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Abstract: PISTILLATA (PI)-like genes are crucial regulators of flowering in angiosperms. 

A homologue of PI, designated as AcPI (Genbank accession number HQ717796), was 

isolated from pineapple cultivar Comte de Paris by reverse transcriptase polymerase chain 

reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The cDNA sequence of 

AcPI is 907 bp in length and contains an open reading frame of 594 bp, which encodes a 

protein of 197 amino acids. The molecular weight was 2.29 kDa and the isoelectric point 

was 9.28. The alignment showed that AcPI had a high identity with CsPIC2 (78.6%), AoPI 

(77.4%), OrcPI (75.7%) and HPI2 (72.4%). Quantitative real-time polymerase chain 

reaction (qRT-PCR) analyses in different tissues showed that the expression pattern of AcPI 

was different from the B-class genes in eudicots. AcPI was expressed in all the tissues 

investigated. The expression level was very low in fruit stems, bracts, leaves and sepals, high 

in petals and carpels, and moderate in apical meristems, flesh and stamens. The qRT-PCR 

analyses in different stages indicated that the expression of AcPI reached the highest level at 

40 days after flower inducement, when the multiple fruit and floral organs were forming. It 

proved the important role of AcPI in floral organs and fruit development. The 35S::AcPI 

transgenic Arabidopsis plants flowered earlier and had more inflorescences or branches than 

wild type plants.  
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1. Introduction 

Most angiosperm flowers, including those of pineapple, are made up of four types of organs that are 

arranged in concentric whorls from outside to inside: sepals, petals, stamens, and the inner carpels [1]. 

According to the widely accepted ABC model [2,3] of floral organ development, there are three 

classes of homeotic genes: A-class, B-class and C-class [4–6]. Expression of the B-class genes, such as 

the Arabidopsis APETALA3 (AP3) and PISTILLATA (PI) as well as the Antirrhinum DEFICIENS 

(DEF) and GLOBOSA (GLO), two closely related clades of MADS-box genes, is required for petal 

and stamen initiation and development [7,8]. Other angiosperms and gymnosperm further possess a 

sister clade of B genes, termed Bsister genes, and expression studies revealed that these genes are 

predominantly expressed in carpels and ovules [9]. Mutations in these genes cause homeotic 

conversion of petals in the second whorl to sepals and of stamens in the third whorl to carpels [10,11]. 

MADS-box is a recognized type of DNA-binding protein [4] including around 60 amino acids, that 

are highly conserved across developmental control genes from yeast, animals and plants [12–14].  

All MADS-box proteins encode transcription factors that regulate the expression of target genes by 

binding to specific cis-acting DNA sequences. The MADS-box protein plays fascinating biological 

roles in flower development in higher plants [15].  

In contrast to the great amount of research conducted on MADS-box genes in dicots, a limited 

number of MADS-box genes have been studied in monocots. Moreover, the reported data of 

MADS-box genes in monocots are mostly concerned with economically important plants such as rice 

and maize [16–22]. Few data are available for other monocots [23–26]. More work to assess the degree 

to which the dicot ABCDE model [27] is conserved in monocot species needs to be done. 

Pineapple (Ananas comosus L. Merr.) belongs to Ananas, Bromeliaceae, Poales. It is an important 

herbaceous fruit tree in many tropical and subtropical countries. The pineapple fruit is a multiple fruit, 

which includes over one hundred small flowers and each flower develops into a small fruit. There are 

three sepals, three petals, six stamens, one pistil and three carpels in each flower. Nutritionally, freshly 

harvested pineapple is an inexpensive source of vitamins A, B, and C, calcium, phosphorus and iron. 

The fruit is used for canning and in the preparation of juice, jam, jelly and crystallized glaze fruit. The 

leaves, stems and fruits of the pineapple plants contain bromelain which is a mixture of industrially 

important proteolytic enzymes. This is the reason why several research groups are developing 

fundamental and applied studies to create new cultivars with better agronomic characters. However, 

natural flowering out of season can cause serious scheduling problems for growers. Flower inducing is 

a good way to make pineapples flower at the same time, however, with some species it is difficult to  

induce flowering. 

