Next Article in Journal
The Effect of Temozolomide/Poly(lactide-co-glycolide) (PLGA)/Nano-Hydroxyapatite Microspheres on Glioma U87 Cells Behavior
Previous Article in Journal
On the Several Molecules and Nanostructures of Water
Previous Article in Special Issue
Mechanobiology of Platelets: Techniques to Study the Role of Fluid Flow and Platelet Retraction Forces at the Micro- and Nano-Scale
Int. J. Mol. Sci. 2012, 13(1), 1095-1108; doi:10.3390/ijms13011095
Article

Local Mechanical Stimulation of Mardin-Darby Canine Kidney Cell Sheets on Temperature-Responsive Hydrogel

1,* , 1
,
1
,
2
 and
1
1 Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-57, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan 2 Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
* Author to whom correspondence should be addressed.
Received: 13 September 2011 / Revised: 25 December 2011 / Accepted: 13 January 2012 / Published: 19 January 2012
(This article belongs to the Special Issue Programmable Materials for Mechanobiology)
View Full-Text   |   Download PDF [4759 KB, uploaded 19 June 2014]   |  

Abstract

Collective motion of cell sheets plays a role not only in development and repair, but also in devastating diseases such as cancer. However, unlike single-cell motility, collective motion of cell sheets involves complex cell-cell communication during migration; therefore, its mechanism is largely unknown. To elucidate propagation of signaling transduced by cell-cell interaction, we designed a hydrogel substrate that can cause local mechanical stretching of cell sheets. Poly (N-isopropyl acrylamide) (PNIPAAm) hydrogel is a temperature-responsive polymer gel whose volume changes isotropically in response to temperature changes below 37 °C. We designed a combined hydrogel substrate consisting of collagen-immobilized PNIPAAm as the local stimulation side and polyacrylamide (PAAm) as the non-stimulation side to assess propagation of mechanical transduction. Mardin-Darby canine kidney (MDCK) cells adhered to the collagen-immobilized PNIPAAm gel increased it area and were flattened as the gel swelled with temperature decrease. E-cadherin in these cells became undetectable in some domains, and actin stress fibers were more clearly observed at the cell base. In contrast, E-cadherin in cells adhered to the collagen-immobilized PAAm side was equally stained as that in cells adhered to the collagen-immobilized PAAm side even after temperature decrease. ERK1/2 MAPK activation of cells on the non-stimulated substrate occurred after partial stretching of the cell sheet suggesting the propagation of signaling. These results indicate that a change in the balance of mechanical tension induced by partial stretching of cell sheets leads to activation and propagation of the cell signaling.
Keywords: mechanical stimulation; MDCK cell sheets; temperature-responsive hydrogel; collective cell migration; E-cadherin mechanical stimulation; MDCK cell sheets; temperature-responsive hydrogel; collective cell migration; E-cadherin
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Supplementary materials

SciFeed

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
RIS
MDPI and ACS Style

Harada, I.; Yanagisawa, S.; Iwasaki, K.; Cho, C.-S.; Akaike, T. Local Mechanical Stimulation of Mardin-Darby Canine Kidney Cell Sheets on Temperature-Responsive Hydrogel. Int. J. Mol. Sci. 2012, 13, 1095-1108.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert