Next Article in Journal
Antimicrobial Activities of Hexane Extract and Decussatin from Stembark Extract of Ficus congensis
Previous Article in Journal
Preparation and Physicochemical Properties of 10-Hydroxycamptothecin (HCPT) Nanoparticles by Supercritical Antisolvent (SAS) Process

Int. J. Mol. Sci. 2011, 12(4), 2692-2749; doi:10.3390/ijms12042692

Review
Database Survey of Anti-Inflammatory Plants in South America: A Review
Gedson Rodrigues de Morais Lima , Camila de Albuquerque Montenegro , Cynthia Layse Ferreira de Almeida , Petrônio Filgueiras de Athayde-Filho , José Maria Barbosa-Filho and Leônia Maria Batista *
Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Paraiba, 58051-970, João Pessoa, PB, Brazil; E-Mails: gedson@ltf.ufpb.br (G.R.M.L.); camila_montenegro@ltf.ufpb.br (C.A.M.); cynthialayse@gmail.com (C.L.F.A.); athayde-filho@quimica.ufpb.br (P.F.A.-F.); jbarbosa@ltf.ufpb.br (J.M.B.-F.)
*
Author to whom correspondence should be addressed; E-Mail: leoniab@uol.com.br; Tel.: +55-83-32167003; Fax: +55-83-32167502.
Received: 1 April 2011; in revised form: 8 April 2011 / Accepted: 11 April 2011 /
Published: 21 April 2011

Abstract

: Inflammation is a complex event linked to tissue damage whether by bacteria, physical trauma, chemical, heat or any other phenomenon. This physiological response is coordinated largely by a variety of chemical mediators that are released from the epithelium, the immunocytes and nerves of the lamina propria. However, if the factor that triggers the inflammation persists, the inflammation can become relentless, leading to an intensification of the lesion. The present work is a literature survey of plant extracts from the South American continent that have been reported to show anti-inflammatory activity. This review refers to 63 bacterial families of which the following stood out: Asteraceae, Fabaceae, Euphorbiaceae, Apocynaceae and Celastraceae, with their countries, parts used, types of extract used, model bioassays, organisms tested and their activity.
Keywords:
anti-inflammatory activity; leukocytes; medicinal plants; natural products; South American; review

1. Introduction

Inflammation is the response of body to injury and danger. It is the central communication network and regulatory process that senses and controls threat, damage, containment, and healing, which are all critical aspects in the maintenance of the integrity of an organism [1].

This process occurs as a defensive response, which induces profound physiological adaptions triggered in an attempt to limit tissue damage and remove the pathogenic insult. Such mechanisms involve a complex series of events including dilatation of arterioles, venules and capillaries with increased vascular permeability, exudation of fluids, including plasma proteins, and leukocyte migration into the inflammatory area [2].

In response to injury or infection, the specialized cells of the first line, leukocytes (neutrophils and eosinophils polymorphonuclear-PMNs) migrate to the damaged regions with the aim of neutralizing and eliminating these harmful stimuli [3]. The mechanism of inflammation is attributed, in part, to release of reactive oxygen species (ROS) from activated neutrophils and macrophages [4]. ROS propagate inflammation by stimulating release of cytokines, such as interleukin-1, tumor necrosis factor-α, and interferon-γ, which stimulate recruitment of additional neutrophils and macrophages. Thus free radicals are important mediators that provoke or sustain inflammatory processes and, consequently, their neutralization by antioxidants and radical scavengers can attenuate inflammation [5,6].

A complex network of mediators, including cytokines and lipids, produced by endothelial cells, epithelial cells and tissue infiltrating leukocytes, characterizes the early phases of inflammation [7].

The clinical features of inflammation were described some 2000 years ago listed as the cardinal signs of inflammation: rubor (redness), tumor (swelling), heat (hyperthermia) and pain [8].

The combined action of the molecules attracts and activates leukocytes to the reactive site, promotes angiogenesis and tissue remodeling [7]. If this sequence of steps is rigorously followed, the acute inflammation will resolve without causing excessive damage to tissue, returning to homeostasis [3].

However, there are several clinical conditions where inflammation becomes chronic with excessive production of macrophage-derived mediators may lead to collateral damage to normal cells, which results in diseases, including atherosclerosis, bowel disease, rheumatoid arthritis glomerulonephritis, and septic shock [9].

Therefore, the classical anti-inflammatory agents glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs) can only alleviate symptoms without, however, altering the course of the disease [3].

The current anti-inflammatory therapy aims to control the cardinal signs of inflammation, antagonizing or blocking key pro-inflammatory mediators that are released at the beginning of an acute inflammatory response [3]. NSAIDs typically relieve inflammation and associated pain by inhibiting cyclooxygenase enzymes involved in the production of prostaglandins. These enzymes exist in two isoforms (COX-1 and COX-2) coded by distinct genes on different chromosomes [10]. Compounds that inhibit COX enzymes could therefore be considered to be potential anti-inflammatory drugs. However, many of the commonly used anti-inflammatory agents are becoming less acceptable due to serious adverse reactions such as gastric intolerance, bone marrow depression and water and salt retention, resulting from prolonged use [11].

Within this context, it is of fundamental importance to search for substances that can promote the resolution of inflammation, thus, homeostatic and modulatory, efficient and tolerated by the body [3].

Plants are an important source of biologically active natural products and are considered a promising avenue for the discovery of new drugs due to easy access and relatively low cost, since they naturally grow in relative abundance [12,13]. The development of standardized herbal medicines with proven efficacy and safety of use is an important source for increasing the access of people to medicines and to offer new therapeutic options [14].

So, can cite examples of plants with scientifically proven anti-inflammatory activity: Annona muricata, Glycine max, Orthosiphon stamineus, Caulerpa racemosa and Oenothera speciosa used in folk medicine [1519].

Therefore, extracts or isolated compounds from natural products seems to be a promising strategy for developing anti-inflammatory drugs in search of a better therapeutic and quality of life for the patient [20].

In the course of our continuing search for bioactive natural products from plants, we have published reviews of extracts and compounds derived from plants with the following potential activities: inhibitors of mammary, uterine cervical and ovarian neoplasia [2123]; inhibitors of HMG CoA reductase, angiotensina-converting enzyme and the enzyme acetylcholinesterase [2426]; with central analgesic activity [27]; employed in prevention of osteoporosis [28]; for the treatment of Parkinson’s disease [29]; anticonvulsant and anxiety disorders [30,31]; with antileishmanial [32]; giardicidal [33]; antileprotic [34]; hypoglycemic [35] and antiinflammatory activities [36,37]; for the treatment of malaria [38]; with antiulcer activity [3941] and effects of plant extracts on HIV-1 Protease [42]. Our group has also reviewed the medicinal and poisonous plants of the Northeastern region of Brazil [43,44], among other review articles [4554]. So in this work, we reviewed the literature related to anti-inflammatory activity of the plants from South American countries.

2. Results and Discussion

It was possible in this review to list 175 species of medicinal plants with anti-inflammatory activity. Those species are distributed in 63 families of which the following stood out: Asteraceae, Fabaceae, Euphorbiaceae, Apocynaceae and Celastraceae with 37, 17, 11, 6 and 6 species, respectively, studied so far (Table 1).

The effectiveness of the plant extracts was dependent on the type of extract used, the model of inflammation induction and the organism tested. Thus, it was possible to classify the extracts as strongly active, active, weakly active, inactive and equivocal.

Different species of Proustia genus have been frequently used as antiinflammatory and analgesic to treat gout and rheumatic illnesses, however, there is little information about their efficacy and acute toxicity [55]. This genus accumulates sesquiterpene α-isocedrene derivatives that are typical for the subtribus Nassauviinae of the family Asteraceae [56], and a guaianolide β-d-glucopyranoside has been previously isolated from Proustia ilicifolia [57].

According to Delporte et al. (2005) [55] in the assays carried out per os crude methanol extract (GME), hexane extract (HE) and methanol extract (ME) exhibited the strongest analgesic activities similar to the reference drug (SN). In relation to the results obtained in per os anti-inflammatory studies, ME showed the strongest effect, and was similar to the reference drug (SN); HE did not present significant antiinflammatory activity. The antiinflammatory activity have been attributed the presence of compounds with a similar mechanism for both activities, as for example inhibition of the synthesis of prostaglandin E2 (PGE2). By the activation of the cyclo-oxygenase enzyme, the level of PGE2 increases markedly, and its production provokes inflammation and pain [58]. Therefore, we assume that some active metabolites of these extracts could inhibit cyclooxygenase activity.

For arachidonic acid (AA) and phorbol 12-myristate 13-acetate (TPA) induced oedema, GME showed significant effect only against AA assay and on the contrary, HE and ME presented important activities only against TPA and dichloromethane extract (DCE) was active in both AA and TPA models. The action’s mechanism of the GME can be explained by inhibition of cyclooxygenase enzymes while the HE and ME may act by inhibiting the synthesis of leukotrienes. Since the DCE in addition to inhibiting the synthesis of leukotrienes may act by blocking production of PGE2 [59].

GME did not show acute toxicity per os up to the maxim dose of 2 g/kg and the weight of the mice had a normal variation after the seven days of observation. Common side effects such as, mild diarrhea, loss of weight and depression were not recorded. It is important to carry out toxicological studies in other animal species in order to demonstrate its lack of toxicity [59].

Ageratum conyzoides (Asteraceae), known commonly as “mentrasto”, has been used in Brazillian folk medicine to treat various ailments (metrorrhagia, fevers, dermatitis, inflammation, rheumatism, diarrhea and diuretics). A large number of pharmacological activities (anti-inflammatory, antipyretic, analgesic) have been attributed to the essential oil of Ageratum conyzoides [60]. The flowers and leaves are used in the form of an infusion for their analgesic and antiinflammatory properties. Literature data indicate its efficacy in alleviating pain caused by human arthritis [61] or induced experimentally [62].

The hydroalcoholic extract (HAE) of the leaves from A. conyzoides was active in both the on subacute (cotton pellet-induced granuloma) and chronic (formaldehyde-induced arthritis) models of inflammation in rats. The weights of cotton pellets were significantly reduced in (38%) after treatment with crude extract of A. conyzoides (250 mg/kg, p. o.) and possibly this effect is related to inhibition of neutrophil migration. Exame macroscopic gastric mucosa did not reveal any tissue damage associated with treatment, which is a collateral effect of many antiinflammatory drugs, including aspirin and related compounds [63,64], this result would be explained by an inhibition of the biosynthesis of prostanoids by cyclooxygenase [65].

Literature review reports indicate the presence of pyrrolizidine alkaloids in A. conyzoides plants [66,67]. These are known to be hepatotoxic, and to cause lung cancer and variety of other ailments [68]. There was investigated possible hematological and biochemical alteration in animal blood samples following after sub-acute and chronic treatment with the HAE of the plant. To evaluate liver function, serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) levels of plasma were measured. It was observed that during the sub-acute treatment, no significant alteration in serum levels of SGOT and SGPT, however during the chronic treatment with HAE (500 mg/kg body wt.) the value of SGPT (108.5726.6 U/l) showed a statistically significant difference (p < 0,05) to control group (155.6739.6 U/l), reduced significantly [65].

Artemisia copa Phil. (Compositae), commonly known as “copa-copa”, is a small and much branched bush with a height of 30–60 cm that grows in the northwest of Argentina and in the north of Chile. The plant is regularly sold in local markets and herb health stores and the infusion of the aerial parts are used in popular medicine as antitussive, digestive, for lowering fever, for pulmonary diseases, and hypertension [69]. The leaves, macerated in alcohol, are also used locally to rub on rheumatic pains [70].

Anti-inflammatory activity of ethanol and dichloromethane extracts were analyzed in models of carrageenan-induced paw edema in rats and the ear edema induced by 12-O-tetradecanoylphorbol-13 acetate (TPA) and arachidonic acid (AA) in mice. Antiinflammatory activity was observed in both extracts that showed antiinflammatory activity in the TPA (88 and 54%), and the ethanolic extract showed a 37% inhibition in AA test. The results suggested that A. copa was able to prevent the production of proinflammatory mediators specially those related with cyclooxygenase (CO) and Lipoxygenase (LO) pathway. A. copa has no analgesic effect on the central nervous system that would contribute to its peripheral analgesic effect [71].

Bauhinia tarapotensis Benth. (Leguminosae) is a small tree growing in Ecuador (South America), where it is commonly known as “pata de vaca”. The plant leaves are traditionally used for their anti-inflammatory and decongestant properties [72], whereas the bark is employed as antidiarrhoeal remedy [73]. Previous study on the methanol extract of B. tarapotensis leaves revealed antioxidant and radical scavenger properties, due to the presence of different antioxidant principles, such as cyclohexenone, lignans, and phenylethanoids derivatives [74].

