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Abstract: MGluR2 is G protein-coupled receptor that is targeted for diseases like anxiety, 

depression, Parkinson’s disease and schizophrenia. Herein, we report the three-dimensional 

quantitative structure–activity relationship (3D-QSAR) studies of a series of 1,3-dihydro-

benzo[b][1,4]diazepin-2-one derivatives as mGluR2 antagonists. Two series of models 

using two different activities of the antagonists against rat mGluR2, which has been shown 

to be very similar to the human mGluR2, (activity I: inhibition of [3H]-LY354740; activity 

II: mGluR2 (1S,3R)-ACPD inhibition of forskolin stimulated cAMP.) were derived from 

datasets composed of 137 and 69 molecules respectively. For activity I study, the best 

predictive model obtained from CoMFA analysis yielded a Q2 of 0.513, R2
ncv of 0.868, 

R2
pred = 0.876, while the CoMSIA model yielded a Q2 of 0.450, R2

ncv = 0.899, R2
pred = 0.735. 

For activity II study, CoMFA model yielded statistics of Q2 = 0.5, R2
ncv = 0.715, R2

pred = 0.723. 

These results prove the high predictability of the models. Furthermore, a combined analysis 
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between the CoMFA, CoMSIA contour maps shows that: (1) Bulky substituents in R7, R3 

and position A benefit activity I of the antagonists, but decrease it when projected in R8 and 

position B; (2) Hydrophilic groups at position A and B increase both antagonistic activity I 

and II; (3) Electrostatic field plays an essential rule in the variance of activity II. In search 

for more potent mGluR2 antagonists, two pharmacophore models were developed 

separately for the two activities. The first model reveals six pharmacophoric features, 

namely an aromatic center, two hydrophobic centers, an H-donor atom, an  

H-acceptor atom and an H-donor site. The second model shares all features of the first one 

and has an additional acceptor site, a positive N and an aromatic center. These models can 

be used as guidance for the development of new mGluR2 antagonists of high activity and 

selectivity. This work is the first report on 3D-QSAR modeling of these mGluR2 

antagonists. All the conclusions may lead to a better understanding of the mechanism of 

antagonism and be helpful in the design of new potent mGluR2 antagonists.  

Keywords: 3D-QSAR; mGluR2 antagonist; CoMFA; CoMSIA; pharmacophore modeling 

 

1. Introduction 

Glutamate is a useful excitatory neurotransmitter of the nervous system, although its excessive 

amount in the brain can lead to cell death through a process called excitotoxicity, which consists of the 

over stimulation of glutamate receptors. Excitotoxicity occurs in neurological diseases such as Alzheimer’s 

disease, Parkinson’s disease and multiple sclerosis [1]. The major excitatory neurotransmitter substance 

in the mammalian central nervous system is L-glutamate, which acts on receptors that are highly 

heterogeneous and of two types: ionotropic glutamate receptors (iGluRs) that mediate fast-synaptic 

transmission in most neuronal synapses and metabotropic glutamate receptors (mGluRs) which are  

G-protein Coupled Receptors linked to multiple second messengers and modulate the ion channel 

currents [2,3]. Until now, at least eight mGluRs have been described, subdivided into three groups 

based on their primary structure, second-messenger coupling, and pharmacology. Group I receptors 

include mGluR 1 and 5, group II mGluR2 and 3, and group III mGluR 4, 6, 7 and 8 [4]. These mGluRs 

play essential neuromodulatory roles throughout the brain, as such they are attractive targets for 

therapeutic intervention for a number of psychiatric and neurological disorders including anxiety, 

depression, Fragile X, Syndrome, Parkinson’s disease and schizophrenia [5].  

In the latest decades, pharmacological agents acting at specific mGluR subtypes have been 

developed. In particular, mGluR2/3 agonists showing antipsychotic properties and mGluR2/3 

antagonists may be useful as antidepressants and cognitive enhancers as demonstrated in different 

animal models [6]. These agents include the group II -selective agonist LY354740 and antagonist 

LY341495 [7]. These agonists have been reported to have neuroprotective, anxiolytic/anti-panic and 

anti-Parkinsonism properties, as well as anti-psychotic potential [8–10]. However, recently studies 

showed that LY354740 has been demonstrated to impair the spatial navigation memory using the 

water maze and produces a dose-dependent impairment of working memory in the delayed match to 
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position (DMTP) task in rats, although in humans there are no reports to date that mGluR2/3 agonists 

impair the cognitions [6,11]. 

Recently, acting as mGluR2 and 3 non-competitive antagonists, a series of in vivo active and  

well tolerated 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives were synthesized by  

Woltering T.J. et al [12]. They were reported to partially inhibit the binding of the selective agonist 

[3H]-LY354740 to rat mGluR2, fully block the effect of LY354740, (1S,3R)-ACPD and L-glutamate in 

cAMP assays. These mGluR2/3 antagonists show pharmacological potentiality by blockade of the 

mGluR2/3 agonist LY354740-induced hypoactivity and improvement of a working memory deficit 

induced either by LY354740 or scopolamine in the delayed match to position task (DMTP). Also, 

combination studies of the antagonists with a cholinesterase inhibitor shows apparent synergistic 

effects on working memory impairment induced by scopolamine. In addition, among the series of 

mGluR2 antagonists reported, compound 8am was found to exhibit mild antidepressant-like activity in 

the mouse, indicating further potential use of mGluR2/3 antagonists as antidepressant drugs [12]. 

Moreover, mGluR2 antagonists have been considered as major elements of a pharmaceutical 

composition to treat and prevent acute or chronic neurological disorders including Alzheimer’s disease 

and mild cognitive impairment (United States Patent 7235547). Also, Addex Pharmaceuticals  

(a pharmaceutical cooperation) has made plans to move mGluR2 antagonist into clinical trials for 

Alzheimer’s disease [13]. The great potential of further biological and pharmaceutical function of 

mGluR2 antagonist is still under exploration. Therefore, the antagonism of the series of 1,3-dihydro-

benzo[b][1,4]diazepin-2-one derivatives has great value to investigate. 