Like other monocot plants, such as lily, pineapple flowers have very similar organs of two outer 

whorls, generating a perianth of tepals, instead of sepals and petals. In order to elucidate the genetic 

mechanism of the pineapple flower development, cloning and characterization of MADS-box genes 
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from pineapple is a fundamental work. In this study, a PI-like gene was cloned and its expression 

analyses were also studied. 

2. Results and Discussion 

2.1. Cloning and Sequence Analyses of AcPI 

A combined reverse transcriptase polymerase chain reaction (RT-PCR) and rapid amplification of 

cDNA ends (RACE) strategy was used to isolate PI-like gene from pineapple. The full-length gene 

designated AcPI (Genbank accession number HQ717796) was isolated. AcPI cDNA is 907 bp in 

length and contains an open reading frame of 594 bp, which encodes a protein of 197 amino acids. It 

also contains 101 bp 5' and 183 bp 3' untranslated regions and a poly (A) tail. Molecular weight was 

2.29 kDa and isoelectric point was 9.28. A 650 bp fragment of AcPI with enzyme recognition sites and 

coding region was obtained and used for transformation. An alignment of the deduced amino acid 

sequence of AcPI (Ananas comosus), HPI2 (Hyacinthus orientalis, AAD22494), VvPI (Vitis vinifera, 

ABK59993), BpPI (Betula pendula, CAD32764), MdPI (Malu × domestica, CAC28022), HmPI 

(Hydrangea macrophylla, BAG68951), BjPI (Brassica juncea, AAY63867), AtPI  

(Arabidopsis thaliana, BAA06465), MtPI (Medicago truncatula, ACJ36228), OrcPI (Orchis italica, 

BAC22579), CsPIC2 (Crocus sativus, ABB22781) and AoPI (Alpinia oblongifolia, ABB92623) was 

performed using the DNAMAN 6.0 program (Figure 1).  

Phylogenetic analysis was conducted using BnPI (Brassica napus, ABW74343), PnPI-1  

(Papaver nudicaule, AAC42570), CDM86 (Chrysanthemum × morifolium, AAO22986), SoPI  

(Spinacia oleracea, AAT69985), PePI (Passiflora edulis, AER30449), PPI (Capsicum annuum, 

ADR83606), NGL9 (Medicago sativa, AAK77938), PsPI (Pisum sativum, CAC37031), TaPI 

(Trochodendron aralioides, ABQ85946), HoPI (Hyacinthus orientalis, AAD22494), Os05g0423400 

(Oryza sativa Japonica Group, BAF17504), FEG1 (Elaeis guineensis, AAQ13915), PIA2  

(Crocus sativus, ABB22778), PIA1 (Crocus sativus, ABB22777), MADS2 (Hyacinthus orientalis, 

AAD22493) and the same complete amino acid sequences as in Figure 1 and generated a rooted tree, 

by the observed divergency method with DNAMAN 6.0 program (Figure 2). The phylogenetic tree 

showed that AcPI protein (red-boxed) was more closely related to the other monocot PI proteins than 

to their dicot counterparts. AcPI had a high identity with CsPIC2 (78.6%), AoPI (77.4%), OrcPI 

(75.7%) and HPI2 (72.4%). 
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Figure 1. Alignment of the deduced AcPI (Genbank accession number HQ717796) amino 

acid sequence from Ananas comosus with other angiosperm PISTILLATA (PI)-like protein 

sequences. Identical amino acid residues in this alignment are shaded in black, and 75% or 

more similar amino acid residues are shaded in red.  
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Figure 2. Phylogenetic analysis of the PI homologous genes from different plant species. 

