 

37, 628–640. 

5. Shuker, S.B.; Hajduk, P.J.; Meadows, R.P.; Fesik, S.W. Discovering high-affinity ligands for 

proteins: SAR by NMR. Science 1996, 274, 1531–1534. 

6. Stout, T.J.; Sage, C.R.; Stroud, R.M. The additivity of substrate fragments in enzyme-ligand 

binding. Structure 1998, 6, 839–848. 

7. Lesuisse, D.; Lange, G.; Deprez, P.; Benard, D.; Schoot, B.; Delettre, G.; Marquette, J.P.;  

Broto, P.; Jean-Baptiste, V.; Bichet, P.; et al. SAR and X-ray. A new approach combining 

fragment-based screening and rational drug design: Application to the discovery of nanomolar 

inhibitors of Src SH2. J. Med. Chem. 2002, 45, 2379–2387. 



Int. J. Mol. Sci. 2012, 13 12875 

 

 

8. Maly, D.J.; Choong, I.C.; Ellman, J.A. Combinatorial target-guided ligand assembly: 

Identification of potent subtype-selective c-Src inhibitors. Proc. Natl. Acad. Sci. USA 2000, 97, 

2419–2424. 

9. Boehm, H.J.; Boehringer, M.; Bur, D.; Gmuender, H.; Huber, W.; Klaus, W.; Kostrewa, D.; 

Kuehne, H.; Luebbers, T.; Meunier-Keller, N.; et al. Novel inhibitors of DNA gyrase: 3D 

structure based biased needle screening, hit validation by biophysical methods, and 3D guided 

optimization. A promising alternative to random screening. J. Med. Chem. 2000, 43, 2664–2674. 

10. Fejzo, J.; Lepre, C.A.; Peng, J.W.; Bemis, G.W.; Ajay; Murcko, M.A.; Moore, J.M. The SHAPES 

strategy: An NMR-based approach for lead generation in drug discovery. Chem. Biol. 1999, 6, 

755–769. 

11. Liebeschuetz, J.W.; Jones, S.D.; Morgan, P.J.; Murray, C.W.; Rimmer, A.D.; Roscoe, J.M.; 

Waszkowycz, B.; Welsh, P.M.; Wylie, W.A.; Young, S.C.; et al. PRO_SELECT: Combining 

structure-based drug design and array-based chemistry for rapid lead discovery. 2. The 

development of a series of highly potent and selective factor Xa inhibitors. J. Med. Chem. 2002, 

45, 1221–1232. 

12. Wyss, D.F.; Wang, Y.S.; Eaton, H.L.; Strickland, C.; Voigt, J.H.; Zhu, Z.; Stamford, A.W. 

Combining NMR and X-ray crystallography in fragment-based drug discovery: Discovery of 

highly potent and selective BACE-1 inhibitors. Top. Curr. Chem. 2012, 317, 83–114. 

13. Hann, M.M.; Leach, A.R.; Harper, G. Molecular complexity and its impact on the probability of 

finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 2001, 41, 856–864. 

14. Murray, C.W.; Verdonk, M.L. The consequences of translational and rotational entropy lost by 

small molecules on binding to proteins. J. Comput. Aided. Mol. Des. 2002, 16, 741–753. 

15. Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection.  

Drug Discov. Today 2004, 9, 430–431. 

16. Carr, R.A.E.; Congreve, M.; Murray, C.W.; Rees, D.C. Fragment-based lead discovery: Leads by 

design. Drug Discov. Today 2005, 10, 987–992. 

17. Ciulli, A.; Abell, C. Fragment-based approaches to enzyme inhibition. Curr. Opin. Biotechnol. 

2007, 18, 489–496. 

18. Kranz, J.K.; Schalk-Hihi, C. Protein thermal shifts to identify low molecular weight fragments. 

Methods Enzymol. 2011, 493, 277–298. 

19. Giannetti, A.M. From experimental design to validated hits a comprehensive walk-through of 

fragment lead identification using surface plasmon resonance. Methods Enzymol. 2011, 493,  

169–218. 

20. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational 

approaches to estimate solubility and permeability in drug discovery and development settings. 

Adv. Drug Delivery Rev. 2001, 46, 3–26. 

21. Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A ‘rule of three’ for fragment-based lead discovery? 

Drug Discov. Today 2003, 8, 876–877. 

22. Hung, A.W.; Ramek, A.; Wang, Y.; Kaya, T.; Wilson, J.A.; Clemons, P.A.; Young, D.W. Route 

to three-dimensional fragments using diversity-oriented synthesis. Proc. Natl. Acad. Sci. USA 

2011, 108, 6799–6804. 



Int. J. Mol. Sci. 2012, 13 12876 

 

 

23. Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design:  

A molecular modeling perspective. Med. Res. Rev. 1996, 16, 3–50. 

24. Drew, K.L.M.; Baiman, H.; Khwaounjoo, P.; Yu, B.; Reynisson, J. Size estimation of chemical 

space: How big is it? J. Pharm. Pharmacol. 2012, 64, 490–495. 

25. Fink, T.; Reymond, J.L. Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: 

Assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring 

systems, stereochemistry, physicochemical properties, compound classes, and drug discovery.  

J. Chem. Inf. Model. 2007, 47, 342–353. 

26. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to 

methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. 

27. Kong, F.; Yuan, L.; Zheng, Y.F.; Chen, W. Automatic liquid handling for life science: A critical 

review of the current state of the art. J. Lab. Autom. 2012, 17, 169–185. 

28. Chayen, N.E. Optimization Techniques for Automation and High Throughput. In Methods in 

Molecular Biology; Doublié, S., Ed.; Humana Press: Totowa, NJ, USA, 2007; Volume 363,  

pp. 175–190. 

29. Grueninger-Leitch, F.; D’Arcy, A.; D’Arcy, B.; Chene, C. Deglycosylation of proteins for 

crystallization using recombinant fusion protein glycosidases. Protein Sci. 1996, 5, 2617–2622. 

30. Dong, A.; Xu, X.; Edwards, A.M.; Chang, C.; Chruszcz, M.; Cuff, M.; Cymborowski, M.;  

Di Leo, R.; Egorova, O.; Evdokimova, E.; et al. In situ proteolysis for protein crystallization and 

structure determination. Nat. Methods 2007, 4, 1019–1021. 

31. Derewenda, Z.S. Application of protein engineering to enhance crystallizability and improve 

crystal properties. Acta Crystallogr. D 2010, 66, 604–615. 

32. Jenkins, T.M.; Hickman, A.B.; Dyda, F.; Ghirlando, R.; Davies, D.R.; Craigie, R. Catalytic 

domain of human immunodeficiency virus type 1 integrase: Identification of a soluble mutant  

by systematic replacement of hydrophobic residues. Proc. Natl. Acad. Sci. USA 1995, 92,  

6057–6061. 

33. Dyda, F.; Hickman, A.B.; Jenkins, T.M.; Engelman, A.; Craigie, R.; Davies, D.R. Crystal 

structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl 

transferases. Science 1994, 266, 1981–1986. 

34. Zhou, H.; Brock, J.; Liu, D.; Board, P.G.; Oakley, A.J. Structural insights into the 

dehydroascorbate reductase activity of human omega-class glutathione transferases. J. Mol. Biol. 

2012, 420, 190–203. 

35. Patel, S.B.; Cameron, P.M.; Frantz-Wattley, B.; O’Neill, E.; Becker, J.W.; Scapin, G. Lattice 

stabilization and enhanced diffraction in human p38α crystals by protein engineering. Biochim. 

Biophys. Acta 2004, 1696, 67–73. 

36. Badger, J. Crystallographic fragment screening. Methods Mol. Biol. 2012, 841, 161–177. 

37. Wasserman, S.R.; Koss, J.W.; Sojitra, S.T.; Morisco, L.L.; Burley, S.K. Rapid-access,  

high-throughput synchrotron crystallography for drug discovery. Trends Pharmacol. Sci. 2012, 

33, 261–267. 

38. Hülsen, G.; Broennimann, C.; Eikenberry, E.F.; Wagner, A. Protein crystallography with a novel 

large-area pixel detector. J. Appl. Crystallogr. 2006, 39, 550–557. 



Int. J. Mol. Sci. 2012, 13 12877 

 

 

39. De Sanctis, D.; Beteva, A.; Caserotto, H.; Dobias, F.; Gabadinho, J.; Giraud, T.; Gobbo, A.; 

Guijarro, M.; Lentini, M.; Lavault, B.; et al. ID29: A high-intensity highly automated ESRF 

beamline for macromolecular crystallography experiments exploiting anomalous scattering.  

J. Synchrotron. Radiat. 2012, 19, 455–461. 

40. Smith, C.A.; Cohen, A.E. The stanford automated mounter: Enabling high-throughput protein 

crystal screening at SSRL. J. Lab. Autom. 2008, 13, 335–343. 

41. McPhillips, T.M.; McPhillips, S.E.; Chiu, H.J.; Cohen, A.E.; Deacon, A.M.; Ellis, P.J.;  

Garman, E.; Gonzalez, A.; Sauter, N.K.; Phizackerley, R.P.; et al. Blu-ice and the distributed 

control system: Software for data acquisition and instrument control at macromolecular 

crystallography beamlines. J. Synchrotron. Radiat. 2002, 9, 401–406. 

42. Beteva, A.; Cipriani, F.; Cusack, S.; Delageniere, S.; Gabadinho, J.; Gordon, E.J.; Guijarro, M.; 

Hall, D.R.; Larsen, S.; Launer, L.; et al. High-throughput sample handling and data collection  

at synchrotrons: Embedding the ESRF into the high-throughput gene-to-structure pipeline.  

Acta Crystallogr. D 2006, 62, 1162–1169. 

43. Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D 

2004, 60, 2126–2132. 

44. Terwilliger, T.C.; Adams, P.D.; Moriarty, N.W.; Cohn, J.D. Ligand identification using  

electron-density map correlations. Acta Crystallogr. D 2007, 63, 101–107. 

45. Evrard, G.X.; Langer, G.G.; Perrakis, A.; Lamzin, V.S. Assessment of automatic ligand building 

in ARP/wARP. Acta Crystallogr. D 2007, 63, 108–117. 

46. Mooij, W.T.; Hartshorn, M.J.; Tickle, I.J.; Sharff, A.J.; Verdonk, M.L.; Jhoti, H. Automated 

protein-ligand crystallography for structure-based drug design. ChemMedChem 2006, 1, 827–838. 

47. Jones, T.A.; Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 1997, 277, 

173–208. 

48. Davis, A.M.; Teague, S.J.; Kleywegt, G.J. Application and limitations of X-ray crystallographic 

data in structure-based ligand and drug design. Angew. Chem. Int. Ed. Engl. 2003, 42, 2718–2736. 

49. Davis, A.M.; St-Gallay, S.A.; Kleywegt, G.J. Limitations and lessons in the use of X-ray 

structural information in drug design. Drug Discov. Today 2008, 13, 831–841. 

50. Malde, A.K.; Mark, A.E. Challenges in the determination of the binding modes of non-standard 

ligands in X-ray crystal complexes. J. Comput. Aided Mol. Des. 2011, 25, 1–12. 

51. Kleywegt, G.J.; Henrick, K.; Dodson, E.J.; van Aalten, D.M. Pound-wise but penny-foolish: How 

well do micromolecules fare in macromolecular refinement? Structure 2003, 11, 1051–1059. 

52. Ward, R.A.; Brassington, C.; Breeze, A.L.; Caputo, A.; Critchlow, S.; Davies, G.; Goodwin, L.; 

Hassall, G.; Greenwood, R.; Holdgate, G.A.; et al. Design and synthesis of novel lactate 

dehydrogenase a inhibitors by fragment-based lead generation. J. Med. Chem. 2012, 55,  

3285–3306. 

53. Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; et al. 

The crystal structures of severe acute respiratory syndrome virus main protease and its complex 

with an inhibitor. Proc. Natl. Acad. Sci. USA 2003, 100, 13190–13195. 

54. Murray, C.W.; Callaghan, O.; Chessari, G.; Cleasby, A.; Congreve, M.; Frederickson, M.; 

Hartshorn, M.J.; McMenamin, R.; Patel, S.; Wallis, N. Application of fragment screening by  

X-ray crystallography to beta-secretase. J. Med. Chem. 2007, 50, 1116–1123. 



Int. J. Mol. Sci. 2012, 13 12878 

 

 

55. Congreve, M.; Aharony, D.; Albert, J.; Callaghan, O.; Campbell, J.; Carr, R.A.E.; Chessari, G.; 

Cowan, S.; Edwards, P.D.; Frederickson, M.; et al. Application of fragment screening by X-ray 

crystallography to the discovery of aminopyridines as inhibitors of beta-secretase. J. Med. Chem. 

2007, 50, 1124–1132. 

56. Nair, P.C.; Malde, A.K.; Drinkwater, N.; Mark, A.E. Missing fragments: Detecting cooperative 

binding in fragment-based drug design. ACS Med. Chem. Lett. 2012, 3, 322–326. 

57. Recht, M.I.; Sridhar, V.; Badger, J.; Hernandez, L.; Chie-Leon, B.; Nienaber, V.; Torres, F.E. 

Fragment-based screening for inhibitors of PDE4A using enthalpy arrays and X-ray 

crystallography. J. Biomol. Screen. 2012, 17, 469–480. 

58. Murray, C.W.; Carr, M.G.; Callaghan, O.; Chessari, G.; Congreve, M.; Cowan, S.; Coyle, J.E.; 

Downham, R.; Figueroa, E.; Frederickson, M.; et al. Fragment-based drug discovery applied to 

Hsp90. Discovery of two lead series with high ligand efficiency. J. Med. Chem. 2010, 53, 5942–5955. 

59. Woodhead, A.J.; Angove, H.; Carr, M.G.; Chessari, G.; Congreve, M.; Coyle, J.E.; Cosme, J.; 

Graham, B.; Day, P.J.; Downham, R.; et al. Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-

(4-methylpiperazin-1-ylmethyl)-1,3-dihydrois oindol-2-yl]methanone (AT13387), a novel 

inhibitor of the molecular chaperone Hsp90 by fragment based drug design. J. Med. Chem. 2010, 

53, 5956–5969. 

60. Chung, C.W.; Dean, A.W.; Woolven, J.M.; Bamborough, P. Fragment-based discovery of 

bromodomain inhibitors part 1: Inhibitor binding modes and implications for lead discovery.  

J. Med. Chem. 2012, 55, 576–586. 

61. Bamborough, P.; Diallo, H.; Goodacre, J.D.; Gordon, L.; Lewis, A.; Seal, J.T.; Wilson, D.M.; 

Woodrow, M.D.; Chung, C.-W. Fragment-based discovery of bromodomain inhibitors part 2: 

Optimization of phenylisoxazole sulfonamides. J. Med. Chem. 2011, 55, 587–596. 

62. Nichols, D.A.; Jaishankar, P.; Larson, W.; Smith, E.; Liu, G.; Beyrouthy, R.; Bonnet, R.;  

Renslo, A.R.; Chen, Y. Structure-based design of potent and ligand-efficient inhibitors of CTX-M 

Class A β-lactamase. J. Med. Chem. 2012, 55, 2163–2172. 