Quantitative structure activity relationship (QSAR) has been widely used to find out various 

interactive fields making impacts on activity, to predict the activities of the inhibitors and thus to help 

forecasting and designing of better specific ligands [14–16]. It is a mathematical model of correlation, 

statistically validated, between the variation on chemical structure and the activity profile of a series  

of compounds [17]. Nowadays, three-dimensional (3D) quantitative structure activity relationship  

(3D-QSAR) techniques, especially comparative molecular field analysis (CoMFA) and comparative 

molecular similarity analysis (CoMSIA) are routinely used in modern drug design [18]. Furthermore, 

pharmacophore model is another method to investigate into the structure-activity relationship of 

molecules. Common pharmacophoric features can be obtained from pharmacophore model based on 

known active compounds, providing guidance for the rational design of novel selective chemicals. In 

addition, molecular docking, which is also attempted in this paper, is utilized more and more in  

current drug design process. Here we focused on the study of a series of 8-ethynyl-1,3-dihydro-

benzo[b][1,4]diazepin-2-one derivatives that has been reported as new potent non-competitive 

mGluR2/3 antagonist [12]. The aim of the present study is to use the 137 newly fused compounds 

mentioned above as a data set to identify their requisite structural features affecting the mGluR2 

antagonist effects by a combination of several in silico approaches including CoMFA, CoMSIA and 

pharmacophore modeling. Structure-activity relationship concerning mGluR3 is not investigated, for 

there are no reported experimental values of activity presently. As far as we know, this study provides 

the first 3D-QSAR study and pharmacophore modeling for the series of new mGluR2 antagonists. 

 

 

 



Int. J. Mol. Sci. 2011, 12             

 

 

6002

2. Results and Discussion  

To judge whether a QSAR model is highly qualified, several statistical parameters including 

especially the cross-validated correlation coefficient (Q2), non cross-validated correlation coefficient 

(R2
ncv), standard error of estimate (SEE) and F-statistic values as well as the optimum number of 

components (OPN) should be evaluated. Various 3D-QSAR models were generated and the best model 

was selected based on the statistically significant parameters obtained. For both 3D-QSAR studies, 

good correlations were observed in the obtained CoMFA and CoMSIA models demonstrated by the 

high values of Q2, Rncv, Rpred and other statistical results. Table 1 summarizes the statistical results of 

the CoMFA and CoMSIA analyses.  

Table 1. Summary of comparative molecular field analysis (CoMFA) and comparative 

molecular similarity analysis CoMSIA results for activity I/activity II. 

PLS Statistics Activity I Activity II 

 CoMFA CoMSIA CoMFA CoMSIA 

Q2 0.513 0.450 0.503 0.367 
R2

ncv 0.868 0.899 0.715 0.657 

SEE 0.296 0.273 0.265 0.285 
F 96.022 101.353 20.907 24.927 

R2
pre 0.876 0.735 0.723 0.667 

SEP 0.288 0.420 0.241 0.265 

OPN 7 8 6 4 
Contribution 

Steric 0.488 0.112   
Electrostatic 0.461 0.277 0.917 0.455 

Hydrophobic  0.184  0.409 
H-donor  0.135   

H-acceptor  0.256   
Clogp 0.051 0.035 0.083 0.136 

Q2, cross-validated correlation coefficient after the leave-one-out procedure; R2
ncv, non-cross-validated 

correlation coefficient; SEE, standard error of estimate; F, ratio of R2
ncv explained to unexplained  

= R2
ncv/(1 − R2

ncv); R2
pre, predicted correlation coefficient for the test set of compounds; SEP, 

standard error of prediction; OPN, optimal number of principal components. 

2.1. Results for Activity I 

2.1.1. 3D-QSAR Statistical Results 

During the molecular modeling process, 110 compounds out of the total 137 mGluR2 antagonists 

were used as training set and the remaining 27 compounds were used as test set (shown in Tables S1–S4 

in supporting information). The best results were obtained at a column filtering of 1 kcal/mol for both 

steric and electrostatic fields for CoMFA analysis. PLS analysis showed a Q2 value of 0.513 with 7 

components for CoMFA, indicating a good internal predictive capacity of the model. A high 

correlation coefficient of 0.868 for the non-cross-validated model shows its self-consistency. 
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In addition, other statistical results including a SEE of 0.296 and an F-test value of 96.022 are 

reported (Table 1). Steric field descriptors explain 0.488 of the variance, while the electrostatic 

descriptors contribute 0.461, suggesting a balanced percentage of the influence exerted by the two 

fields on the activity of the antagonist. In addition, ClogP contributes a minor percentage of 5.1, 

indicating that the hydrophobicity of compound does affect its antagonistic activity to some extent. 

For the CoMSIA analysis, all combinations of the five different field descriptors (the steric, 

electrostatic, hydrophobic, H-bond-donor and H-bond acceptor) were used, with attempt to seek for the 

best CoMSIA model while avoiding the risk of possible omitting of some optimal ones. As a result, out 

of all CoMSIA models established using the same training set as used in the CoMFA analysis, the 

optimal CoMSIA model was made use of all five field parameters, and reveals a validated Q2 of 0.450 

for 8 components, a Rncv
2 of 0.899, F value of 101.353 and SEE of 0.273. The electrostatic field was 

demonstrated contributing a lot to the model with a sum of 27.7 percentages. In addition, the hydrogen 

bond acceptor field descriptor fulfills its role by correlating with the mGluR2 antagonist activity with a 

fraction of 0.256. Steric field contributes 11.2 percent of the variances. H-bond donor field and 

acceptor field contribute 0.184 and 0.135 respectively. 

All the statistical parameters of CoMFA and CoMSIA obtained show that the models generated are 

reasonable. Furthermore, the accuracy of these models was elucidated using an external test set of 27 

compounds. With a high predictive coefficient R2
pred of 0.876 (R2

ncv = 0.868) for CoMFA and 0.735 

(R2
ncv = 0.899) for CoMSIA achieved, the test sets potently validate the efficacy of the CoMFA and 

CoMSIA models. Figure 1A,B illustrate the correlation plots of the experimental versus the predicted 

pIC50 values of the training (filled black square) and test sets (filled blue circle) for the optimal CoMFA 

and CoMSIA models, respectively. Clearly, a good correlation was observed from this figure since the 

predicted values are almost as accurate as the experimental activities for the whole dataset, and all 

points are rather uniformly distributed around the regression line. This good agreement between the 

predicted and experimental activity data proves the satisfactory predictive ability of both the CoMFA 

and CoMSIA models. 

Figure 1. The ligand-based correlation plots of the predicted versus the actual pIC50 values 

using the training (filled black square) and the test (filled blue circle) set compounds based 

on (A) CoMFA for activity I (Dataset A: 137 compounds); (B) CoMSIA models for activity I 

(Dataset A: 137 compounds); (C) CoMFA for activity II (Dataset B: 69 compounds). 

 



Int. J. Mol. Sci. 2011, 12             

 

 

6004

Figure 1. Cont. 

 

2.1.2. Contour Maps for Activity I 

Contour maps were generated as scalar products of coefficients and standard deviation, associated 

with each CoMFA or CoMSIA column. The maps generated depict regions having scaled coefficients 

80% (favored) or 20% (disfavored). To aid in visualization, the most active antagonist in the series 

(compound 8ao) is shown superimposed with the CoMFA (Figure 2) and CoMSIA contour maps 

(Figure 3). The coefficient contour plots are essential to identify the important regions where some 

changes in the steric, electrostatic and hydrophobic fields may affect the biological activity. This is 

particularly important when increasing or reducing the activity of a compound by changing its 

molecular structural features contributing to the interaction between the ligand and the active site 

region of a receptor. 

Figure 2. CoMFA StDev*Coeff contour maps for activity I. (A) Steric (green/yellow) 

contour map in combination with compound 8ao. Green contours indicate regions where 

bulky groups increase activity; yellow contours indicate regions where bulky groups 

decrease activity; (B) Electrostatic contour map (red/blue) in combination with compound 

8ao. Red contours indicate regions where negative charged groups increase activity; blue 

contours indicate regions where positive charged groups increase activity. 

 
A                            B 
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Figure 3. CoMSIA StDev*Coeff contour maps for activity I, with 8ao as reference 

molecule. (A) Steric (green/yellow) contour map. Green contours indicate regions where 

bulky groups increase activity; yellow contours indicate regions where bulky groups 

decrease activity; (B) Electrostatic contour map. Red contours indicate regions where 

negative charges increase activity; blue contours indicate regions where positive charges 

increase activity; (C) Hydrophobic contour map. Yellow contours indicate regions where 

hydrophobic substituents enhance activity; white contours indicate regions where 

hydrophilic substituents enhance activity; (D) Contour maps illustrating H-bond donor 

features. The cyan contour represents the H-bond donor favored region, purple indicates 

the disfavored region; (E) CoMSIA contour maps illustrating H-bond acceptor features. 

The magenta contour indicates regions where H-bond acceptor groups increase activity, the 

red contour indicates the disfavored region for H-bond acceptor groups. 

 

2.1.2.1. CoMFA Contour Maps  

The contour maps of CoMFA denote the region in the space where the aligned molecules would 

favorably or unfavorably interact with the receptor. Contribution for favorable and unfavorable 

interactions with the receptor in terms of steric (80% green, 20% yellow) and electrostatic (80% blue 

and 20% red) were shown. 

For steric contour map, the green contour mapped near R7 substituent suggests that a sterically 

bulky group is favorable and increases the activity. This is well illustrated by the example that 

compound 8at (pIC50 = 8.40, R7 = −OEt) has higher activity than any other compounds with smaller 

substituents at the position R7, including especially the 8as (pIC50 = 8.00), which has the same 
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structure with 8at except for absence of groups in position R7. In addition, the large green region near 

the heterocyclic ring (ring D) and position A of the ring suggests that the activity I also benefits from 

bulky groups of these sites. This can be demonstrated by that fact that compounds of groups 7, 8 with a 

heterocyclic ring D at R3 position generally have higher activities than group 14 (with no ring at R3 

position). Also, in case where a heterocyclic ring D is commonly shared, 8am, 8an, 8ao (pIC50 = 8.70, 

position A = −CH3) respectively bear higher activities than 8i (pIC50 = 8.40), 8j (pIC50 = 8.10), 8m 

(pIC50 = 8.00) with no groups at position A. A yellow contour map shown towards the position R8 

indicates that the longer chain substituents towards this spatial distribution decrease the activity. 

Compounds 7g (pIC50 = 6.68) and 7r (pIC50 = 6.33) showing less antagonist activity are just due to 

their bulky propyl substituents that are projected in the yellow region. This is also the same with the 

yellow blocks appearing at position B of ring D. A drop in activity of compound 8ax (pIC50 = 8.22, 

position B = −CH3) when compared with 8at (pIC50 = 8.40, position B = −H) can illustrate this point. 

The CoMFA electrostatic contour plots for highly active compound 8ao are displayed in (Figure 2B). 

The large blue polyhedron partially encompassing the pyridine ring D indicates a favor for 

electropositive substituents in this region. Compounds 8ap (pIC50 = 7.85), 8t (pIC50 = 7.40), 8u  

(pIC50 = 6.56) are less potent than compounds 8am, 8an, 8ao (pIC50 = 8.70) just due to their strong 

negative groups (−OH and –NMe2) in these areas. Red polyhedron around the N atom at position 4 of 

ring D indicates that substituents should be electron deficient for high binding affinity with protein, 

which can be illustrated by the fact that 8h (pIC50 = 8.40, with N atom at position 4 of ring D) and 8ae 

(pIC50 = 8.30, with −OMe) enjoy higher activities than 8y (pIC50 = 7.59, with C atom at position 4) 

and 8aa (pIC50 = 7.89, with –Me) respectively. 

2.1.2.2. CoMSIA Contour Maps 

CoMSIA contribution maps denote those areas within the specified region where the presence of a 

group with a particular physico-chemical property will be favored or disfavored for good biological 

activity. With 8ao as reference in the background, CoMSIA steric (Figure 3A) and electrostatic 

contour maps (Figure 3B) show favorable and unfavorable regions that are highly similar to maps 

derived from the CoMFA analysis above, thus are not discussed here.  

Figure 3C shows the CoMSIA hydrophobic field contour map, where the yellow (hydrophobic 

favorable) and white (hydrophobic unfavorable) contours represent 80% and 20% level contributions 

respectively. Yellow region at positions R8 and R7 indicates hydrophobic substituents like −CF3, −Ph 

and -C≡C- resulting in a higher activity of mGluR2 antagonist. This can be illustrated by the sudden 

drop in activity of chemical 14w (pIC50 = 4.59, with a hydrophilic group −OH involved) comparing 

with 14u, 14v, 14x (pIC50 all above 6.00).  

Figures 3D and 3E depict the H-bond donor and acceptor contour maps of the CoMSIA models. 

Cyan color indicates the regions where H-bond donor acts as favored and purple color refers to the 

disfavored regions, respectively. Magenta contours encompass regions where H-bond acceptor will 

lead to improved biological activity, which may result in the fact that molecules with N atom  

at position 4 of ring D such as 8av (pIC50 = 8.40), 8au (pIC50 = 8.10), 8am (pIC50 = 8.70), 8ao  

(pIC50 = 8.70) generally have larger pIC50 value than 7z and 8aa~8ag molecules (pIC50 generally 

around 7.9–8.0) with position C atom at position 4. Red contours indicate an H-bond acceptor located 
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near the red regions will result in impaired biological activity. Compound 8l (pIC50 = 7.18, position  

B = −CF3) bearing lower activity than 8m (pIC50 = 8.00, position B = c-propyl), 8n (pIC50 = 8.40, 

position B = i-propyl) can be exemplified to demonstrate the disfavor for H-bond acceptor. The 

contour maps for H-bond donor and acceptor fields may guide the exploration of the H-bond 

interaction between the antagonists and the protein.  

2.2. Results for Activity II 

2.2.1. 3D-QSAR Statistical Results 

The dataset B composed of 69 compounds with reported experimental activities for (1S,3R)-ACPD 

inhibition of forskolin stimulated cAMP were divided into a training set consisting of 57 compounds 

and a test set containing 12 chemicals to derive the 3D-QSAR models (supporting Tables S1–S4).  

For CoMFA analysis, different from activity I studies, the optimal model consists only electrostatic 

field descriptors with while ClogP still included in, and reveals a statistical result of Q2 = 0.503 with 6 

components, R2
ncv = 0.715, SEE = 0.265, F = 20.907. CoMFA electrostatic field accounts for 0.917 of 

the variance. In addition, ClogP contributes 8.3 percentages, suggesting the antagonistic activity of the 

mGluR2 antagonist is influenced by its hydrophobicity moderately. All five fields were employed to 

obtain the best CoMSIA model. The optimal model consisting of electrostatic and hydrophobic fields 

was generated. However, the result isn’t ideal statistically (Table 1). Therefore, the CoMFA model is 

mainly analyzed here.  

For the optimal CoMFA model, the external test sets produced an R2
pred of 0.723, which is 

approximate to R2
ncv (0.715) for the training sets. This potently validates the predictive ability of the 

CoMFA model established. Figure 1C depicts the correlations between the experimental and the 

predict activities for both the training and test sets for the CoMFA model. A good agreement between 

the predicted activities and experimental data was observed from the plot. 

2.2.2. Contour Maps for Activity II 

The optimal CoMFA model is selected to construct the “stdev*coeff” contour maps to view the field 

effects on the target features. 

The maps generated depict regions having scaled coefficients 80% (favored) or 20% (disfavored). 

To aid in visualization, compound 8av as the most active mGluR2 antagonist in the series, is shown 

superimposed with the CoMFA contour map (Figure 4). 

Figure 4 shows the electrostatic contour maps obtained from the CoMFA analysis. The large red 

polyhedrons around the O and N atoms of ring II indicate the favor of electronegative charged 

substituents for the synthesis of potent antagonists. Similar to the electrostatic contour maps obtained 

from activity I, a large blue contour partially encompasses the ring D, which indicates a disfavor for 

electronegative substituents in this region, is observed. Compared with 8am, 8an, 8ao (pIC50 all above 

8.30), compound 8ap (pIC50 = 7.82) suffers a sudden drop of potency, due to their strong 

electronegative atom O. The small red isopleths above the N atom in position 4 of the ring suggest that 

substituents should be electron rich for high binding affinity with protein. This explains the high pIC50 
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value of 8am~8ax (with N atom at position 4 of ring D), comparing with 7z and 8aa~8ag (with C atom 

at position 4). 

Figure 4. CoMFA electrostatic contour map for activity II, in combination with compound 

8av. Red contours indicate regions where negative charged groups increase activity; blue 

contours indicate regions where positive charged groups increase activity. 

 

2.3. Homology Modeling Results and Docking Study  

In order to find the optimal orientation of the ligand in the binding pocket of the protein, docking 

studies were also attempted. However, a complete validated crystal structure for mGluR2 has  not yet 

been established. Thus, a homology model must be built based on the amino acid sequence, with a 

proper protein with similar structure and sequence as template. Based on chain B of template 2e4u 

(obtained from protein data bank), a comparative model of mGluR2 with a high sequence identity of 

65.4% covering regions 23 to 558 of a total of 872 amino acids (data shown in Figure S3 contained by 

support information) was successfully created. The model established contains an orthosteric site, 

which is the active site of the protein. But according to the study of Woltering T.J., the orthosteric site 

is not the binding site of the series of antagonist we investigated [12]. Instead, an allosteric site which 

locates in the 7 transmembrane (7TM) domain of mGluR2, maybe the binding site of the antagonist 

due to its non-competitive nature. The series of antagonists have been reported a high affinity for 

allosteric site [12]. Furthermore, instead of a common allosteric site, multiple allosteric sites covering a 

larger binding region is suggested for mGluR2 negative allosteric modulators such as the antagonists 

we focus on. Their binding region is defined as the inward-facing top half of the 7TM helices [5]. 

Unfortunately, according to the latest sequence reported by H.Y Zhou, the 7TM region happened to be 

in region 554 to 872, which is not contained in modeled residue range [19].  

Using bovine Rhodopsin crystal structures 1F88 and 1GZM, which is also a transmembrane protein, 

to build TM structure of GPCRs (G protein-coupled receptor) like mGluR1 and mGluR5, is applied 

recently [20–22]. Thus we attempted to build mGluR2 homology model based on 1F88 and 1GZM. In 

the present work, several homology models are built using this potentially effective template by a 

variety of modeling tools including the Swiss Model, Modweb, M4T, ESyPred3D and Modeller,  

but only receiving identities below 20% (data not shown), which made the model statistically 

insufficiently to be a valid mGluR2 structure. This may result from the low sequence identity (less than 

20%) shared by different classes of GPCR, despite of their common confirmation of a hepta-helical 

architecture in the mGluR transmembrane [5]. The homology model reveals low sequences identity 
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and the unideal docking results. Thus to further investigate into the structure-activity relation of the 

series of antagonists, pharmacophore models were established based on the two activities. 

2.4. Pharmacophore Modeling 

Presently, models for mGluR2 antagonists is not developed yet, though pharmacophore models of 

mGluR2 agonists have been established [23]. Herein, prior to quantitative pharmacophore development, 

a common-feature pharmacophore modeling study was conducted in order to identify the features 

required for effective mGluR2 antagonists.  

DiscoTECH was employed to generate a collection of pharmacophore queries from a series of 

compounds some or all of which are active against a particular biological target such that all or most of 

active compounds satisfy the queries. Presently, 50 highly active compounds participated in the 

establishment of pharmacophore model for the two activities separately. The most active compounds 

for activity I (8ao) and for activity II (8av) were selected as reference molecules for the two 

pharmacophore models respectively. The maximum number of conformers generated for each 

compound was 50, and seven conformers were then selected.  

2.4.1. Pharmacophore Model for Activity I 

In total, nine models (as shown in Table 2) were generated using the most active 50 antagonists 

with no omitting for activity I studies. Model_001 (Figure 5A) was selected for subsequent studies 

despite its second highest score value (1.8562) because it has useful features of a higher diversity 

compared with model_002 (Figure 5B), which possesses the highest score (2.3577). 

Table 2. Number of models obtained along with the pharmacophoric features and tolerance 

values for each of the DISCO pharmacophoric run for activity I. 

MODEL SIZE a HITS b SCORE c TOLERANCE d DMEAN e 

MODEL_002 6 50 2.3577 0.25 3.4348 

MODEL_001 6 50 1.8562 0.25 3.4163 
MODEL_005 7 50 1.7220 0.25 3.0344 

MODEL_009 7 50 1.3646 0.25 3.4012 
MODEL_003 7 50 1.3629 0.25 3.3955 

MODEL_006 7 50 1.3607 0.25 3.3880 
MODEL_008 6 50 0.6783 0.25 2.0754 

MODEL_004 6 50 0.3735 0.25 2.8621 
MODEL_007 6 50 0.3733 0.25 2.8616 

a SIZE, number of features in the model; b HITS, number of molecules that matched during 

the research; c SCORE, an overall measure of fit and of overlap for the entire collection of 
structure; d TOLERANCE, initial tolerance setting (from 0.25 to 2.5); e DMEAN, average 

inter-point distance. 

Figure 5A shows the optimal pharmacophore model (model_001) obtained with a score of 1.8562 

and tolerance distance of 0.25 Å. The model has six essential features required for high receptor 

binding affinity, which contain two hydrophobic sites (HP1 and HP2), an H-bond donor atom (HD), an 
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H-bond donor site (DS), one H-bond acceptor atom (HA) and an aromatic center (AR). The distances 

between these pharmacophoric features are listed in Table 3. Two aromatic ring (ring I and ring III), a 

heterocyclic ring (ring II) containing N and a constrained conformation features are common in all the 

50 chemicals. The hydrophobic center and the planar group serve as the rigid portion of the molecular 

scaffold that satisfies the overall geometric and steric requirements of binding. 

Figure 5. The pharmacophoric features derived of (A) model_001 for activity I with six 

features generated; and (B) model_002 for activity I with six features generated presented 

in template molecule 8ao, respectively. AR represents aromatic center; HP refers to 

hydrophobic center; HD and HA are short for H-bond donor and acceptor respectively; DS 

refers to H-bond donor site. The distances (Ǻ) between these sites are marked in white lines.  

 

Table 3. Relative intramolecular distances between pharmacophoric feature points for 

model_001 of activity I (Ǻ). 

 AR1 HP1 DS HP2 

HA 2.83 2.83 3.00 3.63 

HD 2.83 2.83 3.00 3.63 
DS 4.91 4.91  4.02 

HP2 6.43 6.43 4.02  

AR represents aromatic center; HP refers to hydrophobic center; HD and HA are short for H- bond 

donor and acceptor respectively; DS refers to H-bond donor site. 

This model has the characteristic features required for an ideal pharmacophoric query, because it 

possesses the important interactions required for this series of antagonists and was consistent with 

previously reported scaffold of potent antagonists [12]. Closer inspection of the pharmacophore model 

reveals that H-bond donor and H-bond acceptor atoms were in agreement with the results from the 

CoMSIA model. To be considered as a hit, a compound has to fit all the features of the pharmacophore 

model consequently. 
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2.4.2. Pharmacophore Model for Activity II 

For activity II studies, based on 50 compounds of high antagonistic activity, only one model was 

obtained with a score of 1.8286 (as shown in Table 4) and tolerance of 0.25 Å. Nine essential features 

are observed in this model required for the high antagonistic activity, including two hydrophobic sites 

(HP1 and HP2), an H-bond donor atoms (HD), one H-bond donor site (DS), one H-bond acceptor site 

(AS), one H-bond acceptor atom (HA), one positive N (PN) and two aromatic centers (AR1 and AR2). 

Figure 6 shows the pharmacophoric features generated in this model, with the most active compound 8av 

for activity II as reference. The distances between these pharmacophoric features are listed in Table 5. 

Table 4. Number of models obtained along with the pharmacophoric features and tolerance 

values for each of the DISCO pharmacophoric run for activity II.  

MODEL SIZE a HITS b SCORE c TOLERANCE d DMEAN e 

MODEL_001 9 50 1.8286 0.25 3.3280 
a SIZE, number of features in the model; b HITS, number of molecules that matched during 
the research; c SCORE, an overall measure of fit and of overlap for the entire collection of 

structure; d TOLERANCE, initial tolerance setting (from 0.25 to 2.5); e DMEAN, average 
inter-point distance. 

Figure 6. The pharmacophoric features derived of model_001 for activity II with nine 

features generated presented in template molecule 8av. AR represents aromatic center; HP 

refers to hydrophobic center; HD and HA are short for H-bond donor and acceptor 

respectively; PN refers to positive N; DS and AS represent H-bond donor site and acceptor 

site respectively. The distances (Ǻ) between these sites are marked in white lines. 

 

Table 5. Relative intramolecular distances between pharmacophoric feature points for 

model_001 of activity II (Ǻ). 

 AR1 HP1 DS HP2 

HA 2.83 2.83 3.00 3.63 
HD 2.83 2.83 3.00 3.63 

DS 4.91 4.91  4.02 
HP2 6.43 6.43 4.02  

AR represents aromatic center; HP refers to hydrophobic center; HD and HA are short for H-bond 

donor and acceptor respectively; PN refers to positive N, DS and AS represent H-bond donor site 

and acceptor site respectively. 
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An additional positive N, an acceptor site and an aromatic center are generated besides those similar 

features shared with the pharmacophore model generated previously for activity I, indicating a necessity 

of the presence of positive N and acceptor atom for the synthesis of potent mGluR2 antagonists that 

perform well in cAMP test. Compounds contain all the nine features of the pharmacophore model are 

supposed to be more capable of performing antagonistic activity towards mGluR2. 

For both activity I and II studies, pharmacophore features derived are in range of the tricycle 

scaffold. This indicates that the basic scaffold features participate significantly in the pharmacologic  

effect of the antagonist. Using the models developed, a new effective scaffold that contains these 

phamacophore features can be synthesized. In addition, CoMFA and CoMSIA contour maps derived 

denote the favorable features of substituents. With a combination of phamacophore features and 

CoMFA, CoMSIA contour maps, new potent antagonists can be designed. 

2.5. Comparison between the Two Activities 

Out of the 137 compounds employed in the investigation, 69 have both antagonistic activity I and II. 

To explore the possible relationship of the two potencies, a mathematical model is established and its 

corresponding plot using activity I and II as the X and Y coordinate respectively is drawn (Figure 7) 

based on these molecules. Clearly, a good linear correlationship is observed between the two activities 

with a correlation coefficient of R2 = 0.39. This may suggests that the activities of these antagonist in 

radioligand binding studies (Rat mGluR2 [3H]-LY354740 binding, activity I) and in functional Cyclase 

Inhibition Assay (cAMP assay, activity II), though differ considerably, correlate with each other to a 

significant extent. The prediction that the binding ratio reflected the functional efficacy of a compound 

was also supported by measurement of the ability of a number of compounds acting at dopamine 

receptors to inhibit rD2(444)-mediated inhibition of cyclic AMP production [24]. However, the pIC50 

value of the two activities still differs from each other, due to the different mechanism of cAMP 

production and binding assay: Radioligand binding studies and cAMP assay are two strategies in drug 

screening technology to investigate the activity of a ligand. cAMP assay is based on a second 

messenger and assesses the antagonistic activity of a ligand through the level of cAMP. That enables 

us to appreciate the molecular features of inhibition by the regulatory subunits as well as the activation 

by cAMP [25]. Radioligand binding studies do not involve the signal path, but directly investigate into 

the interaction between the radiolabelled ligands and the receptor. The first objective in binding assay 

is to ensure that the binding equilibrium is reached. Then KD, a parameter to describe the affinity of a 

ligand for a receptor can be calculated [26].  

In general, CoMFA and CoMSIA statistic results for the two activities differ in several aspects.  

(I) The best models for activity I employ all field descriptors in both CoMFA and CoMSIA (steric and 

electrostatic in CoMFA and steric, electrostatic, hydrophobic, H-donor, H-acceptor in CoMSIA) 

analyses. While for activity II, optimal model contains only electrostatic field in CoMFA analysis; (II) 

Steric field exerts deeper influence on activity I rather than activity II, for in activity I study, it 

contributes considerable percentages in both CoMFA (48.8%) and CoMSIA (11.2%) analysis. 

However, for activity II study, neither the best CoMFA model nor the best CoMSIA model employs 

steric field as a contributor to the variance of the activity; (III) Electrostatic field clearly plays a 

dominant role in the variance of activity II, while for activity I, more factors including steric field, 
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hydrophobic field, H-donor and H-acceptor field contribute to the variance of activity of the series of 

antagonists; (IV) The hydrophobicity of a antagonist exerts more influence on its activity II rather than 

activity I for two reasons. Firstly, hydrophobic field plays more essential role in the later one on 

improving the value of statistical parameters (Q2, R2
ncv, R2

pre) that are crucial for evaluating the 

reliability of the model. Thus, in the best CoMSIA models, hydrophobic field contributes a higher 

percentage to activity II (40.9%). Furthermore, ClogP, which is a well established measure of the 

compound’s hydrophobicity. Thus, it contributes more in cAMP functional assay (activity II), with 

8.3% (activity II) over 5.1% (activity I) in CoMFA and 13.6% (activity II) over 3.5% (activity I) in 

CoMSIA. These differences in statistic result may result from the difference in mechanism of the two 

experiments revealing the activity of the antagonist. 

Figure 7. A correlation plot of activities for activity I (affinity test: partial displacement of 

[3H]-LY354740) and activity II (cell based test: inhibition of effect of1S,3R-ACPD on 

cAMP level). 

 

From the differences above, we may conclude that factors like the steric feature, electrostatic 

feature, hydrophobicity of a function group all need to be considered to best improve the performance 

of the antagonists in radioligand binding assay. However, simply confusing on the electrostatic 

character as well as the hydrophobicity of the substituents may help design drugs showing potent 

antagonism in cAMP assay. 

Analysis of the 3D-QSAR contour maps derived from activity I and activity II suggest that they 

generally have very similar structural requirements for potent ligands. The electrostatic contour maps 

all indicate that electropositive groups above N atom at position 4 of ring D will benefit the potency of 

the antagonist. Moreover, a large blue contour partially encompassing the pyridine ring is observed in 

all four of the contour maps. Still, a subtle difference exists: electropositive groups above the O atom 

of ring II decrease the activity I while favor the activity II. Also, large red contour around the N atom 

of ring II suggests a favor for electropositive substituents or atoms. These differences and similarities 

in molecular structural features of potent antagonists may help increasing or reducing the activity of 

the compound by changing its substituents. 

In addition, the pharmacophore models derived from the two activities generally share the same 

features, excepting for a few difference. An H-donor atom, an H-donor acceptor atom, an H-donor site, 



Int. J. Mol. Sci. 2011, 12             

 

 

6014

two hydrophobic centers and an aromatic ring are common features for the two models. Besides, for 

pharmacophore model of activity II, a positive N, an H-bond acceptor site and an additional aromatic 

ring are featured as essential characters of potent drugs. Thus, here the active sites shared by the two 

models are considered fundamental pharmacophore features for potent mGluR2 antagonists. The 

highly similarity of the two models may reflect the predict ability of radioligand binding assay towards 

pharmacophore function of the antagonists. These models can be used as guidance for the design of 

new mGluR2 antagonists of high activity and selectivity.  

3. Material and Methods 

3.1. Dataset and Biological Activity 

A total of 137 8-ethynyl-1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives with common 

characteristics of inhibiting the [3H]-LY354740 binding to rat mGluR2 receptors were adopted as 

dataset A to build models for activity I studies. Compound 4, which has identical structure but 

different activity statistics than 7p, was discarded from the dataset as suspected error statistic. In 

addition, compound 3 and 15o are identical both in structure and statistics, and 15o is adopted. Also, 

for activity II, 69 among the 137 compounds with a statistically reported function of inhibiting the 

forskolin stimulated cAMP production were adopted as dataset B to build models. The statistics were 

collected from the experimental values of Woltering T.J. et al. [12]. The original names of compounds 

in the four articles are preserved. The in vitro biological activities of these compounds were converted 

into the corresponding pIC50 (−log IC50) values, which were used as dependent variables in the  

3D-QSAR analyses. PIC50 values and structures of 25 typical molecules are shown in Table 6. In 

approximately a ratio of 4:1, the whole data set was divided into training (110 molecules) and test  

(27 molecules) sets in models based on activity I and training (57 molecules) and test (12 molecules) 

sets in models for activity II, respectively. With a desired function of representing the entire dataset to 

the most, the test set chemicals were picked considering several criterions: First and foremost, their 

pIC50 values are randomly but uniformly distributed in the range of the values for the whole set. 

Furthermore, the collection of their structures is typical enough to represent the entire dataset. The 

training and test set are listed in Tables S1–S4 (supporting information). All molecular modeling and 

3D-QSAR studies were performed using the SYBYL6.9 molecular modeling software package (Tripos 

Associates, St. Louis, MO, USA). Partial atomic charges were calculated by the Gasteiger-Huckel 

method [27], energy minimization and conformational search were performed using Tripos molecular 

mechanics force field [28] by conjugating method with a convergence criterion of 0.001 kcal/mol. To 

obtain relatively stable conformation, the energy gradient limit was set at 0.05 kcal/mol Å. Table S1–S4 

(Supporting Information) lists all the structures and biological values (pIC50) of the dataset, and the 

representative skeletons and pIC50 values are depicted in Table 6. 
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Table 6. Representative structures and inhibitory activities (pIC50) of the dataset. 

N

H
N OR8

R7

R3

 

NO. R3 R8 R7 Activity I  Activity II 

1 H Me H 5.1938  

2 CN Ph-C≡C- H 7.4685 7.7696  

14u CN 2-Thiazolyl-C≡C- H 6.5229  

14v CN 2-Pyridyl-C≡C- H 6.0605  

14x CN H2C=C(Me)-C≡C- H 6.3979  

14aa CN Ph-C≡C- 
N

NMe  
6.5560  

15c 

N

N
 

2-F-C6H4-C≡C- H 7.6990 7.7959  

15m 

N

N
 

Ph-C≡C- -OCH2CN 7.7447 7.8861  

15q 

N
N

N
 

4-F-C6H4-C≡C- -OH 7.6990 7.7696  

7g 

N

N
 

Cyclo-propyl H 6.6778  

7o 

N
N

N
 

4-F-C6H4- H 7.5086 7.4437  

7z 

N
N

N
 

F3C- Iso-butylN(Me) 7.9586 7.8539  

7ac 

N
N

N
 

F3C- MeO 7.5376 7.1308  

8a 

N

N
 

F3C- Me 7.9208 7.7212  

8h 
N

H

 
F3C- Me 8.3979 7.9586  

8y 
N  

F3C- Me 7.5850 7.5229  

8aa N

Me

 
F3C- Me 7.8861 8.3010  

8ae N

OMe

 
F3C- Me 8.3010 8.0000  
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Table 6. Cont. 

NO. R3 R8 R7 Activity I  Activity II 

8aj 
N

N

 
F3C- Me 8.2218 7.3010  

8ao 
N

Me

 
F3C- Me 8.6990 8.3979 

8av 

N

Me

 
Cl Cl 8.3979 8.6990 

3.2. Conformational Sampling and Alignment 

Molecular alignment of compounds, which align all the compounds together by common scaffold, 

is a key step in the process of establishing 3D-QSAR models [29]. In the alignment, a molecule with 

relatively high biological activity and fairly fixed conformation is usually adopted as template. In this 

work, the most active compounds for the two activities: 8ao (activity I, pIC50 = 8.7) and 8av (activity II, 

pIC50 = 8.7) were used as template molecules in the two models respectively. The tricycle which they 

share with other molecules was chosen as the common scaffold. Figure 8A describes the common 

substructure for the alignment which is marked in red. A ring in position R3 was named ring D and 

positions A, B and 4 are shown in the figure. Based on an atom-by-atom superimposition principle, the 

ligand-based alignment of the molecules was carried out by using substructure-alignment function 

available in SYBYL. Figure 8B and Figure 8C show the resulting ligand-based alignment model of 

activity I and activity II respectively. 

Figure 8. Scaffold of the mGluR 2 antagonists and molecular alignment of compounds for 

two models. (A) Common substructure of the molecules is shown in red with 8ao as 

template molecule, and the heterocyclic ring (not commonly shared) as a substituent in 

position R3 is named ring D to better describe some compounds in group 8; (B) For activity 

I, molecular alignment using 137 molecules of dataset A; (C) For activity II, alignment 

model using 69 compounds of dataset B. 
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Figure 8. Cont. 

 

3.3. CoMFA and CoMSIA Field Calculation 

CoMFA approach, proposed by Cramer and co-workers in 1988, describes the molecular properties 

by 3D steric (Lennard–Jones) and electrostatic (Coulomb) fields, evaluated over a lattice of points. In a 

similar approach described as the (CoMSIA) by Klebe and co-workers in 1994, a probe atom is used to 

calculate the similarity indices, at regularly spaced grid points, for the pre-aligned molecules.  