The topical anti-inflammatory activity was evaluated as inhibition of the croton oil-induced ear edema in mice [75]. Five extracts of the leaves significantly inhibited the croton oil-induced ear edema in mice, among which the chloroform extract was the most active. The main anti-inflammatory principles of B. tarapotensis leaves are triterpenic acids of ursane and oleanane series. The antiphlogistic activity of mixtures constituted of two ursane and oleanane isomers with different hydroxylation pattern, in the ratio 2:1, is comparable to that of indomethacin [76].

Croton pullei (Euphorbiaceae) is a liana that grows above other trees, distributed in tropical areas with vast distribution in the Amazon forest [77]. In the folk medicine, several plants of the Croton genus have been used with therapeutic purposes in pathologies that involve painful and inflammatory diseases which justify this work [78].

Anti-inflammatory activity was tested in two models that assess inflammatory processes such as edema and leukocyte migration. The crude methanol extract significantly reduced by 72% the ear edema by croton-oil induced, as also was a dose-dependent reduction of leukocyte migration to the peritoneum after induction with carrageenan. The mechanism of action has not yet elucidated [78].

Maytenus ilicifolia Mart. ex. Reiss (Celastraceae), popularly called “espinheira-santa” due to the appearance of its leaves and its therapeutic properties, is utilized in popular medicine in cases of inflammation and gastric ulcer [7981].

This study evaluated the anti-inflammatory activity, antinociceptive and antiulcer of ethyl acetate and hexane extracts of Maytenus ilicifolia [82].

In the model of paw edema induced by carrageenan was observed that there was no significant difference in inflammatory response between indomethacin and the extracts evaluated. The result of hexane extract showed the anti-inflammatory potential of terpenes whereas for ethylacetate extract the anti-inflammatory response has been attributed to flavonoids, which act by reducing the formation of pro-inflammatory mediators as prostaglandins, leukotrienes, reactive oxygen species and nitric oxide [82]. According to Oliveira et al. (1991) [83], both acute and chronic administration of this species did not induce any apparent toxicity.

3. Material and Methods

In the present work, the anti-inflammatory activity of the plants was searched through the data bank of the University of Illinois in Chicago, the NAPRALERT (Acronym for Natural Products ALERT). The data were updated in September 2009, using anti-inflammatory plants as legend. The plant extracts studied in South America were selected for this work and the references found in the search were later consulted for details of the models or mechanisms.

4. Conclusion

Given the above, this review is of fundamental importance to intensify studies with medicinal plants for the discovery of new bioactive molecules in healing of many diseases, including inflammation, thus benefiting populations affected by ensuring a better quality of life.

The authors thank the University of Illinois in Chicago, U.S.A., for the use of the NAPRALERT database for this study. Thanks are also expressed for the financial support provided by CNPq / CAPES and PRONEX / FAPESQ, Brazil.

