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Abstract: A molecularly imprinted polymer (MIP), obtained by precipitation 

polymerisation with 4-vinylpyridine as the functional monomer, ethylene glycol 

dimethacrylate as cross-linker, and bisphenol-A (BPA) as template, was prepared. The 

binding site configuration of the BPA-MIP was examined using Scatchard analysis. Moreover, 

the behaviour of the BPA-MIP for the extraction of several phenolic compounds (bisphenol-A, 

bisphenol-F, 4-nitrophenol, 3-methyl-4-nitrophenol) and phenoxyacid herbicides such as 

2,4-D, 2,4,5-T and 2,4,5-TP has been studied in organic and aqueous media in the presence 

of other pesticides in common use. It was possible to carry out the selective preconcentration 

of the target analytes from the organic medium with recoveries of higher than 70%. In an 

aqueous medium, hydrophobic interactions were found to exert a remarkably non-specific 

contribution to the overall binding process. Several parameters affecting the extraction 

efficiency of the BPA-MIP were evaluated to achieve the selective preconcentration of 

phenols and phenoxyacids from aqueous samples. The possibility of using the BPA-MIP as 

a selective sorbent to preconcentrate these compounds from other samples such as urine 

and river water was also explored. 

Keywords: molecularly imprinted polymer; precipitation polymerisation; Scatchard 

analysis; bisphenol-A; phenolic compounds; phenoxyacid herbicides 
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1. Introduction 

Phenolic compounds are environmental pollutants whose sources may be as different as industrial 

effluents or the reaction products and degradation of certain pesticides, etc. Bisphenol-A (BPA) and  

-F (BPF) are widely used for the production of epoxy resins and polycarbonate plastics and they can be 

released into the environment both directly and indirectly. In recent years, special interest has been 

focused on BPA since in vitro experiments have shown it to have estrogenic activity, even at low 

concentration levels [1]. Phenoxyacetic acids are a class of important plant growth regulators and 

herbicides that are widely used in agriculture. 

MIPs are synthetic materials possessing specific cavities specially designed for the recognition of a 

given analyte or a group of structurally related species. The synthesis of MIPs involves the assembly of 

monomers around a template molecule, followed by polymerisation in the presence of a  

cross-linker. Removal of the template molecule by extraction affords sites specifically available for the 

insertion of template-like molecules as regards both shape and chemical functionality. Certain qualities 

of MIPs, such as tolerance to extreme pH values and organic environments, apart from their 

selectivity, have brought MIPs to the forefront in contemporary chemical research [2]. 

Depending upon the nature of the chemical bonds involved, MIP synthesis techniques can be 

classified within three different imprinting approaches: Covalent, semi-covalent and non-covalent. Of 

these three strategies, the latter has been most widely adopted owing to its experimental simplicity 

and to the commercial availability of different monomers that are able to interact with almost all kinds 

of template [3]. 

Originally, bulk polymerisation was the first strategy used to synthesize imprinted polymers. The 

monolith is ground and sieved to obtain appropriately sized particles with an irregular shape for further 

use [4]. The particles thus obtained invariably show a heterogeneous particle size distribution, with 

poor binding site accessibility for the target analyte. In recent years, considerable efforts have been 

devoted to developing new polymerisation methodologies for the collection of MIP beads with 

suitable physical characteristics (size, porosity, pore volume, surface area). Microspheres of regular size 

and shape can be prepared by precipitation polymerisation, emulsion polymerisation [5], suspension 

polymerisation [6] and seed polymerisation [7,8]. However, while in the majority of cases stabilizers 

and surfactants are required for the synthesis procedures, these being additives that may contaminate 

the final products, precipitation polymerisation has been proposed as a simple and easy strategy for the 

rapid collection of MIP beads in high yield [9,10]. This method consists of carrying out the 

polymerisation in a larger amount of porogen than that typically used in the bulk method (2 to 10 times 

higher). As the polymerisation proceeds, the growing polymer chains become insoluble in the liquid 

phase and they precipitate. A modified precipitation polymerization method has been reported which 

results in more uniformly sized microspheres, specially indicated for utilization as selective stationary 

phase in chromatography [11]. 