In CoMFA calculations, the aligned training set molecules were placed in a 3D grid box. The steric 

and electrostatic field energies were calculated using sp3 carbon as probe atom. The energies were 

truncated to 30 kcal/mol. CoMFA method only calculates the steric and electrostatic interactions,  

yet CoMSIA not only calculates the steric and electrostatic interactions, but also calculates the 

hydrophobic, HB donor and HB acceptor interactions [30]. The basic assumption of CoMSIA is that a 

suitable sampling of the steric, electrostatic, hydrophobic and HB acceptor interactions generated 

around a set of aligned molecules with a probe atom might provide all important features for 

understanding their biological activities, and that the changes in binding affinities of ligands are related 

to changes in molecular properties [31]. Similar to CoMFA studies, the CoMSIA method employs a 

3D lattice with regular grid points separated by 2Å to place aligned molecules. CoMSIA uses a  

Gaussian-type distance-dependent function to assess five fields of different physicochemical 

properties. The default value of 0.3 was used as attenuation factor [18,32]. Because of the different 

shape of the Gaussian function, CoMSIA similarity indices (AF) for a molecule j with atom i at a grid 

point q are calculated by Equation 1 as follows: 

 
2

,
q

,
iqr

ikkprobekF ejA





  (1)  
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where ωprobe,k is the probe atom with radius 1Å, charge +1, hydrophobicity +1, hydrogen bond 

donating +1 and hydrogen bond accepting +1. ωik is the actual value of the physicochemical property k 

of atom i. riq is the mutual distance between the probe atom at grid point q and item i of the test 

molecule [33]. 

Furthermore, the logP value of a compound, which is the logarithm of its partition coefficient 

between n-octanol and water log (coctanol/cwater), is a well established measure of the compound’s 

hydrophilicity. In the present work, Clog P (calculated logP) was used as an additional descriptor in 

the CoMFA and CoMSIA analysis to study the effects of lipophilic parameters on activity.  

3.4. Partial Least Square Analysis 

Partial least-squares (PLS) methodology implemented in the QSAR model of SYBYL was used in 

deriving the 3D-QSAR models. This method replaces the original variables by a small set of linear 

combinations and is a variation of principal component regression [34,35]. In this work, PLS was used 

to analyze the training set by correlating the variation in their pIC50 values (the dependent variable) 

with variations in their CoMFA/CoMSIA interaction fields (the independent variables). Initially,  

cross-validation analysis was accomplished with the leave-one-out (LOO) methodology, where one 

compound was excluded from the original dataset and its activity was predicted by the new model 

derived from the rest of the database. That gives the LOO-CV (R2) as a statistical index of predictive 

power. Then a non-cross-validation analysis was carried out to calculate the Pearson coefficient and 

the standard error of estimates (SEE). 

During PLS process, several statistical parameters including the Q2 and the above R2
ncv are crucial 

for evaluating the reliability of the model generated. As a cross-validated coefficient, Q2 is used as a 

statistical index of the predictive power of the model, and is calculated by Equation 2 where the Ypredicted, 

Yobserved and Ymean are predicted, actual and mean values of the target property, respectively [36]. 

2

2

2

( )

1
( )

predicted observed
Y

observed mean
Y

Y Y

q
Y Y



 





 (2)  

In order to evaluate the real predictive ability of the best models generated by the CoMFA/CoMSIA 

analyses, 27 compounds are treated as the external validation set for activity I and 12 compounds for 

activity II. A predictive R value was then obtained with Equation 3: 

2 1 /predr PRESS SD   (3)  

Where SD denotes the sum of squared deviation between the biological activities of the test set 

molecule and the mean activity of the training set molecules, PRESS represents the sum of squared 

deviations between the experimental and predicted activities of the test molecules [37]. 

3.5. DISCOtech Analysis 

3D pharmacophore mappings based on distance comparison technique were derived from the  

50 most active compounds for activity I and activity II respectively. Pharmacophore models in 

particular involve the identification of the pharmacophoric pattern common to a set of known actives 
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and the use of this pattern in a subsequent search. DISCOtech™, a well established module for 

designing pharmacophoric maps and frequently used in the process of virtual screening to discover 

new leads, is employed in the establishment [38,39]. DISCOtech identifies features that could be 

elements in a pharmacophore model from a set of molecules that binds to a common binding  

site [40,41]. These features include hydrogen bond donor atoms (HD), hydrogen bond acceptor  

atoms (HA), hydrogen donor (DS) and acceptor site (AA), charge centers, centers of mass of 

hydrophobic rings (HP), aromatic rings (AR) and positive N (PN). In this study, a stochastic search 

method was used to create conformers for the molecules. The maximum number of conformers 

generated for each compound was 50, and seven conformers were then selected. The 50 most active 

molecules were employed with most active antagonist selected as reference compound. Min 4 and Max 

16 features were allowed to find during the analysis. Tanimoto threshold was set as 0.6. All other 

parameters were retained as default values. The best DISCOtech pharmacophore model with relatively 

high score, more useful features and moderate pairwise tolerance was proposed.  

4. Conclusions  

In this paper, the 3D-QSAR studies and ligand-based modeling of 137 1,3-dihydro-

benzo[b][1,4]diazepin-2-one derivatives were, for the first time, performed using CoMFA and 

CoMSIA tools. In 2008, a Chinese paper reported a model concerning affinity test using 30 compounds 

in the first one among the series of article [42]. Two series of models were built using statistics from 

affinity assay (activity I) and cell test (activity II) respectively. The constructed 3D-QSAR models 

exhibited proper predictive powers in both the internal and external tests. The resulting contour maps 

produced by the models provide a platform for the screening of novel inhibitors and enables the 

interpretation of their binding models to mGluR2. A good consistency between the CoMFA and 

CoMSIA contour maps and the pharmacophore model was observed, proving the reliability and 

robustness of the models. Overall, our main findings are summarized as follows: (1) Bulky substituents 

in R7, R3 and position A benefit activity I of the series of derivatives, and decrease the potency when 

projected in R8 and position B of ring D; (2) Hydrophilic groups at position A and B of Ring D may 

increase the antagonistic activity I; (3) Electrostatic field plays an essential role in improving the 

antagonism of the compounds performed in cAMP assay (activity II); (4) An H-donor atom, an  

H-donor acceptor atom, an H-donor site, two hydrophobic centers and an aromatic ring are shared 

pharmacophoric features of the two models. Besides, for pharmacophore model of activity II, a 

positive N, an H-bond acceptor site and an additional aromatic ring are featured as essential characters 

of potent drugs. In addition, the amino acid sequence of the human mGluR2 receptor consists of  

872 residues and shows a sequence identity of 97% to the amino acid sequence of rat mGluR2,  

besides highly similar anatomy, thus made the model highly applicable to create human mGluR2 

antagonists [43]. All the correlation of the results obtained from above QSAR and pharmacophore 

studies, we hope, may lead to a better understanding of the structural requirements for enhanced 

activity and help in the design of new and more potent mGluR2 antagonists. 
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