References

  1. Vodovotz, Y; Constantine, G; Rubin, J; Csete, M; Voit, EO; An, G. Mechanistic simulations of inflammation: Current state and future prospects. Math. Biosci 2009, 217, 1–10. [Google Scholar]
  2. Cuzzocrea, S. Shock, inflammation and PARP. Pharmacol. Res 2005, 52, 72–82. [Google Scholar]
  3. Serhan, CN; Brain, SD; Buckley, CD; Gilroy, DW; Haslett, C; O’neall, LAJ; Perretti, M; Rossi, AG; Wallace, JL. Resolution of inflammation: State of the art, definitions and terms. FASEB J 2007, 21, 325–332. [Google Scholar]
  4. Conforti, F; Sosa, S; Marrelli, M; Menichini, F; Statti, GA; Uzunov, D; Tubaro, A; Menichini, F; Loggia, RD. In vivo anti-inflammatory and in vitro antioxidant activities of Mediterranean dietary plants. J. Ethnopharmacol 2008, 116, 144–151. [Google Scholar]
  5. Delaporte, RH; Sanchez, GM; Cuellar, AC; Giuliani, A; Palazzo de Mello, JC. Anti-inflammatory activity and lipid peroxidation inhibition of iridoid lamiide isolated from Bouchea fluminensis (Vell.) Mold. (Verbenaceae). J. Ethnopharmacol 2002, 82, 127–130. [Google Scholar]
  6. Geronikaki, AA; Gavalas, AM. Antioxidants and anti-inflammatory diseases: Synthetic and natural antioxidants with anti-inflammatory activity. Comb. Chem. High Throughput Screening 2006, 9, 425–442. [Google Scholar]
  7. Tincani, A; Andreoli, L; Bazzani, C; Bosiso, D; Sozzani, S. Inflammatory molecules: A target for treatment of systemic autoimmune diseases. Autoimmun. Rev 2007, 7, 1–7. [Google Scholar]
  8. Kumar, V; Abbas, AK; Fausto, N. Inflamação aguda e crônica. In Robbins e Cotran—Patologia, 7th ed; Editora Saunders Elsevier: Rio de Janeiro, Brazil, 2005; pp. 49–89. [Google Scholar]
  9. Chizzolini, C. Update on pathophysiology of scleroderma with special reference to immunoinflammatory events. Ann. Med 2007, 39, 42–53. [Google Scholar]
  10. Polya, GM. Biochemical targets of plant bioactive compounds. In A Pharmacological Reference Guide to Sites of Action and Biological Effects; CRC Press: New York, NY, USA, 2003. [Google Scholar]
  11. Xiao, J; Jiang, X; Chen, X. Antibacterial, anti-inflammatory and diuretic effect of flavonoids from Marchantia convoluta. Afr. J. Traditional Complementary Altern. Med 2005, 2, 244–252. [Google Scholar]
  12. Simões, CMO; Schenkel, EP; Gosmann, G; Mello, JCP; Mentz, LA. Farmacognosia da Planta ao Medicamento, 5th ed; Editora da UFRGS: Porto Alegre, Brasil, 2004; p. 424. [Google Scholar]
  13. Rimbach, G; Melchin, M; Moehring, J; Wagner, AE. Polyphenols from cocoa and vascular health—a critical review. Int. J. Mol. Sci 2009, 10, 4290–4309. [Google Scholar]
  14. Balunas, MJ; Kinghorn, AD. Drug discovery from medicinal plants. Life Sci 2005, 78, 431–441. [Google Scholar]
  15. Sousa, OV; Vieira, GDV; Pinho, JDRG; Yamamoto, CH; Alves, MS. Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. Int. J. Mol. Sci 2010, 11, 2067–2078. [Google Scholar]
  16. Yim, JH; Lee, O-H; Choi, U-K; Kim, Y-C. Antinociceptive and anti-inflammatory effects of ethanolic extracts of Glycine max (L.) Merr and Rhynchosia nulubilis seeds. Int. J. Mol. Sci 2009, 10, 4742–4753. [Google Scholar]
  17. Yam, MF; Lim, V; Salman, IM; Ameer, OZ; Ang, LF; Rosidah, N; Abdulkarim, MF; Abdullah, GZ; Basir, R; Sadikun, A; Asmawi, MZ. HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of Orthosiphon stamineus leaves. Molecules 2010, 15, 4452–4466. [Google Scholar]
  18. Souza, ET; Queiroz, ACQ; Miranda, GEC; Lorenzo, VP; Silva, EF; Freire-Dias, TLM; Cupertino-Silva, YK; Melo, GMA; Santos, BVO; Chaves, MCO; Alexandre-Moreira, MS. Antinociceptive activities of crude methanolic extract and phases, n-butanolic, chloroformic and ethyl acetate from Caulerpa racemosa (Caulerpaceae). Rev. Bras. Farmacogn 2009, 19, 115–120. [Google Scholar]
  19. Marzouk, MS; Moharram, FA; El-Dib, RA; El-Shenawy, SM; Tawfike, AF. Polyphenolic profile and bioactivity study of Oenothera speciosa Nutt. aerial parts. Molecules 2009, 14, 1456–1467. [Google Scholar]
  20. Potterat, O; Hamburger, M. Drug discovery and development with plant derived compounds. Prog. Drug Res 2008, 65, 47–118. [Google Scholar]
  21. Moura, MD; Torres, AR; Oliveira, RAG; Diniz, MFFM; Barbosa-Filho, JM. Natural products as inhibitors of models of mammary neoplasia. Br. J. Phytother 2001, 5, 124–145. [Google Scholar]
  22. Moura, MD; Silva, JS; Oliveira, RAG; Diniz, MFFM; Barbosa-Filho, JM. Natural products reported as potential inhibitors of uterine cervical neoplasia. Acta Farm. Bonaer 2002, 21, 67–74. [Google Scholar]
  23. Silva, JS; Moura, MD; Oliveira, RAG; Diniz, MFFM; Barbosa-Filho, JM. Natural product inhibitors of ovarian neoplasia. Phytomedicine 2003, 10, 221–232. [Google Scholar]
  24. Gonçalves, MCR; Moura, LSA; Rabelo, LA; Barbosa-Filho, JM; Cruz, HMM; Cruz, J. Natural products inhibitors of HMG CoA reductase. Rev. Bras. Farm 2000, 81, 63–71. [Google Scholar]
  25. Barbosa-Filho, JM; Martins, VKM; Rabelo, LA; Moura, MD; Silva, MS; Cunha, EVL; Souza, MFV; Almeida, RN; Medeiros, IA. Natural products inhibitors of the angiotensin converting enzyme (ACE). A review between 1980–2000. Rev. Bras. Farmacogn 2006, 16, 421–446. [Google Scholar]
  26. Barbosa-Filho, JM; Medeiros, KCP; Diniz, MFM; Batista, LM; Athayde-Filho, PF; Silva, MS; Cunha, EVL; Almeida, JRGS; Quintans-Júnior, LJ. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn 2006, 16, 258–285. [Google Scholar]
  27. Almeida, RN; Navarro, DS; Barbosa-Filho, JM. Plants with central analgesic activity. Phytomedicine 2001, 8, 310–322. [Google Scholar]
  28. Pereira, JV; Modesto-Filho, J; Agra, MF; Barbosa-Filho, JM. Plant and plant-derived compounds employed in prevention of the osteoporosis. Acta Farm. Bonaer 2002, 21, 223–234. [Google Scholar]
  29. Morais, LCSL; Barbosa-Filho, JM; Almeida, RN. Plants and bioactive compounds for the treatment of Parkinson’s disease. Arquivos Brasileiros de Fitomedicina Científica 2003, 1, 127–132. [Google Scholar]
  30. Quintans-Júnior, LJ; Almeida, JRGS; Lima, JT; Nunes, XP; Siqueira, JS; Oliveira, LEG; Almeida, RN; Athayde-Filho, PF; Barbosa-Filho, JM. Plants with anticonvulsant properties—A review. Rev. Bras. Farmacogn 2008, 18, 798–819. [Google Scholar]
  31. Sousa, FCF; Melo, CTV; Citó, MCO; Félix, FHC; Vasconcelos, SMM; Fonteles, MMF; Barbosa-Filho, JM; Viana, GSB. Plantas medicinais e seus constituintes bioativos: Uma revisão da bioatividade e potenciais benefícios nos distúrbios da ansiedade em modelos animais. Rev. Bras. Farmacogn 2008, 18, 642–654. [Google Scholar]
  32. Rocha, LG; Almeida, JRGS; Macedo, RO; Barbosa-Filho, JM. A review of natural products with antileishmanial activity. Phytomedicine 2005, 12, 514–535. [Google Scholar]
  33. Amaral, FMM; Ribeiro, MNS; Barbosa-Filho, JM; Reis, AS; Nascimento, FRF; Macedo, RO. Plants and chemical constituents with giardicidal activity. Rev. Bras. Farmacogn 2006, 16, 696–720. [Google Scholar]
  34. Barbosa-Filho, JM; Nascimento-Júnior, FA; Tomaz, ACA; Athayde-Filho, PF; Silva, MS; Cunha, EVL. Natural products with antileprotic activity. Rev. Bras. Farmacogn 2007, 17, 141–148. [Google Scholar]
  35. Barbosa-Filho, JM; Vasconcelos, THC; Alencar, AA; Batista, LM; Oliveira, RAG; Guedes, DN; Falcão, HS; Moura, MD; Diniz, MFFM; Modesto-Filho, J. Plants and their active constituents from South, Central, and North America with hypoglycemic activity. Rev. Bras. Farmacogn 2005, 15, 392–413. [Google Scholar]
  36. Falcão, HS; Lima, IO; Santos, VL; Dantas, HF; Diniz, MFFM; Barbosa-Filho, JM; Batista, LM. Review of the plants with anti-inflammatory activity studied in Brazil. Rev. Bras. Farmacogn 2005, 15, 381–391. [Google Scholar]
  37. Barbosa-Filho, JM; Piuvezam, MR; Moura, MD; Silva, MS; Lima, KVB; Cunha, EVL; Fechine, IM; Takemura, OS. Anti-inflammatory activity of alkaloids: A twenty century review. Rev. Bras. Farmacogn 2006, 16, 109–139. [Google Scholar]
  38. Mariath, IR; Falcão, HS; Barbosa-Filho, JM; Sousa, LCF; Tomaz, ACA; Batista, MFFM; Athayde-Filho, PF; Tavares, JF; Silva, MS; Cunha, EVL. Plants of the American continent with antimalarial activity. Rev. Bras. Farmacogn 2009, 19, 158–192. [Google Scholar]
  39. Falcão, HS; Leite, JA; Barbosa-Filho, JM; Athayde-Filho, PF; Chaves, MCO; Moura, MD; Ferreira, AL; Almeida, ABA; Souza-Brito, ARM; Diniz, MFFM; Batista, LM. Gastric and duodenal antiulcer activity of alkaloids: A review. Molecules 2008, 13, 3198–3223. [Google Scholar]
  40. Falcão, HS; Mariath, IR; Diniz, MFFM; Batista, LM; Barbosa-Filho, JM. Plants of the American continent with antiulcer activity. Phytomedicine 2008, 15, 132–146. [Google Scholar]
  41. Mota, KSL; Dias, GEN; Pinto, MEF; Luiz-Ferreira, A; Souza-Brito, ARM; Hiruma-Lima, CA; Barbosa-Filho, JM; Batista, LM. Flavonoids with gastroprotective activity. Molecules 2009, 14, 979–1012. [Google Scholar]
  42. Ribeiro-Filho, J; Falcão, HS; Batista, LM; Barbosa-Filho, JM; Piuvezam, MR. Effects of plant extracts on HIV-1 protease. Curr. HIV Res 2010, 8, 531–544. [Google Scholar]
  43. Agra, MF; França, PF; Barbosa-Filho, JM. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev. Bras Farmacogn 2007, 17, 114–140. [Google Scholar]
  44. Agra, MF; Silva, KN; Basílio, IJLD; França, PF; Barbosa-Filho, JM. Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras Farmacogn 2008, 18, 472–508. [Google Scholar]
  45. Barbosa-Filho, JM; Alencar, AA; Nunes, XP; Tomaz, ACA; Sena-Filho, JG; Athayde-Filho, PF; Silva, MS; Souza, MFV; Cunha, EVL. Sources of alpha-, beta-, gamma-, delta- and epsilon-carotenes: A twentieth century review. Rev. Bras. Farmacogn 2008, 18, 135–154. [Google Scholar]
  46. Alves, JS; Castro, JC; Freire, MO; Cunha, EVL; Barbosa-Filho, JM; Silva, MS. Complete assignment of the 1H and 13C spectra of four triterpenes of the ursane, artane, lupane and friedelane groups. Magn. Reson. Chem 2000, 38, 201–206. [Google Scholar]
  47. Sena-Filho, JG; Duringer, JM; Maia, GLA; Tavares, JF; Xavier, HS; Silva, MS; Cunha, EVL; Barbosa-Filho, JM. Ecdysteroids from Vitex species: Distribution and compilation of their 13C-NMR spectral data. Chem. Biodivers 2008, 5, 707–713. [Google Scholar]
  48. Oliveira, SL; Silva, MS; Tavares, JF; Sena-Filho, JG; Lucena, HFS; Romero, MAV; Barbosa-Filho, JM. Tropane alkaloids from genus Erythrorylum: Distribution and compilation of C-NMR spectral data. Chem. Biodivers 2010, 7, 302–326. [Google Scholar]
  49. Andrade, NC; Cunha, EVL; Silva, MS; Agra, MF; Barbosa-Filho, JM. Terpenoids of the Annonaceae: Distribution and compilation of 13C NMR data. In Recent Research Developments in Phytochemistry; Gayathri, A, Ed.; Research Signpost: Kerala, India, 2003; Volume 7, pp. 1–85. [Google Scholar]
  50. Vasconcelos, SMM; Honório-Júnior, JER; Abreu, RNDC; Silva, MCC; Barbosa-Filho, JM; Lobato, RFG. Pharmacologic study of some plant species from the Brazilian Northeast: Calotropis procera, Agava sisalana, Solanum paludosum, Dioscorea cayenensis and Crotalaria retusa. In Medicinal Plants: Classification, Biosynthesis and Pharmacology; Varela, A, Jasiah Ibanez, J, Eds.; Nova Science Publishers Inc: Hauppauge, NY, USA, 2009; Volume 4, pp. 189–202. [Google Scholar]
  51. Vasconcelos, SMM; Pereira, EC; Chaves, EMC; Lobato, RFG; Barbosa-Filho, JM; Patrocínio, MCA. Pharmacologic study of Amburana cearensis and Aniba genus. In Recent Progress in Medicinal Plants. Drug Plant IV; Singh, VK, Govil, JN, Eds.; Studium Press LLC: Houston, TX, USA, 2010; Volume 30, pp. 51–64. [Google Scholar]
  52. Barbosa-Filho, JM; Cunha, EVL; Gray, AI. Alkaloids of the Menispermaceae. In The Alkaloids; Cordell, GA, Ed.; Academic Press, INC: California, CA, USA, 2000; Volume 54, pp. 1–199. [Google Scholar]
  53. Barbosa-Filho, JM; Sette, IMF; Cunha, EVL; Guedes, DN; Silva, MS. Protoberberine alkaloids. In The Alkaloids; Cordell, GA, Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 62, pp. 1–75. [Google Scholar]
  54. Conserva, LM; Pereira, CAB; Barbosa-Filho, JM. Alkaloids of the Hernandiaceae: Occurrence and a compilation of their biological activities. In The Alkaloids; Cordell, GA, Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 62, pp. 175–243. [Google Scholar]
  55. Muñoz, M; Barrera, E; Meza, I. El uso medicinal y alimentício de plantas nativas y naturalizadas en Chile. Museo Nacional de Historia Natural 1981, 33, 32. [Google Scholar]
  56. Zdero, C; Bohlmann, F; King, RM; Robinson, H. Isocedrene derivatives, 5-methyl coumarins and other constituents from the subtribu Nassauviinae of the Compositae. Phytochemistry 1986, 25, 2873–2882. [Google Scholar]
  57. Bittner, M; Jakupovic, J; Bohlmann, F; Silva, M. Coumarins and guaianolides from further Chilean representatives of the subtribe Nassauviinae. Phytochemistry 1989, 28, 2867–2868. [Google Scholar]
  58. Dannhardt, G; Kiefer, W. Cyclooxygenase inhibitors—current status and future prospects. Eur. J. Med. Chem 2001, 36, 109–126. [Google Scholar]
  59. Delporte, C; Backhouse, N; Erazo, S; Negrete, R; Vidal, P; Silva, X; Lopez-Perez, JL; Feliciano, AS; Munoz, O. Analgesic-antiinflammatory properties of Proustia pyrifolia. J. Ethnopharmacol 2005, 99, 119–124. [Google Scholar]
  60. Abena, AA; Ouamba, JM; Keita, A. Antiinflammatory, analgesic and antipyretic activities of essential oil of Agereatum conyzoides. Phytother. Res 1996, 10, 164–165. [Google Scholar]
  61. Marques Neto, JF; Costallat, LTV; Fernandes, SRM; de Napoli, MDM; Samara, AM. Efeito do Ageratum conyzoides Lin. no tratamento da artrose. Rev. Bras. Reumatol 1988, 28, 109–114. [Google Scholar]
  62. Magalhães, JFG; Viana, CFG; Aragão, AGM, Jr; Moraes, VG; Ribeiro, RA; Vale, MR. Analgesic and antiinflammatory activities of Ageratum conyzoides in rats. Phytother. Res 1997, 11, 183–188. [Google Scholar]
  63. Quellet, M; Percival, D. Effect of inhibitor timedependency on selectivity towards ciclooxigenase isoforms. Biochem. J 1995, 306, 247–251. [Google Scholar]
  64. Terlains, B; Jouzeau, JY; Gillet, P; Lecompte, T; Netter, P. Cyclooxygenase inductible. Du nouveau sur les relations entre anti-inflammatoires non steroidiens et inhibition de la synthese de prostaglandines. Press. Med 1995, 24, 491–496. [Google Scholar]
  65. Moura, ACA; Silva, ELF; Fraga, MCA; Wanderley, AG; Afiatpour, P; Maia, MBS. Antiinflammatory and chronic toxicity study of the leaves of Ageratum conyzoides L. in rats. Phytomedicine 2005, 12, 138–142. [Google Scholar]
  66. Mendonça, CJ; Trigo, JR; Barata, LES; Serra, GE. Alcalóides Hepatotóxicos (Pirrolizidýnicos) em Ageratum conyzoides (Resumo 16.45); X Reunião Anual da Federacão de Sociedades de Biologia Experimental: Serra Negra, Brasil, 1995. [Google Scholar]
  67. Widenfeld, H; Roder, E. Pyrrolizidine alkaloids from Ageratum conyzoides. Planta Med 1991, 57, 578–579. [Google Scholar]
  68. Couet, CE; Crews, C; Hanley, BA. Analysis, separation and bioassay of pyrrolizidine alkaloids from comfrey. Nat. Toxins 1996, 4, 163–167. [Google Scholar]
  69. Giberti, G. Herbal folk medicine in northwestern Argentina: Compositae. J. Ethnopharmacol 1983, 7, 321–341. [Google Scholar]
  70. Ratera, EL; Ratera, MO. Plantas de la Flora Argentina empleadas em Medicina Popular. Hemisferio Sur 1980, 108. [Google Scholar]
  71. Miño, J; Moscatelli, V; Hnatyszyn, O; Gorzalczany, S; Acevedo, C; Ferraro, G. Antinociceptive and antiinflammatory activities of Artemisia copa extracts. Pharmacol. Res 2004, 50, 59–63. [Google Scholar]
  72. Cordero, J. Enumeracion de Botanica de los Principales Plantas asi Utiles Come Nocivas, Indigenas o Aclimatadas, que se dan en la Provincias del Azuay y del Canar de la Repubblica de Ecuador, 2nd ed; Afrodisio Aguado: Madrid, Spain, 1950; p. 251. [Google Scholar]
  73. Kohn, EO. La cultura medica de los runas de la region Amazzonica Ecuadoriana. In Hombre y Ambiente; Ediciones Abya-Yala: Ecuador, Spain, 1992; p. 105. [Google Scholar]
  74. Braca, A; de Tommasi, N; di Bari, L; Pizza, C; Politi, M; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod 2001, 64, 892–895. [Google Scholar]
  75. Tubaro, A; Dri, P; Delbello, G; Zilli, C; Della Loggia, R. The Croton oil ear test revisited. Agents Actions 1985, 17, 347–349. [Google Scholar]
  76. Sosa, S; Braca, A; Altinier, G; Della Loggia, R; Morelli, I; Tubaro, A. Topical anti-inflammatory activity of Bauhinia tarapotensis leaves. Phytomedicine 2002, 9, 646–653. [Google Scholar]
  77. Gallenmüller, F; Müller, U; Rowe, N; Speck, T. The growth form of Croton pullei (Euphorbiaceae)-Functional morphology and biomechanics of a neotropical Liana. Plant Biol 2001, 1, 50–61. [Google Scholar]
  78. Rocha, FF; Neves, EMN; Costa, EA; Matos, LG; Muller, AH; Guilhon, MSP; Cortes, WS; Vanderlinde, FA. Evaluation of antinociceptive and antiinflammatory effects of Croton pullei var. glabrior Lanj. Rev. Bras. Farmacogn 2008, 18, 344–349. [Google Scholar]
  79. Balbach, AA. Flora Nacional na Medicina Doméstica, 11th ed. Editora Edel: r. São Paulo, Brasil, 1980; p. 885. [Google Scholar]
  80. Cruz, GL. Dicionário das Plantas Úteis do Brasil, 2nd ed Editora Nacional: São Paulo, Brasil. 1982; pp. 335–336. [Google Scholar]
  81. Born, GCC. Plantas medicinais da Mata Atlântica (Vale do Ribeira-SP), Tese de doutorado Universidade de São Paulo, São Paulo. 2000.
  82. Jorge, RM; Leite, JPV; Oliveira, AB; Tagliati, CA. Evaluation of antinociceptive, anti-inflammatory and antiulcerogenic activities of Maytenus ilicifolia. J. Ethnopharmacol 2004, 94, 93–100. [Google Scholar]
  83. Oliveira, GMO; Monteiro, MG; Macaúbas, C; Barbosa, VP; Carlini, EA. Pharmacological and toxicologic effects of two Maytenus species in laboratory animals. J. Ethnopharmacol 1991, 34, 29–41. [Google Scholar]
  84. Lino, CS; Taveira, ML; Viana, GSB; Matos, FJA. Analgesic and antiinflammatory activities of Justicia pectoralis Jacq and its main constituents: Coumarin and umbelliferone. Phytother Res 1997, 11, 211–215. [Google Scholar]
  85. Calixto, JB; de Lima, TCM; Morato, GS; Nicolau, M; Takahashi, RN; Valle, RMR; Schmidt, CC; Yunes, RA. Chemical and pharmacological analysis of the crude aqueous/alcoholic extract from Cordyline dracaenoides. Phytother. Res 1990, 5, 167–171. [Google Scholar]
  86. Dutra, RC; Tavares, CZ; Ferraz, SO; Sousa, OV; Pimenta, DS. Investigation of analgesic and anti-inflammatory activities of Echinodorus grandiflorus rhizomes methanol extract. Rev. Bras. Farmacogn 2006, 16, 469–474. [Google Scholar]
  87. Delaporte, RH; Sanchez, GM; Cuellar, AC; Demello, JCP. Quality control and antiinflammatory activity of the plant drugs Alternanthera brasiliana (L.) Kuntze and Bouchea fluminensis (Vell.) Mold. Acta Farm. Bonaerense 2001, 20, 39–46. [Google Scholar]
  88. Teixeira, CGL; Piccoli, A; Costa, P; Soares, L; da Silva-Santos, JE. Involvment of the nitric oxide/soluble guanylate cyclase pathway in the anti-oedematogenic action of Pfaffia glomerata (Spreng) Pedersen in mice. J. Pharm. Pharmacol 2006, 58, 667–675. [Google Scholar]
  89. Taniguchi, SF; Bersani-Amado, C; Sudo, LS; Assef, SMC; Oga, S. Effect of Pfaffia iresinoides on the experimental inflammatory prcoess in rats. Phytother. Res 1997, 11, 568–571. [Google Scholar]
  90. Mazzanti, G; Braghiroli, L; Tita, B; Bolle, P; Piccinelli, D. Anti-inflammatory activity of Pfaffia paniculata (Martius) Kuntze and Pfaffia stenophylla (Sprengel) Stuchl. Pharmacol. Res 1993, 27, 91–92. [Google Scholar]
  91. Mazzanti, G; Braghiroli, L. Analgesic and antiinflammatory action of Pfaffia paniculata (Marticus) Kuntze. Phytother. Res 1994, 8, 413–416. [Google Scholar]
  92. Mota, MLR; Thomas, G; Barbosa Filho, JM. Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. J. Ethnopharmacol 1985, 13, 289–300. [Google Scholar]
  93. Viana, GSB; Bandeira, MAM; Matos, FJA. Analgesic and antiinflammatory effects of chalcones isolated from Myracrodruon urundeuva Allemao. Phytomedicine 2003, 10, 189–195. [Google Scholar]
  94. Abad, MJ; Bermejo, P; Carretero, E; Martinez Acitores, C; Noguera, B; Villar, A. Antiinflammatory activity of some medicinal plant extracts from Venezuela. J. Ethnopharmacol 1996, 55, 63–68. [Google Scholar]
  95. de Las Heras, B; Slowing, K; Benedi, J; Carretero, E; Ortega, T; Toledo, C; Bermejo, P; Iglesias, I; Abad, MJ; Gomez-Serranillos, P; Liso, PA; Villar, A; Chiriboga, X. Antiinflammatory and antioxidant activity of plants used in traditional medicine in Ecuador. J. Ethnopharmacol 1998, 61, 161–166. [Google Scholar]
  96. Ortega, T; Carretero, ME; Pascual, E; Villar, AM; Chiriboga, X. Anti-inflammatory activity of ethanolic extracts of plants used in traditional medicine in Ecuador. Phytother. Res 1996, 10, S121–S122. [Google Scholar]
  97. Henriques, AT; Melo, AA; Moreno, PRH; Ene, LL; Henriques, JAP; Schapoval, EES. Ervatamia coronaria: Chemical constituents and some pharmacological activities. J. Ethnopharmacol 1996, 50, 19–25. [Google Scholar]
  98. de Miranda, AL; Silva, JR; Rezende, CM; Neves, JS; Parrini, SC; Pinheiro, MLB; Cordeiro, MC; Tamgborini, E; Pinto, AC. Anti-inflammatory and analgesic activities of the latex containing triterpenes from Himatanthus sucuuba. Planta Med 2000, 66, 284–286. [Google Scholar]
  99. Calixton, JB; Nicolau, M; Trebien, H; Henrique, MGO; Weg, VB; Cordeiro, RSB; Yunes, RA. Antiedematogenic actions of a hydroalcoholic crude water-alcohol extract of Mandevilla velutinabraz. Braz. J. Med. Biol. Res 1986, 19, 4–5. [Google Scholar]
  100. Calixto, JB; Zanini, JC; Cruz, AB; Yunes, RA; Medeiros, YS. Extract and compounds obtained from Mandevilla velutina inhibit arachidonic acid-induced ear oedema in mice, but not rat stomach contraction. Prostaglandins 1991, 41, 515–526. [Google Scholar]
  101. Henriques, MGMO; Fernandes, PD; Weg, VB; Yunes, RA; Cordeiro, RSB; Calixto, JB. Inhibition of rat paw oedema and pleurisy by the extract from Mandevilla velutina. Agents Actions 1991, 33, 272–278. [Google Scholar]
  102. Rates, SMK; Schapoval, EES; Souza, IA; Henriques, AT. Chemical constituents and pharmacological activities of Peschiera australis. Int. J. Pharmacog 1993, 31, 288–294. [Google Scholar]
  103. Dunstan, CA; Noreen, Y; Serrano, G; Cox, PA; Perera, P; Bohlin, L. Evaluation of some samoan and peruvian medicinal plants by prostaglandin biosynthesis and rat ear oedema assays. J. Ethnopharmacol 1997, 57, 35–56. [Google Scholar]
  104. Fazio, S; Pouso, J; Dolinsky, D; Fernandez, A; Hernandez, M; Clavier, G; Hecker, M. Tolerance, safety and efficacy of Hedera helix extract in inflammatory bronchial diseases under clinical practice conditions: a prospective, open, multicentre postmarketing study in 9657 patients. Phytomedicine 2009, 16, 17–24. [Google Scholar]
  105. Maia, MBS; Rao, VS. Anti-inflammatory activity of Orbignia phalerata in rats. Phytother. Res 1989, 3, 170–174. [Google Scholar]
  106. Muschietti, L; Martino, V; Ferraro, G; Coussio, J; Segura, L; Cartana, C; Canigueral, S; Adzet, T. The antiinflammatory effect of some species from South America. Phytother. Res 1996, 10, 84–86. [Google Scholar]
  107. Simões, CMO; Schenkel, EP; Bauer, L; Langeloh, A. Pharmacological investigations on Achyrocline satureioides (Lam). DC., Compositae. J. Ethnopharmacol 1988, 22, 281–293. [Google Scholar]
  108. Viana, CFG; Aragao, AGM, Jr; Ribeiro, RA; Magalhaes, JFG; Vale, MR. Effects of Ageratum conyzoides in nociception and inflammatory response induced by Zymosan. Fitoterapia 1998, 69, 349–354. [Google Scholar]
  109. Perez, F; Marin, E; Adzet, T. The antiinflammatory effect of several Compositae from South America extracts in rats. Phytother. Res 1995, 9, 145–146. [Google Scholar]
  110. Gene, RM; Marin, E; Adzet, T. Anti-inflammatory effect of aqueous extracts of three species of the genus Baccharis. Planta Med 1992, 58, 656–566. [Google Scholar]
  111. Salama, AM; Polo, NA; Contreras, CR; Maldonado, L. Preliminary phytochemical and pharmacological analysis of Baccharis decussata leaves. Rev. Colomb Cienc. Quim. Farm 1987, 16, 45–50. [Google Scholar]
  112. Cifuente, DA; Simirgiotis, MJ; Favier, LS; Rotelli, AE; Pelzer, E. Anti-inflammatory activity from aerial parts of Baccharis medullosa, Baccharis rufescens and Laennecia sophiifolia in mice. Phytother. Res 2001, 15, 529–531. [Google Scholar]
  113. Gene, RM; Cartana, C; Adzet, T; Marin, E; Parella, T; Canigueral, S. Anti-inflammatory and analgesic activity of Baccharis trimera: Identification of its active constituents. Planta Med 1996, 62, 232–235. [Google Scholar]
  114. Pereira, RLC; Ibrahim, T; Lucchetti, L; da Silva, AJR; de Moraes, VLG. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacol 1999, 43, 31–37. [Google Scholar]
  115. Ortega, CA; Rotelli, AE; Gianello, JC. Chemical components and anti-inflammatory activity from Bidens subalternans. Planta Med 1998, 64, 778. [Google Scholar]
  116. Negrete, RE; Backhouse, N; Cajigal, I; Delporte, C; Cassels, BR; Breitmaier, E; Eckhardt, G. Two new antiinflammatory elemanolides from Centaurea chilensis. J. Ethnopharmacol 1993, 40, 149–153. [Google Scholar]
  117. Souza, MC; Siani, AC; Ramos, MFS; Menezes-De-Lima, O; Henriques, MGMO. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie 2003, 58, 582–586. [Google Scholar]
  118. Simirgiotis, MJ; Favier, LS; Rossomando, PC; Tonn, CE; Juarez, A; Giordano, OS. Phytochemical study of Conyza sophiaefolia. antiinflammatory activity. Molecules 2000, 5, 605–606. [Google Scholar]
  119. Ruppelt, BM; Pereira, EFR; Goncalves, LC; Pereira, NA. Pharmacological screening of plants recommended by folk medicine as anti-snake venom-1. Analgesic and antiinflammatory activities. Mem. Inst. Oswaldo Cruz 1991, 86, 203–205. [Google Scholar]
  120. Poli, A; Nicolau, M; Simoes, CMO; Nicolau, RMRDV; Zanin, M. Preliminary pharmacologic evaluation of crude whole plant extracts of Elephantopus scaber. Part I: In vivo studies. J. Ethnopharmacol 1992, 37, 71–76. [Google Scholar]
  121. Silverio, MS; Sousa, OV; Del-Vechio-Viera, G; Miranda, MA; Matheus, FC; Kaplan, MAC. Pharmacological properties of the ethanol extract from Eremanthus erythropappus (DC.) Mcleisch (Asteraceae). Rev. Bras. Farmacogn 2008, 18, 430–435. [Google Scholar]
  122. Muschietti, L; Gorzalczany, S; Ferraro, G; Acevedo, C; Acevedo, C; Martino, V. Phenolic compounds with antiinflammatory activity from Eupatorium buniifolium. Planta Med 2001, 67, 743–744. [Google Scholar]
  123. Gorzalczany, S; Acevedo, C; Msuchietti, L; Martino, V; Ferraro, G. Search for antiinflammatory activity in Argentine medicinal plants. Phytomedicine 1996, 3, 181–184. [Google Scholar]
  124. Moreira, AS; Spitzer, V; Schapoval, EES; Schnekel, EP. Antiinflammatory activity of extracts and fractions from the leaves of Gochnatia polymorpha. Phytother. Res 2000, 14, 638–640. [Google Scholar]
  125. Fierro, IM; da Silva, ACB; Lopes, CS; de Moura, RS; Barja-Fidalgo, C. Studies on the anti-allergic activity of Mikania glomerata. J. Ethnopharmacol 1999, 66, 19–24. [Google Scholar]
  126. de Moura, RS; Costa, SS; Jansen, J; Silva, CA; Lopes, CS; Bernardo Filho, M; da Silva, VN; Criddle, DN; Portela, N; Rubenich, LMS; Araujo, RG; Carvalho, LCRM. Bronchodilator activity of Mikania glomerata sprengel on human bronchi and guinea-pig trachea. J. Pharm. Pharmacol 2002, 54, 249–256. [Google Scholar]
  127. Benoit, PS; Fong, HHS; Svoboda, GH; Farnsworth, NR. Biological and phytochemical evaluation of plants. XIV. Antiinflammatory evaluation of 163 species of plants. Lloydia 1976, 39, 160–171. [Google Scholar]
  128. Schinella, GR; Giner, RM; Recio, MDC; de Buschiazzo, FM; Rios, JL; Manez, S. Anti-inflammatory effects of South American Tanacetum vulgare. J. Pharm. Pharmacol 1998, 50, 1069–1074. [Google Scholar]
  129. Menezes, AMS; Almeida, FRC; Rao, VSN; Matos, MEO. Anti-inflammatory activity of the essential oil of Vanillosmopsis arborea. Fitoterapia 1990, 61, 252–254. [Google Scholar]
  130. Oga, S; Sekino, T. Toxicity and antiinflammatory activity of Tabebuia avellanedae extracts. Rev. Fac. Farm. Bioquim. Univ. Sao Paulo 1969, 7, 47–53. [Google Scholar]
  131. Alguacil, LF; Mera, AG; Gomez, J; Llinares, F; Morales, L; Munoz-Mingarro, MD; Pozuelo, JM; Orellana, JAV. Tecoma sambucifolia: Anti-inflammatory and antiociceptive activities, and “in vitro” toxicity of extracts of the “huarumo” of peruvian incas. J. Ethnopharmacol 2000, 70, 227–233. [Google Scholar]
  132. Persinos-Perdue, G; Mc Daniel, S. Evaluation of peruvian folk medicine by the natural products research laboratories (Abstract). Am. Soc. Pharmacogn. Soc. Econ. Bot 1981, 1, 5. [Google Scholar]
  133. Ferreira, MAD; Nunes, DRH; Fontenele, JB; Pessoa, DL; Lomos, TLG; Viana, GSB. Analgesic and anti-inflammatory activities of a fraction rich in oncocalyxone a isolated from Auxemma oncocalyx. Phytomedicine 2004, 11, 315–322. [Google Scholar]
  134. Sertie, JAA; Woisky, RG; Wiezel, G; Rodrigues, M. Pharmacological assay of Cordia verbenacea: Oral and topical anti-inflammatory activity, analgesic effect and fetus toxicity of a crude leaf extract. Phytomedicine 2005, 5, 338–344. [Google Scholar]
  135. Basile, AC; Sertie, JAA; Oshiro, T; Caly, KDV; Panizza, S. Topical anti-inflammatory activity and toxicity of Cordia verbenacea. Fitoterapia 1989, 60, 260–263. [Google Scholar]
  136. Sertie, JAA; Basile, AC; Panizza, S; Oshiro, TT; Azzolini, CP; Penna, SC. Pharmacological assay of Cordia verbenaceae III. Oral and topical antiinflammatory activtiy and gastrotoxicity of crude leaf extract. J. Ethnopharmacol 1991, 31, 239–247. [Google Scholar]
  137. Sertie, JAA; Basile, AC; Panizza, S; Matida, AK; Zelnik, R. Pharmacological assay of Cordia verbenacea: Part 1. Anti-inflammatory activity and toxicity of the crude extract of the leaves. Planta Med 1988, 54, 7–10. [Google Scholar]
  138. Goldman, RS; Freitas, PCD; Oga, S. Wound healing and analgesic effect of crude extracts of Symphytum officinale rats. Fitoterapia 1985, 56, 323–329. [Google Scholar]
  139. Amendoeira, FC; Frutuoso, VS; Chedier, LM; Pearman, AT; Figueiredo, MR; Kaplan, MAC; Prescott, SM; Bozza, PT; Castro-Farianeto, HC. Antinociceptive effect of Nidularium procerum: A Bromeliaceae from the Brazilian coastal rain forest. Phytomedicine 2005, 12, 78–87. [Google Scholar]
  140. Delaporte, RH; Sarragiotto, MH; Takemura, OS; Sanchez, GM; Filho, BPD; Nakamura, CV. Evaluation of the antioedematogenic, free radical scavenging and antimicrobial activities of aerial parts of Tillandsia streptocarpa Baker-Bromeliaceae. J. Ethnopharmacol 2004, 95, 229–233. [Google Scholar]
  141. Noguera, B; Diaz, E; Garcia, MV; Feliciano, AS; Lopez-perez, JL; Israel, A. Anti-inflammatory activity of leaf extract and fractions of Bursera simaruba (L.) Sarg (Burseraceae). J. Ethnopharmacol 2004, 92, 129–133. [Google Scholar]
  142. Otuki, MF; Vieira-Lima, F; Malheiros, A; Yunes, RA; Calixto, JB. Topical antiinflammatory effects of the ether extract from Protium kleinii and alpha amyrin pentacyclic triterpene. Eur. J. Pharmacol 2005, 507, 253–259. [Google Scholar]
  143. Costa, EA; Santos, LR; Pontes, IS; Matos, LG; Silva, GA; Liao, LM. Analgesic and anti-inflammatory effects of Cheiloclinium cognatum root barks. Rev. Bras. Farmacogn 2007, 17, 508–513. [Google Scholar]
  144. Kimura, E; Albiero, ALM; Cuman, RKN; Caparroz-Assef, SM; Oga, S; Bersani-Amado, CA. Effect of Maytenus aquifolium extract on the pharmacokinetic and antiinflammatory effectivenes of piroxicam in rats. Phytomedicine 2000, 7, 117–121. [Google Scholar]
  145. Backhouse, N; Delporte, C; Negrete, R; Munoz, O; Ruiz, R. Antiinflammatory and antipyretic activities of Maytenus boaria. Int. J. Pharmacogn 1994, 32, 239–244. [Google Scholar]
  146. Moya, SM; Olarte, CJE. Phytochemical and pharmacological studies on the antiarthritics of plant origin. Rev. Colomb. Cienc. Quim. Farm 1977, 3, 5–6. [Google Scholar]
  147. Santos, VLD; Costa, VBM; Agra, MF; Silva, BA; Batista, LM. Pharmacological studies of ethanolic extracts of Maytenus Rigida mart (Celastraceae) in animal models. Rev. Bras. Farmacogn 2007, 17, 336–342. [Google Scholar]
  148. Cardenas, LC; Rodriguez, J; Villaverde, MC; Riguera, R; Cadena, R; Otero, JA. The analgesic activity of Hedyosmum bonplandianum: flavonoid glycosides. Planta Med 1993, 59, 26–27. [Google Scholar]
  149. Perazzo, FF; Lima, LM; Padilha, MDM; Rocha, LM; Sousa, PJC; Carvalho, JCT. Anti-inflammatory and analgesic activities of Hypericum brasiliense (Willd) standardized extract. Rer. Bras. Farmacogn 2008, 18, 320–325. [Google Scholar]
  150. Bakchouse, N; Delporte, C; Negrete, R; Salinas, P; Pinto, A; Aravena, S; Cassels, BK. Antiinflammatory and antipyretic activities of Cuscuta chilensis, Cestrum parqui and Psoralea glandulosa. Int. J. Pharmacogn 1996, 34, 53–57. [Google Scholar]
  151. Sousa, PJC; Rocha, JCS; Pessoa, AM; Alves, LAD; Carvalho, JCT. Preliminary study of the anti-inflammatory activity of Bryophyllum calcinum Salisb. Rev. Bras. Farmacogn 2005, 15, 60–64. [Google Scholar]
  152. Mourao, RHV; Santos, FO; Franzotti, EM; Moreno, MPN; Antoniolli, AR. Antiinflammatory activity and acute toxicity (LD50) of the juice of Kalanchoe brasiliensis (Comb.) leaves picked before and during blooming. Phytother. Res 1999, 13, 352–354. [Google Scholar]
  153. Ibrahim, T; Cunha, JMT; Madi, K; Fonseca, LMB; Costa, SS; Koatz, VLG. Immunomodulatory and anti-inflammatory effects of Kalachoe brasiliensis. Int. Immunopharmacol 2002, 2, 875–883. [Google Scholar]
  154. Ibrahim, T; Pereira, RLC; Almeida, AP; Madi, K; Fonseca, LBM; Costa, SS; Goncalves-Moraes, VL. Antiinflammatory effect of Kalanchoe brasiliensis on zymosan-induced arthritis in mice. Phytomedicine 2000, 7, 110. [Google Scholar]
  155. Rios, JL; Giner, RM; Jimenez, MJ; Wickman, G; Hancke, JL. A study on the anti-inflammatory activity of Cayaponia tayuya root. Fitoterapia 1990, 61, 275–278. [Google Scholar]
  156. Peters, RR; Farias, MR; Ribeiro-Do-Valle, RM. Anti-inflammatory and analgesic effects of curcubitacins from Wilbrandia ebracteata. Planta Med 1997, 63, 525–528. [Google Scholar]
  157. Almeida, FRC; Rao, VSN; Matos, MEO. Antiinflammatory, antitumour and antifertility effects in rodents of two nor-cucurbitacin glucosides from Wilbrandia species. Phytother. Res 1992, 6, 189–193. [Google Scholar]
  158. Nalvarte, EL; Kehl, H. Pharmacological characteristics of Trichipteris procera. Int. J. Crude Drug Res 1990, 28, 97–102. [Google Scholar]
  159. Siani, AC; Silva, AMP; Nakamura, MJ; de Carvalho, MV; Henriques, MGMO; Ramos, MFS; Kaiser, CR. Chemical composition and anti-inflammatory activity of the hydrodistillat from Mariscus pedunculatus. J. Braz. Chem. Soc 2001, 12, 354–359. [Google Scholar]
  160. Alexandre-Moreira, MS; Piuvezam, MR; Araujo, CC; Thomas, G. Studies on the anti-inflammatory and analgesic activity of Curatella americana L. J. Ethnopharmacol 1999, 67, 171–177. [Google Scholar]
  161. Monte, FHMD; Santos, JRJG; Russi, M; Lanziotti, VMNB; Leal, LKAM; Cunha, GMDA. Antinociceptive and anti-inflammatory properties of the hydroalcoholic ectract of stems from Equisetum arvense L. In mice. Pharmacol. Res 2004, 49, 239–243. [Google Scholar]
  162. Chaves, CG; Schapoval, EES; Zuanazzi, JA; Diehl, E; Siqueira, NCS; Henriques, AT. Erythroxylum argentinum: Assays for antiinflammatory activity. J. Ethnopharmacol 1988, 22, 117–120. [Google Scholar]
  163. Bighetti, EJB; Hirum-Lima, CA; Gracioso, JS; Brito, ARMS. Anti-inflamamtory and antinociceptive effects in rodents of the essential oil of Croton cajucara Benth. J. Pharm. Pharmacol 1999, 51, 1447–1453. [Google Scholar]
  164. Nardi, GM; Felippi, R; Dalbo, S; Siqueira-Junior, JM; Arruda, DC; Monache, FD; Timbola, AK; Pizzolatti, MG; Ckless, K; Ribeiro-Dovalle, RM. Anti-inflammatory and antioxidant effects of Croton celtidifolius bark. Phytomedicine 2003, 10, 176–184. [Google Scholar]
  165. Miller, MJS; Vergnolle, N; Mc Knight, W; Musah, RA; Davison, CA; Trentacostik, AM; Thompson, JH; Sandoval, M; Wallace, JL. Inhibition of neurogenic inflammation by the amazonian herbal medicine sangre de grado. J. Invest. Dermatol 2001, 117, 725–730. [Google Scholar]
  166. Risco, E; Ghia, F; Vila, R; Iglesias, J; Alvarez, E; Caniqueral, S. Immunomodulatory activity and chemical characterisation of sangre de drago (dragon’s blood) from Croton lechleri. Planta Med 2003, 69, 785–794. [Google Scholar]
  167. Suarez, AI; Compagnone, RS; Salazar-Bookaman, MM; Tillett, S; Monache, FD; di Giulio, C; Bruges, G. Antinociceptive and anti-inflammatory effects of Croton malambo bark aqueous extract. J. Ethnopharmacol 2003, 88, 11–14. [Google Scholar]
  168. Trebien, HA; Neves, PCA; Yunes, RA; Calixto, JB. Evaluation of pharmacological activity of a crude hydroalcoholic extract from Jatropha elliptica. Phytother. Res 1988, 2, 115–118. [Google Scholar]
  169. Kassuya, CAL; Silvestre, AA; Rehder, VLG; Calixto, JB. Anti-allodynic and anti-oedematogenic properties of the extract and lignans from Phyllanthus amarus in models of persistent inflammatory and neuropathic pain. Eur. J. Pharmacol 2003, 478, 145–153. [Google Scholar]
  170. Filho, VC; Santos, ARS; de Campos, ROP; Migueo, OG; Yunes, RA; Ferrari, F; Messna, I; Calixto, JB. Chemical and pharmacological studies of Phyllanthus caroliniensis in mice. J. Pharm. Pharmacol 1996, 48, 1231–1236. [Google Scholar]
  171. Gorski, F; Correa, CR; Filho, VC; Yunes, RA; Calixto, JB. Potent antinociceptive activity of a hydroalcoholic extract of Phyllanthus corcovadensis. J. Pharm. Pharmacol 1993, 45, 1046–1049. [Google Scholar]
  172. Carvalho, JCT; Santos, LS; Viana, EP; de Almeide, SSMS; Marconato, E; Rodrigues, M; Ferreira, LR; van de Kamp, A. Anti-inflammatory and analgesic activities of the crude extracts from stem bark on Bauhinia guianensis. Pharm. Biol 1999, 37, 281–284. [Google Scholar]
  173. Carvalho, JCT; Teixeira, JRM; Souza, PJC; Bastos, JK; Filho, DDS; Sarti, SJ. Preliminary studies of analgesic and anti-inflammatory properties of Caesalpinia ferrea crude extract. J. Ethnopharmacol 1996, 53, 175–178. [Google Scholar]
  174. Fernandes, RM; Pereira, NA; Paulo, LG. Anti-inflammatory activity of copaiba balsam (Copaifera cearensis Huber). Rev. Bras. Farm 1992, 73, 53–56. [Google Scholar]
  175. Marchioro, M; Blank, MDFA; Mourao, RHV; Antoniolli, AR. Anti-nociceptive activity of the aqueous extract of Erythrina velutina leaves. Fitoterapia 2005, 76, 637–642. [Google Scholar]
  176. Miño, J; Gorzalczany, S; Moscatelli, V; Ferraro, G; Acevedo, C; Hnatyszyn, O. Actividad antinociceptiva y antiinflammatoria de Erythrina crista-galli L. (“ceibo”). Acta Farm. Bonaerense 2002, 21, 93–98. [Google Scholar]
  177. Backhouse, CN; Delporte, CL; Negrete, RE; Erazo, S; Zuniga, A; Pinto, A; Cassels, BK. Active constituents isolated from Psoralea glandulosa L. with antiinflammatory and antipyretic activities. J. Ethnopharmacol 2001, 78, 27–31. [Google Scholar]
  178. Carvalho, JCT; Sertie, JAA; Barbosa, MVJ; Patricio, KCM; Caputo, LRG; Sarti, SJ; Ferreira, LP; Bastos, JK. Anti-inflammatory activity of the crude extract from the fruits of Pterodon emarginatus Vog. J. Ethnopharmacol 1999, 64, 127–133. [Google Scholar]
  179. Lima, JCS; Martins, DTO; dve Souza, PT, Jr. Experimental evaluation of stem bark of Stryphnodendron adstringens (Mart.) Coville for antiinflammatory activity. Phytother. Res 1998, 12, 218–220. [Google Scholar]
  180. Leal, L; Matos, ME; Matos, FJA; Rieiro, RA; Ferreira, FV; Viana, GSB. Antinociceptive and antiedematogenic effects of the hydroalcoholic extract and coumarin from Torresea cearensis Fr. All. Phytomedicine 1997, 4, 221–227. [Google Scholar]
  181. Nadinic, E; Gorzalczany, S; Rojo, A; van Baren, C; Debenedetti, S; Acevedo, C. Topical anti-inflammatory activity of Gentianella achalensis. Fitoterapia 1999, 70, 166–171. [Google Scholar]
  182. Bispo, MD; Mourao, RHV; Franzotti, EM; Bomfim, KBR; Arrigoni Blank, MDF; Moreno, MPN; Marchioro, M; Antoniolli, AR. Antinociceptive and antiedematogenic effects of the aqueous extract of Hyptis pectinata leaves in experimental animals. J. Ethnopharmacol 2001, 76, 81–86. [Google Scholar]
  183. Shimizu, M; Shogawa, H; Matsuzawa, T; Yonezawa, S; Hayashi, T; Arisawa, M; Suzuki, S; Yoshizaki, M; Morita, N; Ferro, E; Basualdo, I; Berganza, LH. Anti-inflammatory constituents of topically applied crude drugs. IV. Constituents and anti-inflammatory effect of Paraguayan crude drug “alhucema” (Lavandula latifolia Vill.). Chem. Pharm. Bull 1990, 38, 2283–2284. [Google Scholar]
  184. Bucar, F; Knauder, E; Schubert-Zsilavecz, M. Studies on the antiinflammatory principle of Mentzelia chilensis. Phytother. Res 1998, 12, 275–278. [Google Scholar]
  185. Morato, GS; Calixto, JB; Cordeiro, L; de Lima, TCM; Morato, EF; Nicolau, M; Rae, GA; Takahashi, RN; Valle, RMR; Yunes, RA. Chemical and pharmacological studies on Talauma ovata St. Hil. (Magnoliaceae). J. Ethnopharmacol 1989, 26, 277–286. [Google Scholar]
  186. Franzotti, EM; Santos, CVF; Rodrigues, HMSL; Mourao, RHV; Andrade, MR; Antoniolli, AR. Anti-inflammatory, analgesic activity and acute toxicity of Sida cordifolia L. (Malva-branca). J. Ethnopharmacol 2000, 72, 273–278. [Google Scholar]
  187. Oga, S; Sertie, JA; Brasile, AC; Hanada, S. Antiinflammatory effect of crude extract from Guarea guidonia. Planta Med 1981, 42, 310–312. [Google Scholar]
  188. Benencia, F; Courreges, MC; Coulombie, FC. Anti-inflammatory activities of Trichilia glabra aqueous leaf extract. J. Ethnopharmacol 2000, 71, 293–300. [Google Scholar]
  189. Batista-Lima, KV; Ribeiro, R; Balestieri, FMP; Thomas, G; Piuvezam, MR. Anti-inflammatory activity of Cissampleos sympodialis Eichl. (Menispermaceae) leaf extract. Acta Farm. Bonaerense 2001, 20, 275–279. [Google Scholar]
  190. Lanhers, MC; Joyeux, M; Soulimani, R; Fleurentin, J; Sayag, M; Mortier, F; Younos, C; Pelt, JM. Hepatoprotective and anti-inflammatory effects of a traditional medicinal plant of Chile, Peumus boldus. Planta Med 1991, 57, 110–115. [Google Scholar]
  191. Schapoval, EES; Silveira, SM; Miranda, ML; Alice, CB; Henriques, AT. Evaluation of some pharmacological activities of Eugenia uniflora L. J. Ethnopharmacol 1994, 44, 137–142. [Google Scholar]
  192. Santos, FA; Rao, VSN; Silveira, ER. Anti-inflammatory and analgesic activities of the essential oil of Psidium guianense. Fitoterapia 1997, 68, 65–68. [Google Scholar]
  193. Shimizu, M; Shogawa, H; Hayashi, T; Arisawa, M; Suzuki, S; Yoshizaki, M; Morita, N; Ferro, E; Basualdo, IL; Berganza, LH. Anti-inflammotory constituents of topically applied crude drug. III. Constituents and anti-inflammatory effect of Paraguayan crude drug “tamanda cuna” (Cataesetum barbatum Lindle). Chem. Pharm. Bull 1988, 36, 4447–4452. [Google Scholar]
  194. Germano, DHP; Caldeira, TTO; Mazella, AAG; Sertie, JAA; Bacchi, EM. Topical anti-inflammatory activity and toxicity of Petiveria alliaceae. Fitoterapia 1993, 64, 459–467. [Google Scholar]
  195. Germano, DHP; Sertie, JAA; Bacchi, EM. Pharmacological assay of Petiveria alliacea. Ii: Oral anti-inflammatory activity and gastrotoxicity of a hydroalcoholic root extract. Fitoterapia 1995, 66, 195–202. [Google Scholar]
  196. Lopes-Martins, RAB; Pegoraro, DH; Woisky, R; Penna, SC; Sertie, JAA. The anti-inflammatory and analgesic effects of a crude extract of Petiveria alliacea L. (Phytolaccaceae). Phytomedicine 2002, 9, 245–248. [Google Scholar]
  197. Arrigoni-Blank, MF; Dmitrieva, EG; Franzotti, EM; Antoniolli, AR; Andrade, MR; Marchioro, M. Anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (Piperaceae). J. Ethnopharmacol 2004, 91, 215–218. [Google Scholar]
  198. D'angelo, LCA; Zavier, HS; Torres, LMB; Lapa, AJ; Souccar, C. Pharmacology of Piper marginatum Jacq. a folk medicinal plant used as an analgesic, antiinflammatory and hemostatic. Phytomedicine 1997, 4, 33–40. [Google Scholar]
  199. Palmeriro, NS; Almeida, CE; Ghedini, PC; Goulart, LS; Baldisserotto, B. Analgesic and anti-inflammatory properties of Plantago australis hydroalcoholic extract. Acta Farm. Bonaerense 2002, 21, 89–92. [Google Scholar]
  200. Guillen, MEN; Emim, JAS; Souccar, C; Lapa, AJ. Analgesic and antiinflammatory activities of the aqueous extract of Plantago major L. Int. J. Pharmacog 1997, 35, 99–104. [Google Scholar]
  201. Oliveira-Simoes, CM; Ribeiro-Do-Vale, RM; Poli, A; Nicolau, M; Zanin, M. Pharmacological investigation on Polygonum punctatum Elliot (P.Acre H.B.K) estracts. J. Pharm. Belg 1989, 44, 275–284. [Google Scholar]
  202. Erazo, S; Garcia, R; Bakchouse, N; Lemus, I; Delporte, IC; Andrade, C. Phytochemical and biological study of radal Lomatia hirsuta (Proteacea). J. Ethnopharmacol 1997, 57, 81–83. [Google Scholar]
  203. Delporte, CL; Bakchouse, CN; Erazo, S; Negrete, RE; Silva, C; Hess, A; Munoz, O; Garcia-Gravalos, MD; Feliciano, AS. Biological activities and metabolites from Trevoa trinervis Miers. Phytother. Res 1997, 11, 504–507. [Google Scholar]
  204. Backhouse, N; Delporte, C; Negrete, R; Suarez, S; Cassels, BK; Breitmaier, E; Schneider, C. Antiinflammatory and antipyretic metabolites of Acaena splendens. Int. J. Pharmacog 1997, 35, 49–54. [Google Scholar]
  205. Delporte, C; Munoz, O; Rojas, J; Ferrandiz, M; Paya, M; Erazo, S; Negrete, R; Maldonado, S; Feliciano, AS; Backhouse, N. Pharmaco-toxicological study of Kageneckia olblonga, Rosaceae. Z. Naturforsch 2002, 57c, 100–108. [Google Scholar]
  206. de Almeida, ER; de Santana, CF; de Mello, JF. Anti-inflammatory activity of Coutarea hexandra. Fitoterapia 1991, 62, 447–448. [Google Scholar]
  207. Piscoya, J; Rodriguesz, Z; Bustamante, SA; Okuhama, NN; Miller, MJS; Sandoval, M. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: mechanisms of action of the species Uncaria guianensis. Inflamm. Res 2001, 50, 442–448. [Google Scholar]
  208. Aguilar, JL; Rojas, P; Marcelo, A; Plaza, A; Bauer, R; Reininger, E; Klass, CA; Merfort, I. Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae). J. Ethnopharmacol 2002, 81, 271–276. [Google Scholar]
  209. Herrera, H; Jorge, E. Procesamiento de la Uncaria tomentosa (willd.) Dc. Una de gato en imet-ipss. Biodivers. Salud 1998, 1, 32–37. [Google Scholar]
  210. Sandoval-Chacon, M; Thompson, JH; Zhang, XJ; Liu, X; Mannick, EE; Sadowska-Krowicka, H; Charbonnet, RM; Clark, DA; Miller, MSJ. Antiinflammatory actions of cat’s claw: the role of nf-kb. Aliment. Pharmacol. Ther 1998, 12, 1279–1289. [Google Scholar]
  211. Centi, R; Esquivel, C; Pino, A. Fractionation of the methanolic extract of Uncaria tomentosa Willd D.C. And its relation with the anti-inflamamtory effect. Phytomedicine 2000, 7, 90. [Google Scholar]
  212. Mur, E; Hartig, F; Eibl, G; Schirmer, M. Randomized double blind trial of an extract from the pentacyclic alkaloid-chemotype of Uncaria tomentosa for the treatment of rheumatoid arthritis. J. Rheumatol 2002, 29, 678–681. [Google Scholar]
  213. Senatore, A; Cataldo, A; Iaccarino, FP; Elberti, MG. Phytochemical and biological reserach on Uncaria tomentosa. Boll. Soc. Ital. Biol. Sper 1989, 65, 517–520. [Google Scholar]
  214. Keplinger, K; Laurs, G; Wurm, M; Dierich, MP; Teppner, H. Uncaria tomentosa (Willd.) D.C.-ethnomedicinal use and new pharmacological, toxicological and botanical results. J. Ethnopharmacol 1999, 64, 23–34. [Google Scholar]
  215. Miller, M; Mehta, K; Kunte, S; Raut, V; Gala, J; Dhumale, R; Shukla, A; Tupalli, H; Parikh, H; Bobrowski, P; Chadhary, J. Early relief of osteoarthritis symptoms with a natural mineral supplement and a herbomineral combination: A randomized controlled trial. J. Inflamm 2005, 2, 14. [Google Scholar]
  216. Villalba, MA; Carmo, MI; Leite, MN; Sousa, OV. Pharmacological activities of Zanthoxylum chiloperone (Rutaceae) extracts. Rev. Bras. Farmacogn 2007, 17, 236–241. [Google Scholar]
  217. Khalil, NM; Sperotto, JS; Manfron, MP. Antiinflammatory activity and acute toxicity of Dodonaea viscose. Fitoterapia 2006, 77, 478–480. [Google Scholar]
  218. Almeida, RN; Barbosa Filho, JM; Naik, SR. Chemistry and pharmacology of an ethanol extract of Bumelia sartorum. J. Ethnopharmacol 1985, 14, 173–185. [Google Scholar]
  219. Freire, SMDF; Emim, JADS; Torres, LMB. Analgesic and antiinflammatory properties of Scoparia dulcis L. extracts and glutinol in rodents. Phytother. Res 1993, 7, 408–414. [Google Scholar]
  220. Hammarlund, ER. Occurrence of a weak anti-inflammatory substance in Simaba cedroon seed. J. Pharm. Sci 1963, 52, 204. [Google Scholar]
  221. Iyer, RP; Brown, JK; Chaubal, MG; Malone, MH. Brunfelsia hopeana I: Hippocratic screening and antiinflammatory evaluation. Lloydia 1977, 40, 356–360. [Google Scholar]
  222. Iyer, RP; Chaubal, MG. Brunfelsia hopeana-pharmacologic screening: Isolation and characterization of hoppeanine. Diss. Abstr. Int. B 1978, 39, 761. [Google Scholar]
  223. Delporte, C; Backhouse, N; Negrete, R; Salinas, P; Rivas, F; Cassels, BK; San Feliciano, A. Antipyretic, hypothermic and antiinflammatory activities and metabolites from Solanum ligustrinum Lood. Phytother. Res 1998, 12, 118–122. [Google Scholar]
  224. Vieira, JRG; Ferreira, PM; Matos, LG; Ferreira, EC; Rodovalho, W; Ferri, PH. Anti-inflammatory effect of Solanum lycocarpum fruits. Phytother. Res 2003, 17, 892–896. [Google Scholar]
  225. Antonio, MA; Souza Brito, ARM. Oral anti-flammatory and anti-ulcerogenic activities of a hydroalcoholic extract and partitioned fractions of Turnera ulmifolia (Turneraceae). J. Ethnopharmacol 1998, 61, 215–228. [Google Scholar]
  226. Costa, VB; Coube, CS; Marinho, BG; Matheus, ME; Leitão, SG; Fernandes, PD. Anti-inflammatory and analgesic activity of Bouchea fluminensis. Fitoterapia 2003, 74, 364–371. [Google Scholar]
  227. Schapoval, EES; de Vargas, MRW; Chaves, CG; Bridi, R; Zuanazzi, JA; Henriques, AT. Antiinflammatory and antinociceptive activities of extracts and isolated compounds from Stachytarpheta cayennensis. J. Ethnopharmacol 1998, 60, 53–59. [Google Scholar]
  228. Mesia-Vela, S; Souccar, C; Lima-Landman, MTR; Lapa, AJ. Pharmacological study of Stachytarpheta cayennensis Vahl in rodents. Phytomedicine 2004, 11, 616–624. [Google Scholar]
  229. Tratsk, KS; Campos, MM; Vaz, ZR; Filho, VC; Schlemper, V; Yunes, RA; Calixto, JB. Anti-allergic effects and oedema inhibition caused by the extract of Drymis Winteri. Inflamm. Res 1997, 46, 509–514. [Google Scholar]
  230. Penna, SC; Medeiros, MV; Aimbire, FSC; Faria-Neto, HCC; Sertie, JAA; Lopes-Martins, RAB. Anti-inflammatory effect of the hydralcoholic extract of Zingiber officinale rhizomes on rat paw and skin edema. Phytomedicine 2003, 10, 381–385. [Google Scholar]
  231. Pedernera, AM; Guardia, T; Calgeron, CG; Rotelli, AE; de la Rocha, NE; di Genaro, S; Pelzer, LE. Anti-ulcerogenic and anti-inflammatory activity of the methanolic extract of Larrea divaricata Cav. in rat. J. Ethnopharmacol 2006, 105, 415–420. [Google Scholar]
  232. Martino, RF; Davicino, RC; Mattar, MA; Casali, YA; Correa, SG; Anesini, C; Micalizzi, B. In vitro immunomodulatory effects of fractions obtained from aqueous extraxts of Larrea divaricata Cav (Jarilla) on mouse peritoneal macrophages. Immunopharmacol. Immunotoxicol 2010, 32, 125–132. [Google Scholar]
Table Table 1. Extracts of plants with anti-inflammatory activity studied in South America.