To date, molecularly imprinted polymers (MIPs) have been extensively exploited in many different 

applications, including their use as separation materials [12,13], chemical sensors [14], reaction 

catalysts [15] and, in particular, as solid-phase extraction (SPE) sorbents. The introduction of MIPs 

into SPE, a technique commonly referred to as MISPE, is emerging as a very popular tool. In recent 

years several publications have reported the success of MISPE in the extraction of a broad range of 
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compounds from matrices as different as water [16,17], honey [18], wine [19], hair [20], urine [21] and 

cheese products [22], among others. 

Recently, different publications addressing the development of BPA-imprinted polymers [23,24], 

even combined with sol-gel technology [25], have appeared. However, only a few authors have 

reported their applications as SPE sorbents [26–28] or fibre coatings for SPME [29]. Likewise, MIPs 

for phenoxyacetic acid herbicides have proliferated [30], and SPE cartridges have been explored with a 

view to finding suitable applications for the clean-up and pre-concentration of aqueous samples 

containing chlorinated phenoxyacids [31]. 

In the present work we used a BPA-MIP, prepared by precipitation polymerization using  

4-vinylpyridine (4-VP) as the functional monomer and ethylene dimethacrylate (EDMA) as the  

cross-linker, as a molecularly imprinted solid-phase extraction sorbent. Our aim was to understand the 

origin of its recognition properties and to be able to evaluate the parameters that are important in 

determining the ability of MIPs to recognize template molecules. Moreover, the number of binding 

sites of the MIP was examined using Scatchard analysis. In addition, the binding selectivity of MIPs 

and their subsequent recognition mechanism in organic and aqueous media were also explored in 

detail. The possibilities offered by the BPA-MIP studied here in the direct extraction of these 

compounds from aqueous samples were also studied. Another objective of our work was to explore the 

possible applications of the imprinted polymer for the selective, efficient and fast solid-phase 

extraction of the above-mentioned compounds from complex samples such as urine and river water. 

2. Results and Discussion 

An imprinted polymer was prepared by precipitation polymerization using BPA as a template and  

4-vinylpyridine as the functional monomer, together with a corresponding non-imprinted polymer. 

This polymer has been developed for use as a sorbent for solid-phase extraction for the 

preconcentration of phenolic compounds and phenoxyacid herbicides in the presence of other 

xenobiotic compounds. The chemical structures of the compounds studied are shown in Figure 1. 

Figure 1. Chemical structures of all the compounds studied. 
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Figure 1. Cont. 
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To visualize particle morphologies, scanning electron microscopy (SEM) micrographs were taken 

of the samples after the template molecule had been extracted. Figure 2 shows a micrograph of the 

imprinted polymer. As result of the precipitation polymerisation, agglomerates of small spheres with a 

uniform particle diameter of approx 0.8 m were obtained. 

Figure 2. Scanning electron micrograph of the polymer obtained by precipitation polymerisation. 

2 m2 m

 

 

2.1. Binding Performance of the MIP 

To estimate the binding affinity of the MIP for bisphenol-A in toluene, a saturation binding 

experiment and Scatchard analysis were carried out. The binding isotherms of bisphenol-A to the MIP 

and NIP were measured at several concentrations in the 0.01–2 mM range (Figure 3a). The amount of 

BPA bound to the MIP at binding equilibrium, Q, increased together with the increase in the initial 
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concentration of BPA ([BPA]ini), and reached saturation at a higher concentration. On comparing the 

curves obtained for the MIP and the NIP, it may be seen that the amount of template bound to the 

imprinted polymer was much higher than that bound to the non-imprinted polymer. This suggests that 

the imprinted cavities of the MIP may be responsible for the high-affinity binding of the template to 

the polymer. The binding characteristics of MIPs can be estimated using Scatchard analysis. The 

Scatchard equation is:  

Q/[BPA]eq = (Qmax − Q)/KD 

where Q is the amount of bisphenol-A bound to the MIP at equilibrium; Qmax is the apparent maximum 

number of binding sites; [BPA] is the free BPA concentration at equilibrium, and KD is the equilibrium 

dissociation constant of the binding sites. Q/[BPA] was plotted vs. Q, as shown in Figure 3b. The 

Scatchard plot for the MIP is not a single linear curve: there are two distinct sections within the plot, 

with different slopes. This suggests that there are two classes of heterogeneous binding sites as regards 

affinity for bisphenol-A in the polymer. The linear regression equation for the left part of the curve in 

the figure is Q/[BPA]eq = −0.0975Q + 1.6786; the unit of Q is nmol. KD and Qmax were calculated to be 

10.3 mol L
−1

 and 17.3 mol g
−1

 of dry polymer, respectively, from the slope and the intercept of the 

Scatchard plot. The linear regression equation for the right part of this curve is  

Q/[BPA]eq = −0.0016Q + 0.2806. KD and Qmax were calculated to be 625.0 mol L
−1

 and 175.4 mol g
−1

 

of dry polymer.  