Protein sequences of the entire coding region were obtained from the NCBI database. The 

numbers next to the nodes give bootstrap values from 1000 replicates and the branch lengths 

are proportional to the distance. 
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2.2. The qRT-PCR Analyses of AcPI 

To determine the detail expression patterns of the AcPI in different tissues and in different stages, 

the mRNA levels were examined by qRT-PCR. Relative quantification was performed using the 

comparative cycle threshold (Ct) method, in which simplified arithmetic formulas (2-ΔΔCt) are used 

to obtain the same result as that yielded by the relative standard curve method, when the target gene 

and the reference control gene have approximately equal amplification efficiency (94.2% and 94.5% 

respectively, Figure 3A,B). The expression number in one tissue or stage (AcPI in bract and on 10 days 

after inducing) was set to a value of 1 and subsequently, expression levels were relative to this number. 

The qRT-PCR analyses showed that the AcPI was weakly expressed in fruit stems, bracts, leaves and 

sepals, strongly in petals and carpels, and moderately in apical meristems, flesh, and stamens (Figure 3C).  

The expression levels of AcPI in different stages (Figure 3D) decreased a little at 10 days and 20 

days after flower inducing with ethephon. It increased at 30 days after flower inducing and reached the 

highest level at 40 days after flower inducing when the multiple fruit and floral organs were forming.  

Monocot 
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Figure 3. (A) The standard curve of Ac 18S rRNA. (B) The standard curve of AcPI.  

(C) Quantification of expression levels of the AcPI gene in different tissues as determined by 

qRT-PCR analyses. The housekeeping gene Ac 18S rRNA was used to normalize the amount 

of cDNAs added to the reaction. The relative quantification values of different tissues were 

shown above each vertical bar. 1-PI, apical meristems; 2-PI, flesh; 3-PI, fruit stems; 4-PI, 

bracts; 5-PI, leaves; 6-PI, petals; 7-PI, sepals; 8-PI, stamens; 9-PI, carpels. (D) The 

quantification of expression levels of the AcPI gene in different stages as determined by 

qRT-PCR analyses. The housekeeping gene Ac 18S rRNA was used to normalize the amount 

of cDNAs added to the reaction. The relative quantification values of different stages are 

shown above each vertical bar. 1-PI to 6-PI denote the expression levels in apical meristems 

at 1d before flower inducing, 10 days, 20 days, 30 days, 40 days and 50 days after flower 

inducing respectively. 

 

(A) 

 

(B) 
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Figure 3. Cont. 
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2.3. Ectopic Expression of AcPI in Arabidopsis 

To investigate the function of AcPI, ectopic expression of AcPI in transgenic Arabidopsis plants 

was analyzed. Twelve independent PCR-positive 35S::AcPI transgenic T1 plants were obtained 

(Figure 4). All transgenic plants were phenotypically distinguishable from wild type plants. Firstly, 

these 35S::AcPI transgenic plants flowered significantly earlier than wild type plants by producing 

only 8 to 10 small rosette leaves (Figure 5A). When the wild type plants flowered, they had over 

sixteen big rosette leaves (Figure 5B). Secondly, each 35S::AcPI transgenic plant had 3 to 6 
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inflorescences or branches (Figure 5C), while the wild type plant had one inflorescence or branch 

(Figure 5D). No obvious alteration of floral organs was observed in transgenic plants.  

Figure 4. 1 to 12, PCR analysis of 35S::AcPI transgenic Arabidopsis plants using primers 

PImq-F and PImq-R. A 650 bp DNA fragment was amplified. M, Marker DL2000. wt, 

PCR analysis of wild type plant using the same primers. 

 

Figure 5. (A) The flower buds formation of the 35S::AcPI transgenic Arabidopsis plants.  

(B) The flower buds formation of the wild type plants. (C) The 35S::AcPI transgenic 

Arabidopsis plant with six inflorescences. (D) The wild type plant with one inflorescence. 