63. Congreve, M.; Andrews, S.P.; Doré, A.S.; Hollenstein, K.; Hurrell, E.; Langmead, C.J.;  

Mason, J.S.; Ng, I.W.; Tehan, B.; Zhukov, A.; et al. Discovery of 1,2,4-triazine derivatives as 

adenosine A2A antagonists using structure based drug design. J. Med. Chem. 2012, 55,  

1898–1903. 

64. Certal, V.; Halley, F.; Virone-Oddos, A.; Delorme, C.; Karlsson, A.; Rak, A.; Thompson, F.; 

Filoche-Rommé, B.; El-Ahmad, Y.; Carry, J.-C.; et al. Discovery and optimization of new 

benzimidazole- and benzoxazole-pyrimidone selective PI3Kβ inhibitors for the treatment of 

phosphatase and TENsin homologue (PTEN)-deficient cancers. J. Med. Chem. 2012, 55, 4788–4805. 

65. Gitto, R.; Damiano, F.M.; Mader, P.; de Luca, L.; Ferro, S.; Supuran, C.T.; Vullo, D.; Brynda, J.; 

Řezáčová, P.; Chimirri, A. Synthesis, structure–activity relationship studies, and X-ray 

crystallographic analysis of arylsulfonamides as potent carbonic anhydrase inhibitors. J. Med. 

Chem. 2012, 55, 3891–3899. 

66. Good, A.C.; Liu, J.; Hirth, B.; Asmussen, G.; Xiang, Y.; Biemann, H.-P.; Bishop, K.A.;  

Fremgen, T.; Fitzgerald, M.; Gladysheva, T.; et al. Implications of promiscuous Pim-1 kinase 

fragment inhibitor hydrophobic interactions for fragment-based drug design. J. Med. Chem. 2012, 

55, 2641–2648. 



Int. J. Mol. Sci. 2012, 13 12879 

 

 

67. Patel, S.; Vuillard, L.; Cleasby, A.; Murray, C.W.; Yon, J. Apo and inhibitor complex structures 

of BACE (β-secretase). J. Mol. Biol. 2004, 343, 407–416. 

68. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a 

genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. 

69. Torres, F.E.; Kuhn, P.; de Bruyker, D.; Bell, A.G.; Wolkin, M.V.; Peeters, E.; Williamson, J.R.; 

Anderson, G.B.; Schmitz, G.P.; Recht, M.I.; et al. Enthalpy arrays. Proc. Natl. Acad. Sci. USA 

2004, 101, 9517–9522. 

70. Drinkwater, N.; Vu, H.; Lovell, K.M.; Criscione, K.R.; Collins, B.M.; Prisinzano, T.E.;  

Poulsen, S.A.; McLeish, M.J.; Grunewald, G.L.; Martin, J.L. Fragment-based screening by X-ray 

crystallography, MS and isothermal titration calorimetry to identify PNMT (phenylethanolamine 

N-methyltransferase) inhibitors. Biochem. J. 2010, 431, 51–61. 

71. Pearl, L.H.; Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone 

machinery. Annu. Rev. Biochem. 2006, 75, 271–294. 

72. Mahalingam, D.; Swords, R.; Carew, J.S.; Nawrocki, S.T.; Bhalla, K.; Giles, F.J. Targeting 

HSP90 for cancer therapy. Br. J. Cancer 2009, 100, 1523–1529. 

73. Cheung, C.H.; Chen, H.H.; Cheng, L.T.; Lyu, K.W.; Kanwar, J.R.; Chang, J.Y. Targeting Hsp90 

with small molecule inhibitors induces the over-expression of the anti-apoptotic molecule, 

survivin, in human A549, HONE-1 and HT-29 cancer cells. Mol. Cancer 2010, 9, 77. 

74. Lu, X.; Xiao, L.; Wang, L.; Ruden, D.M. Hsp90 inhibitors and drug resistance in cancer: The 

potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. 

Biochem. Pharmacol. 2012, 83, 995–1004. 

75. Neckers, L.; Workman, P. Hsp90 molecular chaperone inhibitors: Are we there yet? Clin. Cancer 

Res. 2012, 18, 64–76. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