Figure 3. (a) Isotherms of the binding of BPA to the imprinted and non-imprinted 

polymers. Weight of polymer: 10 mg; volume of bisphenol-A standard solution in toluene: 

1mL; binding time: 3 h; (b) Scatchard plot analysis of the binding of BPA to the imprinted 

polymer. Q is the amount of BPA bound to the MIP. [BPA]eq is the concentration of free 

bisphenol-A at equilibrium. 
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It may be concluded that the binding site configuration of the MIP is heterogeneous as regards 

affinity for bisphenol A, and this indicates that the binding sites can be classified within two groups 

with different binding properties.  

A similar experiment was carried out in aqueous medium, but in this case nearly all the BPA was 

retained in the MIP and the NIP, regardless of the concentration. 

2.2. Study of the Retention Process in Organic Medium 

The purpose of the present work was to develop a novel MIP for the extraction of certain phenolic 

compounds from different matrices. In this sense, the sorbent used should ideally be compatible with both 

organic and aqueous media. Thus, the extraction column can operate either in the “selective adsorption” 

mode, for which the sample matrix containing the analyte can be dissolved or extracted with an organic 

solvent, or in the “selective desorption” mode, which is especially suitable for aqueous samples. 

In light of the different selective retention mechanisms in which MIPs can operate, we initially 

studied the ability of the MIP obtained by precipitation polymerization to specifically recognize 

analytes from organic medium. As is known, MIPs often exhibit a stronger imprinting effect in the 

solvent in which they were originally obtained (usually toluene). This was evaluated by working in 

parallel with cartridges filled with imprinted polymer (MIP) and non-imprinted polymer (NIP), both 

obtained as described in the experimental section. The analytes included in this study belong to 

different families and can be classified in the following subgroups: phenolic compounds (BPA, BPF, 

4-NOPL, 3-Me4-NOPL), phenoxyacid herbicides (2,4-D; 2,4,5-T and 2,4,5-TP), and other pesticides 

and some of their degradation products (atrazine and its metabolite DEA, chlortoluron and its 

metabolite CMPU, diuron and carbaryl).  

The loading step was accomplished using 5 mL of a standard mixture in toluene spiked with all the 

analytes studied at a concentration of 100 g L
−1

. In order to prevent non-specific interactions between 

the analytes and the MIP, a cartridge-washing step was implemented, initially using 10 mL of 

dichloromethane, because this was the solvent that had produced the best results in a previous work 

with a propazine-imprinted polymer [32]. All the fractions obtained in the loading, washing, and 

elution steps were collected, evaporated and analyzed. The results obtained (Figure 4) show that the 

phenols and phenoxyacid herbicides were completely retained in the MIP (Figure 4a). In contrast, in 

the case of the NIP (Figure 4b) the phenoxyacid herbicides were retained, with recoveries higher than 

80%, but the phenols had lower recovery values. This behaviour shows that the retention of phenolic 

and phenoxyacid compounds in organic medium is due to more than one type of interaction. The rest 

of the compounds (DEA, CMPU, Atz, Clt, Cbl and Din) were mainly eliminated in the washing step, 

in the case of the MIP, or were not retained, in the case of the NIP. Accordingly, the results obtained 

indicate that toluene is a suitable organic medium for the retention of phenols and phenoxyacid 

herbicides by the BPA-MIP. 
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Figure 4. Percentage of each of the compounds studied in the loading, washing and elution 

steps of the (a) MIP and (b) NIP. Sample: 5 mL of toluene spiked at a concentration  

of 100 g L
−1

. Washing step: 10 mL of dichloromethane. Elution step: 10 mL of 

acetonitrile:acetic acid (9:1, v/v). 
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Influence of the Amount of Sorbent Used 

The amount of polymer to be used is an important issue to be considered when employing a solid 

sorbent. To check the influence of this in the recovery values, empty SPE cartridges were filled with 

different amounts of polymer. For most of the compounds, the recoveries obtained were not 

significantly better when amounts of sorbent above 100 mg were used. Bearing in mind that the 

difficulty in passing the sample through the system increases with the increase in polymer mass, we 

decided to use 100 mg of polymer as a compromise amount (Figure 5). 

Figure 5. Influence of polymer mass on the recoveries of the fraction eluted from the 

bisphenol-A-MIP. Sample: 5 mL of toluene with 100 g L
−1

 of each compound. Washing 

and elution steps as in Figure 4. 
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2.3. Study of the Process of Retention in Aqueous Medium 

With a view to being able to use the MIP for the direct solid-phase extraction of xenobiotic compounds 

from several aqueous matrices, the behaviour of this imprinted polymer as a SPE sorbent was studied. 

The BPA-MIP was exposed to a standard aqueous solution (5 mL) containing all the xenobiotic 

compounds (100 g L
−1

). The recoveries obtained when the imprinted and non-imprinted polymers 

were used as sorbents are shown in Table 1, where it may be seen that the values for the imprinted 

polymer are higher than 75% for both the phenolic compounds and the phenoxyacid herbicides. These 
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compounds were also retained to a slight extent in the NIP, but in this case recoveries were lower than 

30%, except for BPF, for which the recovery was 49%. The other compounds were not retained either 

in the MIP or in the NIP. This suggests that the BPA-MIP can be used to selectively preconcentrate 

phenols and phenoxyacid herbicides from aqueous samples.  

Table 1. Recoveries (%) of some xenobiotic compounds employed to study the selectivity 

of MIP and NIP. Sample: 5 mL of UHQ water spiked with 100 g L
−1 

of each analyte. 

Washing solvent: 10 mL of dichloromethane. 

Compound 
Recoveries (%) ± S.D.

a
 

MIP NIP 

DEA − − 

CMPU 6 ± 1 8 ± 1 

4NOPL 79 ± 8 14 ± 2 

2,4-D 86 ± 9 16 ± 2 

BPF 88 ± 8 49 ± 5 

Atz − − 

3Me4NOPL 75 ± 8 24 ± 3 

Clt − − 

2,4,5-T 93 ± 8 36 ± 4 

Cbl − − 

BPA 76 ± 8 22 ± 3 

Din − − 

2,4,5-TP 84 ± 7 13 ± 2 
a
 S.D. = standard deviation for n = 3. (−) Not retained. 

2.3.1. Influence of the Washing Solvent 

The choice of washing solvent is an important factor when desiring to increase selectivity. In order 

to obtain the best results, three solvents were assayed: toluene, dichloromethane and acetonitrile. 

Optimum results were obtained with dichloromethane; the recoveries obtained with acetonitrile  

were lower than those obtained with toluene and dichloromethane, and selectivity was higher  

with dichloromethane. 

Once it had been decided that dichloromethane was the best washing solvent, the influence of the 

volume of this solvent was assessed. To accomplish this, the MIP was washed successively with 

increasing volumes of dichloromethane and the fractions thus obtained were analysed 

chromatographically (Table 2). It was observed that the compounds of the different families of the 

phenols and phenoxyacid herbicides were eluted efficiently (>80%) in the first two fractions of 

dichloromethane. In contrast, the compounds retained specifically were not eluted in these fractions; 

BPA only began to be eluted in the third fraction. The phenoxyacid herbicides and the smallest phenolic 

compounds (4NOPL and 3Me4NOPL) were not eluted, even when 20 mL of dichloromethane was used. 
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Table 2. Influence of the volume of dichloromethane used in the washing step. Sample:  

5 mL of UHQ water spiked with 100 g L
−1

 of each analyte.  

Percentage of analyte removed in each fraction 

 

1st fract. 

2.5 mL 

2nd fract. 

2.5 mL 

3rd fract. 

5 mL 

4th fract. 

5 mL 

5th 

fract. 

5 mL 

Total 

washed 

Phenolic compounds and phenoxyacid herbicides 

4NOPL − − − − − − 

2,4-D − − − − − − 

BPF − − − 7 8 15 

3Me4NOPL − − − − − − 

2,4,5-T − − − − − − 

BPA − − 6 13 6 25 

2,4,5-TP − − − − − − 

Other pesticides and metabolites 

DEA 76 8 4 − − 88 

CMPU 49 21 7 5 3 85 

Atz 75 9 − −  84 

Clt 75 7 4 − − 86 

Cbl 76 9 3 −  88 

Din 73 8 3 − − 84 

These results prompted us to employ a compromise solution, in which, by using a washing step with 

5 mL of dichloromethane, the phenolic compounds and the phenoxyacid herbicides could interact with 

the MIP in a specific way. The results indicated that, when the sample was passed through the 

cartridge in aqueous medium, the analytes were retained by non-selective interactions. In contrast, 

washing later with dichloromethane generated an organic medium in which non-selective interactions 

were converted into interactions specific for the phenolic and phenoxyacid compounds [32,33]. 

2.3.2. Effect of Drying Time 

The retention of the analytes on a sorbent from an aqueous medium may be strongly affected by the 

presence of water embedded in the sorbent after sample passage. Accordingly, we next studied how the 

drying time affected the retention of the analytes in the MIP. 

After passing an aqueous sample through the system, the sorbent was dried by applying a vacuum 

of −15 mmHg for different times (5, 30 and 60 min). Following this, it was also dried in an oven at  

50 °C for 12 h. The recoveries obtained for drying times of 5, 30 and 60 min were similar. By contrast, 

when the sorbent was dried in an oven at 50 °C for 12 h, a decrease in the recoveries obtained for the 

phenolic compounds was observed, probably due to their volatility. 

2.3.3. Influence of the Volume of the Elution Solvent 

The elution of the compounds retained specifically was conducted with a acetonitrile:acetic acid 

mixture (9:1 v/v), although considering that after the elution it is necessary to include an evaporation 

step, the minimum solvent volume required for elution was studied. To accomplish this, the MIP was 
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loaded with 10 mL of UHQ water spiked with 50 g L
−1

 of each analyte, washed with 5 mL of 

dichloromethane, and successively eluted with increasing volumes of the acetonitrile:acetic acid 

mixture. The fractions thus obtained were analysed chromatographically. It was observed that the first 

2.5-mL fraction of the acetonitrile:acetic acid mixture eluted the highest amounts, and for more polar 

compounds elution was even complete. The second 2.5-mL fraction eluted small amounts of 2,4,5-T, 

BPA and 2,4,5-TP. None of the analytes were detected in successive fractions. A volume of 5 mL of 

acetonitrile-acetic acid (9:1 v/v) was therefore used as the elution solvent in later studies. 

2.3.4. Effect of Sample pH on Recovery Efficiency 

The retention of analytes on the structure of MIPs may be influenced by pH, and this can may 

significantly different between several water sources. Some authors [33] have pointed out that a low 

pH level is optimal for the retention of acidic phenolic compounds when an MIP is synthesized using 

4-VP as the functional monomer. Since this was the functional monomer used here to obtain the MIP, 

a study of the influence of sample pH on recoveries was performed. To accomplish this, samples of 

bottled water were loaded in the MIP at three different pH levels (2.9, 6.0 and 9.3, adjusted with 

ammonium formate buffer or boric-borate buffer). The results showed that pH did not affect the 

recoveries to a significant extent, and no general trend could be established. This kind of behaviour can 

be explained considering that retention takes place through hydrophobic interactions and electrostatic 

interactions. The analytes studied here would ionize at neutral or alkaline pH, and this ionization 

would favour the development of electrostatic interactions. In an acid medium, even if the analytes 

were not ionized, the functional monomer would ionize and, again, electrostatic interactions could be 

established [33,34]. 

2.4. Use of the BPA-MIP as Selective Sorbent from Water and Urine Samples 

Apart from the characterisation of the binding sites and the selectivity study described above, 

another objective of this work was to explore the possible applications of the imprinted polymer for the 

selective extraction of the xenobiotic compounds studied from real samples.  

Urine is representative of highly complex matrices. Figure 6a shows the chromatogram obtained 

when 20 mL of urine (from healthy volunteers, and previously frozen, thawed and filtered) spiked with 

all the analytes (phenols, phenoxyacids, DEA, CMPU, Atz, Clt, Cbl and Din) at 25 g L
−1

 was passed 

through the MIP and analyzed following the indicated procedure. Peaks corresponding to BPF,  

2,4,5-T, BPA and 2,4,5-TP were detected. Also, a broad band appeared at the beginning of the 

chromatogram. In order to obtain a cleaner chromatogram, an additional step was included in the 

MISPE protocol; this involved the addition of 5% (v/v) of acetonitrile to the urine sample before 

passing it through the MIP. The introduction of this new step in the extraction procedure produced 

cleaner chromatograms (Figure 6b), and peaks corresponding to BPF, 3Me4NOPL, 2,4,5-T, BPA and 

2,4,5-TP were readily identifiable and the recovery values were in the range 54% for 3Me4NOPL and 

96% for BPA, with detection limits, for a signal to noise ratio of 3, in the range 5.3 g L
−1 

for 

3Me4NOPL and 0.9 g L
−1 

for BPA and 2,4,5-TP. Thus, the MISPE procedure proved to be simple 

and effective for the elimination of substances that can interfere in analyte detection or that may 
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damage the chromatographic system. To improve the detection limits in urine samples, the appropriate 

sample treatment should be optimized. 

Figure 6. Chromatograms obtained for the MISPE extraction of 20 mL urine spiked with 

25 g L
−1

 of each analyte, without (a) and with (b) the addition of 5% of acetonitrile to the 

sample. Washing step: 5 mL of dichloromethane. Elution step: 5 mL of acetonitrile:acetic 

acid (9:1, v/v). 
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Water samples from the River Tormes (Salamanca, Spain) were also selected to demonstrate that 

the BPA-MIP is able to selectively bind these xenobiotic compounds from environmental aqueous 

matrices. Figure 7 shows the chromatograms corresponding to the washing and elution steps 

obtained after MISPE treatment of 100 mL of river water spiked with all the analytes studied at a level 

of 0.5 g L
−1

. As expected, the band corresponding to humic acids was reduced to a considerable 

extent, only signals that correspond to phenols and phenoxyacid herbicides are present (Figure 7a) 

and its identification and quantification is easier. The washing step with dichloromethane removes all the 

non-retained compounds, allowing even the identification and quantification of these 

compounds (Figure 7b). Table 3 shows the recoveries and the limits of detection for the compounds 

retained in the MIP (detected in the elution step) and also the data corresponding to the non-retained 

compounds (detected in the washing step with dichloromethane). As can be seen, recoveries obtained 

were >75% for all the retained compounds; even in the case of non-retained compounds (other 

pesticides and metabolites detected in the washing step), the recoveries where high enough to allow 

quantification. The detection limits were lower than 0.5 g L
−1

, that is the level of quantification 

recommended within Europe for the determination of herbicides in surface waters. 
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Figure 7. Chromatograms obtained for the MISPE extraction of 100 mL of Tormes river 

water spiked at a level of 0.5 g L
−1

 corresponding to the elution step (a) and the washing 

step (b). Washing and elution steps as in Figure 6. 
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Table 3. Recoveries and limits of detection obtained for all the compounds studied. 

Sample: 100 mL of river water spiked with 0.5 g L
−1

 of each analyte. 

 Recoveries (%) L.D.
a
 (g L

−1
) 

Phenolic compounds and phenoxyacid herbicides 

4NOPL 77 0.12 

2,4-D 78 0.08 

BPF 84 0.09 

3Me4NOPL 76 0.09 

2,4,5-T 98 0.04 

BPA 92 0.06 

2,4,5-TP 91 0.04 

Other pesticides and metabolites b 

DEA 70 0.13 

CMPU 68 0.15 

Atz 87 0.08 

Clt 84 0.11 

Cbl 77 0.01 

Din 87 0.13 
a
 D.L. = detection limit for a signal-to-noise ratio of 3; 

b
 non-retained compounds detected in the washing step 

with dichloromethane. 
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3. Experimental Section 

3.1. Chemicals 

The xenobiotic compounds were obtained from Sigma-Aldrich (Steinheim, Germany) and were 

used without further purification. The compounds studied were as follows: bisphenol-A (BPA),  

2,2-bis(4-hydroxyphenyl)propane, CAS RN [80-05-7]; bisphenol-F (BPF),  

bis-(4-hydroxyphenyl)methane, CAS RN [620-92-8]; 2,4-dichlorophenoxyacetic acid (2,4-D), CAS 

RN [94-75-7]; 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), CAS RN [93-76-5];  

2-(2,4,5-trichlorophenoxy)propionic acid (2,4,5-TP), CAS RN [93-72-1]; 4-nitrophenol (4NOPL),  

p-nitrophenol CAS RN [100-02-7]; 3-methyl-4-nitrophenol (3Me4NOPL), 4-nitro-m-cresol CAS RN 

[2581-34-2]. Stock solutions of each analyte were prepared in acetonitrile at 500 g mL
−1

. 