(A) (B) 

 

(C) (D) 
Scale bars represent 1cm. 
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2.4. Discussion 

Multiple sequence alignment demonstrated that AcPI protein possessed a typical MIKC-type domain 

structure: the highly conserved MADS (M) domain which is the major determinant of DNA-binding 

and performs dimerization and accessory factor binding functions [13], the relatively weakly conserved 

intervening (I) domain which constitutes a molecular determinant for the selective formation of 

DNA-binding dimmers [28], the less conserved keratin-like (K) domain which is proposed to allow for 

the formation of an amphipathic helix involved in protein dimerization [13,29], and the divergent 

C-terminal (C) region which contains a highly conserved PI-motif (FxFRVQPxQPNLQE) [30]. All the 

conserved regions are related to the function of PI-like proteins [31]. 

In higher eudicotyledonous angiosperms, the floral organs include sepals, petals, stamens, ovules 

and carpels. According to the ABCDE model, the identity of these organs is specified by floral 

homeotic genes of class A, A + B + E, B + C + E, D + E and C + E respectively [27,32]. To explain 

the Liliaceae flower morphology, van Tunen et al. [23] reported that class B genes were not only 

expressed in petals and stamens, but also in sepals. Thus the organs of both sepals and petals express 

class A, plus class B genes and therefore, get the same petaloid identity. Kanno A et al. [33] reported 

that two DEF-like and one GLO-like genes were expressed in whorls 1, 2 and 3. In addition, TGGLO 

was also weakly expressed in carpels, leaves, stems and bracts. Expression of B-class genes in 

Arabidopsis and Antirrhinum was known to be flower-specific [8, 34–36].  

In this paper, the expression profile of AcPI is different from B-box genes of eudicot. AcPI was 

expressed not only in whorls 2 and 3, but also in whorl 1, thus corroborating the modified ABC  

model [23]. Moreover, AcPI was expressed in whorl 4. AcPI was also expressed in other organs or 

tissues such as leaves, fruit stems, flesh, apical meristems and bracts. These data indicated a possible 

function of AcPI during flower development as well as in leaves and fruit development.  

Busi M et al. [37] reported that B-box genes were involved in other processes than flower development 

such as the establishment of developing embryos, seed coat and ultimately in root and fruit development. 

Kim et al. [38] also found AP3 and PI transcripts were detected in petals, stamens and carpels in basal 

angiosperms such as Amborella and Nuphar. The expression of AcPI reached the highest level at 

40 days after flower inducement, when the multiple fruit and floral organs were forming. The results 

showed the important role of AcPI in fruit and floral organs development and indicated that ethephon 

may stimulate the expression of AcPI. Ethephon are used widely to induce flowering in pineapples, 

possibly because when ethephon reaches the shoot apex, it can accelerate the expression of 

flower-related genes [39]. The effect of ethephon on inducing flowering was affected by temperature, 

relative humidity, solution pH, and the surface on which solution droplets were placed [39]. The ectopic 

expression of AcPI proved that AcPI could accelerate flowering and inflorescences or branches 

forming in Arabidopsis. 

3. Materials and Methods 

3.1. Plant Materials and Treatments 

Plants of pineapple cultivar Comte de Paris were planted in a vinyl house at natural temperature and 

light. The apical meristems of young panicle (4–5 cm in height) were cut and collected for cloning 
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cDNA. When the young panicle was 4–5 cm in height, the apical meristems, flesh, fruit stems, bracts, 

leaves, petals, sepals, stamens and carpels were used for qRT-PCR analyses. The apical meristems at 

1 days before flower inducing and 10 days, 20 days, 30 days, 40 days, 50 days after flower inducing 

with 40% ethephon (200 mg/mL, 30 mL each plant) were also used for qRT-PCR analyses. All the 

materials were frozen in liquid nitrogen immediately after collection and stored at −80 °C until use.  

3.2. Cloning of AcPI cDNAs 

Total RNA was extracted from apical meristems using Column Plant RNAout 2.0 kit (TIANDZ, Inc, 

China) following the manufacturer’s instructions. First-strand cDNA was synthesized with 

M-MLV-Reverse Trancriptase from TAKARA according to the manufacturer’s instructions. 

To clone the conserved region of AcPI cDNA, a pair of primers PI-partial-F (5' CCAGGTC 

TCCVTCGTCAT 3') and PI-partial-R (5' ACACCAGTNAGACCATTC 3') was designed according to 

the conserved regions of PI homologous genes from other plants using the Primer Premier 5 software. 

The PCR amplification was performed with 1 cycle at 94 °C for 3 min; 32 cycles at 94 °C for 0.5 min, 

55 °C for 1 min, and 72 °C for 1 min; 1 cycle at 72 °C for 10min. PCR products were isolated and 

cloned into pMD18-T Vector (TAKARA, Dalian, China) to sequence. The cloned sequence was used 

to design gene-specific primers to amplify the 5' and 3' end of cDNA using the RACE cDNA 

Amplification Kit (Clontech, Japan). The gene-specific primers were 5'PI-OUT (5' CCA TTC TGG 

AGA GCC TCT TCT ATC GG 3') and 5'PI-IN (5' GCT CGA TCT GCA TGT TGT CGT TCT CT 3') 

for 5' RACE, 3'PI-OUT (5' CGG GAA GAT GTC CGA GTA CTG TAG CC 3') and 3'PI-IN (5' AAC 

GAC AAC ATG CAG ATC GAG CTC AG 3') for 3' RACE. The first round PCR and the nested 

amplification were carried out according to the instruction of RACE cDNA Amplification Kit. The 

PCR products were cloned into pMD18-T vector and sequenced.  

The full length cDNA of AcPI was obtained by PCR using the forward primer PIQC-F (5' AAG 

CAG TGG TAT CAA CGC AGA GTA 3') and the reverse primer PIQC-R (5' ATA GCA GAC AAA 

GTC GAT GGC AGA 3'). Another pair of primers PImq-F (5' TGC TCTAGA ATG GGG CGG GGG 

AAG ATC GAG AT 3') and PImq-R (5' CG GGATCC ATA GCA GAC AAA GTC GAT GGC AGA 3') 

contained the generated XbaI and BamHI recognition sites respectively to facilitate the transformation 

of AcPI into Arabidopsis. The cycling condition:1 cycle at 94 °C for 3 min; 35 cycles at 94 °C for  

0.5 min, 50 °C for 1.5 min and 72 °C for 1 min; a final extension at 72 °C for 10 min. The PCR 

products were cloned into pMD18-T vector and sequenced. 

3.3. Sequence and Phylogenetic Analyses 

Sequence chromatograms were examined and edited using Chromas Version 2.23. Related 

sequences were found using BLAST [40]. Amino acid alignments with homologous sequences from a 

range of species were manually edited with the DNAMAN 6.0 program. For determination of amino 

acid identities, sequences taken from the alignment were pairwise-compared using DNAMAN 6.0. A 

phylogenetic tree, based on the amino acid sequences, was constructed using DNAMAN 6.0. Gaps 

appearing in one sequence only, were treated as non-constant characters. The molecular weight and 

isoelectric point of the gene were analyzed on-line with ExPASy [41]. 
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3.4. qRT-PCR Analyses of the AcPI Gene 

To study transcription of the AcPI gene by the qRT-PCR, total RNA of the apical meristems in 

different stages of flesh, fruit stems, bracts, leaves, petals, sepals, stamens and carpels was extracted 

with Column Plant RNAout 2.0 kit (TIANDZ, Inc, China) following the manufacturer’s instructions. 

First-strand cDNA was synthesized with PrimeScript® RT Master Mix (Perfect Real Time, TAKARA, 

Dalian, China) according to the user manual. These cDNAs were used as templates for qRT-PCR. 

Each tissue was applied to three replications for gene expression.  

To demonstrate that amplification efficiencies for both the AcPI gene and housekeeping gene  

Ac 18S rRNA were very similar, standard curves were carried out by PCR. The curves were generated 

for genes AcPI and Ac 18S rRNA using a 5× serial dilution curve, with final quantities of 100, 20, 4, 

0.8, 0.16 and 0.032 ng of cDNA. 

qRT-PCR was carried out using SYBR® Premix Ex Taq™ kit (TAKARA, Dalian, China) and the 

PCR amplification was quantified according to the manufacturer’s protocol. Real time PCR reactions 

were performed in 25 μL mixtures. The mixture for one reaction contained 12.5 μL 1× SYBR Green 

PCR Master Mix with 0.5 μL ROXII as a reference dye for real time PCR, 1 μL 10 μM of forward 

primer, 1 μL 10μM reverse primer and 100 ng of cDNA. No template controls were run to determine 

contamination and level of primer dimmer formation. To make it possible to compare gene expression 

levels in the different plant tissues, they were normalized to the expression of Ac 18S rRNA in each 

tissue. Relative expression of AcPI in different plant tissues was obtained by dividing the average 

number of copies by the copy number of Ac 18S rRNA for the same tissues.  

qRT-PCR reactions were run on a Stratagene Mx3005P detection system (Stratagene 3005P, USA) 

using the following universal cycling conditions for all amplifications: 1 cycle of 30 s at 95 °C (DNA 

polymerase activation); 40 cycles of 5 s at 95 °C and 1 min at 55 °C. At the end, a dissociation stage 

was added: 30 s at 95 °C, 1min at 55 °C and 30 s at 95 °C. Ct values were determined after automatic 

adjustment of the baseline and manual adjustment of the fluorescence threshold. 

The primers used in this qRT-PCR were listed below: PIdl-up (5' GCA CCA CCA AGA GAT GGC 

GAT G 3'), PIdl-dn (5' TAG CAG ACA AAG TCG ATG GCA GAG A 3'). Ac 18S rRNA was used as 

the housekeeping gene. Ac 18S rRNA-up (5' ATG GTG GTG ACG GGT GAC 3'), Ac 18S rRNA-dn (5' 

AGA CAC TAA AGC GCC CGG TA 3').  

3.5. Arabidopsis Transformation and PCR Analysis of Transgenic Plants 

AcPI was excised from the pMD18-T vector using XbaI and BamHI restriction enzymes and 

inserted into the vector pBI121 under the control of cauliflower mosaic virus 35S promoter. After 

confirmation of the sequence, the plant expression vector was transformed into  

Agrobacterium tumefaciens strain GV3101 via the freeze-thaw method [42]. Then the 35S::AcPI was 

transformed into Arabidopsis thaliana ecotype Columbia plants using a floral dip method [43].  

Transformants which had survived in the 1/2 times MS medium containing kanamycin (50 mg/L) 

were further verified by PCR analysis. For PCR analysis, the Column Plant DNAout kit (TIANDZ, Inc, 

China) was used to isolate DNA from fresh leaves (100 mg) of T1 transgenic plants and 
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non-transgenic plants. The primers were PImq-F and PImq-R. The cycling condition was the same as 

that used in amplification of cDNA with enzyme recognition sites. 

4. Conclusions 

An AcPI was cloned from pineapple. The cDNA sequence of AcPI is 907 bp in length and contains 

an open reading frame of 594 bp, which encodes a protein of 197 amino acids. The qRT-PCR analyses 

in different tissues showed that the expression pattern of AcPI was different from the B-class genes in 

eudicots. AcPI was expressed in all the tissues investigated. The expression level was very low in fruit 

stems, bracts, leaves and sepals, high in petals and carpels, and moderate in apical meristems, flesh and 

stamens. The qRT-PCR analyses in different stages indicated that the expression of AcPI reached the 

highest level at 40 days after flower inducement, when the multiple fruit and floral organs were 

forming. The 35S::AcPI transgenic Arabidopsis plants flowered earlier and had more inflorescences or 

branches than the wild type plants. 
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