Other pesticides studied were obtained from Ehrenstorfer (Augsburg, Germany):  

atrazine (Atz), 6-chloro-N
2
-ethyl-N

4
-isopropyl-1,3,5-triazine-2,4-diamine CAS RN [1912-24-9];  

chlortoluron (Clt), 3-(3-chloro-p-tolyl)-1,1-dimethylurea CAS RN [15545-48-9]; CMPU (CMPU),  

N-(3-chloro-4-methylphenyl)urea, CAS RN [590393-14-9]; carbaryl (Cbl), 1-naphthyl-N-methylcarbamate 

CAS RN [63-25-2] and diuron (Din), 3-(3,4-dichlorophenyl)-1,1-dimethylurea CAS RN [330-54-1].  

4-Vinyl pyridine (4-VP) and ethylene dimethacrylate (EGDMA) were obtained from  

Sigma-Aldrich (Steinheim, Germany); 2,2'-azobis(2-methyl-propionitrile) (AIBN) was obtained from 

Acros organics (Geel, Belgium). 

The organic solvents, acetonitrile and methanol were of HPLC grade (Merck, Darmstadt, Germany) 

and were used as received. Dichloromethane and acetic acid were of analysis grade (Scharlau, 

Barcelona, Spain).Ultra-high quality (UHQ) water was obtained with an Elgastat UHQ water 

purification system. 

All other chemicals were of analytical reagent grade. 

3.2. Synthesis and Characterisation of the Molecularly Imprinted Polymer 

The procedure followed to obtain the MIP by precipitation polymerisation has been described 

before by the authors [17,18]. The morphology of the polymer was determined by scanning electron 

microscopy, using a Zeiss DSM 949 (Zeiss, Oberkochen, Germany) device at the Electron Microscopy 

Service of the University of Salamanca. 

Recovery values (mean of three experiments) were determined by relating the signal of the analytes 

eluted with a mixture of acetonitrile:acetic acid (9:1, v/v) from the corresponding polymers with the 

concentration to be expected if recoveries were 100%. 

3.3. Binding Experiments 

A series of BPA standard solutions was prepared in toluene. One-millilitre aliquots of each solution 

were mixed with 10 mg of imprinted polymer and non-imprinted polymer particles in a 2 mL glass 

vial. The vials were shaken in a constant-temperature bath at room temperature for 3 h. After the 

binding process was completed, the mixture was filtered with a 0.45-m filter. The BPA concentration 
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in the filtrate was measured by HPLC-DAD UV and the amount of BPA bound to the MIP and NIP 

was calculated by subtracting the concentration of free BPA from the initial concentration. 

3.4. MISPE Procedure in Organic Medium 

100-mg samples of each polymer were dry-packed in empty solid-phase extraction cartridges and 

conditioned with 5.0 mL of an acetonitrile:acetic acid mixture (9:1, v/v), 5.0 mL of dichloromethane, 

and 5.0 mL of toluene. For the experiments involving extraction from organic samples, the MIP 

columns were loaded with 5.0 mL of a mixture of the analytes at a concentration of 100 g L
−1 

in 

toluene. After an exhaustive drying step, 10 mL of dichloromethane was percolated through the 

sorbent to eliminate non-specific interactions. The target analytes were eluted from the cartridge with  

5 mL of an acetonitrile:acetic acid (9:1, v/v) mixture. In order to evaluate the efficacy of the polymer, the 

fractions eluted were collected and evaporated to dryness under a stream of nitrogen. The residues were 

reconstituted in 1.0 mL of water-acetonitrile (9:1, v/v) and analyzed using an HPLC-DAD UV system. 

3.5. MISPE Procedure in Aqueous Medium 

A procedure similar to that described in the previous section was used for the extraction of the 

analytes from aqueous samples, the only difference being that in the final conditioning step the solvent 

employed was water instead of toluene. A volume of 5.0 mL of aqueous sample was passed through 

the MIP, after which an exhaustive drying step was implemented. The washing and elution steps were 

performed under the same conditions as those described in the previous section. 

3.6. Chromatographic Conditions 

HPLC-DAD UV was performed on a HP 1100 Series chromatograph from Agilent (Waldbronn, 

Germany) equipped with a binary pump, a membrane degasser, an autosampler, and a UV diode-array 

detector (UV-DAD). The system was controlled by an HP ChemStation, which also collected the data 

from the diode array detector and performed quantitative measurements. The analytical column used 

was a 150 × 4.60 mm Luna PFP(2) packed with 3 m particles (Phenomenex, Torrance, CA, USA). 

The diode array detector was set at 300 nm for 4NOPL and 3Me4NOPL, 244 nm for CMPU, Clt and 

Din, and 214 nm for all other analytes. Spectra were recorded in the 190–400 nm range. 

The mobile phase consisted of an acetonitrile (solvent A)-5 mM ammonium formate buffer,  

pH = 3.5, (solvent B) isocratic mixture (15:85, v:v) for 1 min; a linear gradient from 15% to 35% of 

solvent A in 3 min; another isocratic period of 7 min; another linear gradient from 35% to 55% in  

13 min, and then a return to the initial conditions in 2 min, with 3 min for equilibrating the column. 

Flow rate was 1 mL min
−1

 and the volume injected was 100 L. The analytical column was 

thermostatted at 25 °C. 

3.7. Water and Urine Samples 

Samples of river water were taken from the River Tormes in the city of Salamanca (Spain). They 

were collected directly in 1 L glass bottles. All samples were filtered through 0.45 m pore size 

cellulosic membrane filters (Osmonics
®
, Kent, WA, USA) and were stored at 4 °C in the dark until 
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extraction. First, all water samples were analyzed using the proposed method to check for the presence 

of the analytes. No signals corresponding to target analytes were found, and hence spiked water 

samples were used.  

Urine samples collected from four healthy volunteers were used for developing the method and the 

preparation of calibration standards. Urine samples were collected in 250 mL brown glass bottles and 

frozen immediately until analysis. Before use, the urine samples were thawed at room temperature and 

spiked daily with diluted standard solutions. Samples were filtered through 0.45 m Cameo filters to 

remove precipitated proteins and 5% (v/v) of acetonitrile was added to the urine sample before passing it 

through the MIP. All urine samples were first analyzed with the proposed method in order to check the 

natural occurrence of the target compounds; no signal corresponding to the target analytes were found. 

3.8. SPE Procedure 

Preconcentration was accomplished by passing 100 mL of natural water or 20 mL of urine through 

an empty extraction cartridge loaded with 100 mg of the BPA-MIP, previously conditioned with 5 mL 

of dichloromethane, 5 mL of acetonitrile/acetic acid (9:1, v/v) and 10 mL of water. Following this, the 

cartridges were dried for 30 min under a vacuum of −15 mmHg and then 5 mL of dichloromethane and 

5 mL of acetonitrile/acetic acid (9:1, v/v) were used as washing and elution solvents. The fraction 

eluted was evaporated to dryness and the dry residues were reconstructed in 500 L of a 

water/methanol mixture (1:1, v/v). 

4. Conclusions  

In this work, a new molecularly imprinted polymer has been synthesized by precipitation 

polymerization with bisphenol-A as template and 4-vinylpyridine as the functional monomer. The 

Scatchard method revealed that in toluene the binding site configuration is heterogeneous as regards 

the affinity for bisphenol-A. KD and Qmax values of 10.3 mol L
−1

, 17.3 mol g
−1

 and 625.0 mol L
−1 

and 175.4 mol g
−1

 were calculated, indicating that there are two classes of binding sites in the MIP. 

The BPA-MIP showed excellent molecular recognition abilities, and not only for phenolic compounds; 

indeed, even phenoxyacid herbicides were selectively retained in both organic and aqueous media. 

The results indicated that careful choice of the washing and elution conditions afforded a reliable 

MISPE method, and its application in complex samples has been demonstrated. In the analysis of urine 

samples, it was necessary to add 5% of acetonitrile to the sample before passing it through the MIP. 

Under these conditions, cleaner chromatograms were obtained and the peaks corresponding to 

BPF, 3Me4NOPL, 2,4,5-T, BPA and 2,4,5-TP were easily identified. In river water analysis, no 

relevant pre-treatment of the sample was necessary to obtain clean chromatograms with detection 

limits lower than 0.5 g
−1

, that is the level of quantification recommended within Europe for the 

determination of herbicides in surface waters.  
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