Click here to display table

Table 1. Extracts of plants with anti-inflammatory activity studied in South America.
Family and Botanical nameCountryPart usedType of extractModel assay/way of routeOrganism testedActivityRef.
Acanthaceae
Justicia pectoralis var. stenophyllaBrazilDried leafHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[84]
BrazilDried leafHexane-acetoneDextran-induced pedal edema/IntragastricRatInactive[84]
Agavaceae
Cordyline dracaenoidesBrazilDried rhizomeEtOH-H2O (50%) extCarrageenan-induced pedal edema/IPRatActive[85]
Alismataceae
Echinodorus grandiflorusBrazilDried rhizomeMeOH extCarrageenan-induced pedal edema/IntragastricMouseActive[86]
BrazilDried rhizomeMeOH extCarrageenan-induced pedal edema/IntragastricRatActive[86]
Amaranthaceae
Alternanthera brasilianaBrazilDried leafH2O extCarrageenan-induced pedal edema/Route not givenRatInactive[87]
Pfaffia glomerataBrazilDried rootEtOH (60%) extAcetic acid-induced pedal edema/IntragastricMouseActive[88]
BrazilDried rootEtOH (60%) extAcetic acid-induced pedal edema/IPMouseActive[88]
Pfaffia iresinoidesBrazilDried rootSaponin fractionCarrageenan-induced pleurisy/IntragastricRatActive[89]
BrazilDried rootH2O extCarrageenan-induced pleurisy/IntragastricRatActive[89]
BrazilDried rootH2O extCotton pellet granuloma/IntragastricRatInactive[89]
BrazilDried rootSaponin fractionCotton pellet granuloma/IntragastricRatActive[89]
Pfaffia paniculataBrazilDried rootEtOH (20%) extCarrageenan-induced pedal edema/IPMouseActive[90]
BrazilDried rootEtOH (60%) extCarrageenan-induced pedal edema/IPRatActive[91]
Pfaffia stenophyllaBrazilDried rootEtOH (20%) extCarrageenan-induced pedal edema/IPMouseActive[90]
Anacardiaceae
Anacardium occidentaleBrazilDried barkShellCarrageenan-induced pedal edema/Gastric intubationRatActive[92]
BrazilDried barkShellDextran-induced pedal edema/Gastric intubationRatInactive[92]
BrazilDried barkShellCotton pellet granuloma/IPRatActive[92]
BrazilDried barkShellDextran-induced pedal edema/IPRatActive[92]
BrazilDried barkShellCarrageenan-induced pedal edema/IPRatActive[92]
BrazilDried barkIsopropanol-H2O (1:1) extCarrageenan-induced pedal edema/IPRatActive[92]
BrazilDried barkShellNumber of leukocytes in exudate/IPRatActive[92]
Astronium urundeuvaBrazilStembarkEtoAc extCarrageenan-induced pedal edema/IntragastricMouseActive[93]
BrazilDried barkTannin fractionDextran-induced pedal edema/IPRatActive[93]
BrazilDried barkTannin fractionCarrageenan-induced pedal edema/IPMouseActive[93]
BrazilDried barkTannin fractionCyclophosphamide-induced hemorrhagic cystitis/IPRatActive[93]
BrazilStembarkEtoAc extCarrageenan-induced pedal edema/IPMouseActive[93]
Spondias mombinVenezuelaDried barkEtOH (100%) extCarrageenan-induced pedal edema/IntragastricRatActive[94]
Apocynaceae
Bonafousia longitubaEcuadorDried part not specifiedEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseActive[95]
EcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseWeak activity[95]
EcuadorDried part not specifiedCH2Cl2 extCarrageenan-induced pedal edema/IntragastricMouseActive[96]
EcuadorDried part not specifiedCH2Cl2 extCarrageenan-induced pedal edema/IntragastricMouseActive[96]
Ervatamia coronariaBrazilDried stemEtOH (95%) extCarrageenan-induced pedal edema/IPRatActive[97]
BrazilDried stemEtOH (95%) extCarrageenan-induced pedal edema/IntragastricRatActive[97]
BrazilDried stemH2O extCarrageenan-induced pedal edema/IPRatActive[97]
Himatanthus sucuubaBrazilLatex (unspec part)Hexane extCarrageenan-induced pedal edema/IntragastricRatActive[98]
Mandevilla velutinaBrazilDried rhizomeAqueous-alcoholic extCarrageenan-induced pedal edema/IntragastricMouseActive[99]
BrazilDried rhizomeAqueous-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[99]
BrazilDried rhizomeAqueous-alcoholic ext5-HT-induced pedal edema/IntragastricRatInactive[99]
BrazilDried rhizomeAqueous-alcoholic extCarrageenan-induced pedal edema/IPRatActive[99]
BrazilDried rhizomeAqueous-alcoholic extSnake venom-induced pedal edema/IntragastricRatInactive[99]
BrazilDried rhizomeAqueous-alcoholic extPlatelet aggregating factor-acether induced pedal edema/IntragastricRatInactive[99]
BrazilDried entire plantEtOH (95%) extArachidonic-acid induced ear edema/IntragastricMouseActive[100]
BrazilFrozen rhizomeEtOH H2O (50%) extBradykinin-induced pedal edema/IntragastricRatActive[101]
BrazilFrozen rhizomeEtOH H2O (50%) extCarrageenan-induced pedal edema/5-HT-induced pedal edema/IntragastricRatActive[101]
BrazilFrozen rhizomeEtOH H2O (50%) extDextran-induced pedal edema/IntragastricRatActive[101]
BrazilFrozen rhizomeEtOH H2O (50%) extCarrageenan-induced pedal edema/IPRatActive[101]
BrazilFrozen rhizomeEtOH H2O (50%) extCellulose sulfate induced rat paw edema/IntragastricRatActive[101]
BrazilFrozen rhizomeEtOH H2O (50%) extPaltelet aggretating factor-acether induced rat paw edema/IntragastricRatActive[101]
BrazilFrozen rhizomeEtOH H2O (50%) extZymosan indued rat paw edema/IntragastricRatActive[101]
BrazilFrozen rhizomeEtOH H2O (50%) extBothrops jararaca induced rat paw edema/IntragastricRatInactive[101]
Peschiera australis var. australisBrazilDried leafEtOH (100%) extCarrageenan-induced paw edema/IPRatActive[102]
BrazilDried leafH2O extCarrageenan-induced paw edema/IPRatActive[102]
Peschiera vanheurckiiPeruDried stembarkEtOH (100%) extEPP-induced rat ear oedema/ExternalRatActive[103]
Araliaceae
Hedera helixUruguayDried leafEtOH (95%) ext**/OralHuman adultActive[104]
Arecaceae
Orbignya phalerataBrazilDried fruitCHCl3 extCotton pellet granuloma/IntragastricRatActive[105]
BrazilDried fruitCHCl3 extCarrageenan-induced pedal edema/IntragastricRatActive[105]
BrazilDried fruitCHCl3 extCarrageenan-induced pedal edema/IPRatActive[105]
Aristolochiaceae
Aristolochia triangularisArgentinaDried rootMeOH extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried rootCH2Cl2 extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried rootH2O extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried rootH2O extCarrageenan-induced pedal edema/IPMouseActive[106]
ArgentinaDried rootCH2Cl2 extCarrageenan-induced pedal edema/IPMouseActive[106]
ArgentinaDried rootMeOH extCarrageenan-induced pedal edema/IPMouseInactive[106]
Asclepiadaceae
Marsdenia cundurangoEcuadorPart not specifiedCH2Cl2 extCarrageenan-induced pedal edema/IntragastricMouseActive[96]
EcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseActive[95]
Asteraceae
Achyrocline satureioidesBrazilDried inflorescenceH2O extCarrageenan-induced pedal edema/IPRatActive[107]
BrazilDried inflorescenceEtOH (95%) extCarrageenan-induced pedal edema/IPRatActive[107]
BrazilDried inflorescenceHot H2O extCarrageenan-induced pedal edema/IPRatActive[107]
BrazilDried inflorescenceEtOH (95%) extCroton oil ear edema test/ExternalMouseActive[107]
BrazilDried inflorescenceH2O extCroton oil ear edema test/ExternalMouseActive[107]
BrazilDried inflorescenceHot H2O extCroton oil ear edema test/ExternalMouseActive[107]
Ageratum conyzoidesBrazilDried leafEtOH (70%) extFormalin-induced pedal edema/IntragastricRatActive[62]
BrazilDried leafEtOH (70%) extCotton pellet granuloma/IntragastricRatActive[62]
BrazilDried leafEtOH (70%) extCarrageenan-induced pedal edema/SCRatActive[62]
BrazilDried leafHydro-alcoholic extFormalin-induced pedal edema/IntragastricRatActive[65]
BrazilDried leafHydro-alcoholic extCotton pellet granuloma/IntragastricRatActive[65]
BrazilDried leafEtOH (70%) extYeast-induced inflammation of the paw/IPRatActive[108]
Ambrosia tenuifoliaArgentinaDried aerial partsCH2Cl2 extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsMeOH extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsH2O extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsMeOH extCarrageenan-induced pedal edema/IPMouseInactive[106]
ArgentinaDried aerial partsH2O extCarrageenan-induced pedal edema/IPMouseActive[106]
ArgentinaDried aerial partsCH2Cl2 extCarrageenan-induced pedal edema/IPMouseActive[106]
Artemisia copaArgentinaDried entire plantHot H2O extCarrageenan-induced pedal edema/IPRatInactive[109]
ArgentinaDried entire plantCH2Cl2 extCarrageenan-induced pedal edema/IPRatInactive[109]
ArgentinaDried entire plantMeOH extCarrageenan-induced pedal edema/IPRatInactive[109]
ArgentinaDried aerial partsH2O ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[71]
ArgentinaDried aerial partsCH2Cl2 ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[71]
Baccharis articulataArgentinaDried aerial partsH2O extCarrageenan-induced pedal edema/IntragastricRatInactive[110]
ArgentinaDried aerial partsH2O extCarrageenan-induced pedal edema/IPRatInactive[110]
Baccharis crispaArgentinaDried aerial partsH2O extCarrageenan-induced pedal edema/IntragastricRatInactive[110]
ArgentinaDried aerial partsH2O extCarrageenan-induced pedal edema/IPRatActive[110]
Baccharis decussataColombiaDried leafMeOH ext**/Route not given**Active[111]
Baccharis incarumArgentinaDried entire plantCH2Cl2 extCarrageenan-induced pedal edema/IPRatActive[109]
ArgentinaDried entire plantMeOH extCarrageenan-induced pedal edema/IPRatInactive[109]
ArgentinaDried entire plantHot H2O extCarrageenan-induced pedal edema/IPRatInactive[109]
Baccharis medullosaArgentinaDried aerial partsCHCl3 extCarrageenan-induced pedal edema/IPMouseInactive[112]
ArgentinaDried aerial partsEtoAc extCarrageenan-induced pedal edema/IPMouseInactive[112]
ArgentinaDried aerial partsCCl4Carrageenan-induced pedal edema/IPMouseInactive[112]
ArgentinaDried aerial partsHexane extCarrageenan-induced pedal edema/IPMouseActive[112]
Baccharis rufescensArgentinaDried aerial partsHexane extCarrageenan-induced pedal edema/IPMouseInactive[112]
ArgentinaDried aerial partsAcetone extCarrageenan-induced pedal edema/IPMouseActive[112]
ArgentinaDried aerial partsCHCl3 extCarrageenan-induced pedal edema/IPMouseActive[112]
Baccharis trimeraUruguayDried aerial partsH2O extCarrageenan-induced pedal edema/IntragastricRatInactive[110]
UruguayDried aerial partsH2O extCarrageenan-induced pedal edema/IPRatActive[110]
UruguayDried aerial partsButanol extCarrageenan-induced edema in rat paw/IPRatActive[113]
UruguayDried aerial partsButanol extDextran-induced edema in rat paw/IPRatActive[113]
UruguayDried aerial partsButanol extArachindonic acid-induced edema in pat paw/IPRatEquivocal[113]
UruguayDried aerial partsButanol extC16-PAF-induced edema/IPRatWeak activity[113]
UruguayDried aerial partsButanol extZymosan-induced edema in rat paw/IPRatEquivocal[113]
Baccharis trinervisEcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseWeak activity[95]
Baccharis tucumanensisArgentinaDried aerial partsH2O extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsCH2Cl2 extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsMeOH extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsCH2Cl2 extCarrageenan-induced pedal edema/IPMouseInactive[106]
ArgentinaDried aerial partsH2O extCarrageenan-induced pedal edema/IPMouseActive[106]
ArgentinaDried aerial partsMeOH extCarrageenan-induced pedal edema/IPMouseActive[106]
Bidens pilosaBrazilDried leafMeOH extZymosan-induced pedal edema/IPMouseActive[114]
Bidens subalternansArgentinaDried entire plantMeOH extCarrageenan-induced pedal edema/IPMouseWeak activity[115]
ArgentinaDried entire plantCHcl3 extCarrageenan-induced pedal edema/IPMouseActive[115]
Centaurea chilensisChileDried aerial partsMeOH ext**/IntragastricGuinea pigActive[116]
ChileDried aerial partsCHCl3 ext**/IntragastricGuinea pigActive[116]
Chromolaena christieanaArgentinaDried aerial partsMeOH extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsCH2Cl2 extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsH2O extCroton oil-induced edema/ExternalMouseActive[106]
ArgentinaDried aerial partsCH2Cl2 extCarrageenan-induced pedal edema/IPMouseInactive[106]
ArgentinaDried aerial partsH2O extCarrageenan-induced pedal edema/IPMouseInactive[106]
ArgentinaDried aerial partsMeOH extCarrageenan-induced pedal edema/IPMouseInactive[106]
Conyza bonariensisBrazilAerial part essent oilEssential oilLPS-induced leukocyte recruitement/IntragastricMouseActive[117]
Conyza floribundaEcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseWeak activity[95]
Conyza sophiifoliaArgentinaDried aerial partsHexane extPaw edema test/Route not givenRatActive[118]
ArgentinaDried aerial partsAcetone extPaw edema test/Route not givenRatActive[118]
ArgentinaDried aerial partsCHCl3 extPaw edema test/Route not givenRatActive[118]
Cynara scolymusBrazilFresh leafInfusionDye diffusion assay/IntragastricMouseActive[119]
Elephantopus scaberBrazilFresh leafInfusionDye diffusion assay/IntragastricMouseActive[119]
BrazilDried entire plantEtOH-H2O (50%) extCarrageenan-induced pedal edema/IntragastricRatInactive[120]
BrazilDried entireDecoctionCarrageenan-induced pedal edema/IntragastricRatInactive[120]
Eremanthus erythropappusBrazilDried aerial partsEtOH (95%) extCarrageenan-induced pedal edema/IntragastricRatActive[121]
Eupatorium buniifoliumArgentinaDried aerial partsCH2Cl2 ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[122]
EquadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseActive[95]
Eupatorium inulaefolium var. suaveolensArgentinaOven dried aerial partsCH2Cl2 extPhorbol myristate acetate-induced earMouseActive[123]
Inflammation/External
ArgentinaOven dried aerial partsCH2Cl2 extCarrageenan-induced pedal edema/IntragastricRatActive[123]
Gochnatia polymorphaBrazilDried leafH2O extCarrageenan-induced pedal edema/IntragastricRatActive[124]
BrazilDried leafEtOH (100%) extCarrageenan-induced pedal edema/IntragastricRatActive[124]
BrazilDried leafButanol extCarrageenan-induced pedal edema/IntragastricRatInactive[124]
BrazilDried leafEtoAc extCarrageenan-induced pedal edema/IntragastricRatActive[124]
BrazilDried leafDichloromethane extCarrageenan-induced pedal edema/IntragastricRatInactive[124]
Laennecia sophiifoliaArgentinaDried aerial partsHexane extCarrageenan-induced pedal edema/IPMouseActive[112]
ArgentinaDried aerial partsAcetone extCarrageenan-induced pedal edema/IPMouseActive[112]
Mikania glomerataBrazilFresh leafInfusionDye diffusion assay/IntragastricMouseActive[119]
BrazilDried leafEtOH-H2O (1:1) extPAF-induced edema/Histamine-induced edema/SCRatInactive[125]
BrazilDried leafDichloromethanolCarrageenan-induced pleurisy/IPMouseActive[126]
BrazilDried leafEtOH-H2O (1:1) extSerotonin-induced pleural edema/SCRatInactive[125]
Mutisia kurtziiArgentinaDried entire plantCH2Cl2 extCarrageenan-induced pedal edema/IPRatInactive[109]
ArgentinaDried entire plantMeOH ext**/IPRatInactive[109]
ArgentinaDried entire plantHot H2O extCarrageenan-induced pedal edema/IPRatActive[109]
Neurolaena lobataEcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseActive[95]
Pluchea sagittalisArgentinaDried entire plantHot H2O extCarrageenan-induced pedal edema/IPRatActive[123]
ArgentinaDried entire plantCH2Cl2 extCarrageenan-induced pedal edema/IPRatActive[123]
ArgentinaOven dried aerial partsCH2Cl2 extPhorbol myristate acetate-induced ear inflammation/ExternalMouseActive[109]
ArgentinaOven dried aerial partsCH2Cl2 extCarrageenan-induced pedal edema/IntragastricRatActive[109]
ArgentinaDried entire plantMeOH extCarrageenan-induced pedal edema/IPRatInactive[109]
Porophyllum ruderaleBrazilAerial part essent oilEssential oilLPS-induced leukocyte recruitement/IntragastricMouseActive[117]
Proustia pyrifoliaChileDried aerial partsCH2Cl2 extAcetic acid-induced pedal edema/ExternalMouseActive[59]
ChileDried aerial partsCH2Cl2 ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[59]
ChileDried aerial partsMeOH ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[59]
ChileDried aerial partsMeOH extAcetic acid-induced pedal edema/ExternalMouseActive[59]
ChileDried aerial partsHexane extAcetic acid-induced pedal edema/ExternalMouseActive[59]
ChileDried aerial partsHexane ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[59]
Synedrella nodifloraVenezuelaDried leafEtOH (100%) extCarrageenan-induced pedal edema/IntragastricRatActive[94]
VenezuelaDried leafHexane extCarrageenan-induced pedal edema/IntragastricRatActive[94]
Tagetes pusillaEcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseActive[95]
Tanacetum vulgareArgentinaDried aerial partsDichloromethane ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[127]
ArgentinaDried aerial partsEtOH (100%) ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseWeak activity[128]
ArgentinaDried aerial partsCHCl3 ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[128]
Vanillosmopsis arboreaBrazilDried trunkwoodEssential oil**/Gastric intubationMouseActive[129]
Bignoniaceae
Adenocalymma alliaceaPeruDried root + stemEtOH (100%) extEPP-induced rat ear oedema/ExternalRatWeak activity[103]
Tabebuia impetiginosaBrazilDried barkType ext not statedFormalin-induced pedal edema/Route not givenRatActive[130]
Tecoma sambucifoliaPeruDried flowersH2O extCarrageenan-induced pedal edema/IPRatActive[131]
PeruDried flowersEtOH (95%) extCarrageenan-induced pedal edema/IPRatActive[131]
PeruDried perianthH2O extCarrageenan-induced pedal edema/IPRatActive[131]
PeruDried perianthEtOH (95%) extCarrageenan-induced pedal edema/IPRatActive[131]
Tynnanthus myrianthusPeruDried part not specifiedEtOH (95%) extCarrageenan-induced pedal edema/IPRatActive[132]
Boraginaceae
Auxemma oncocalyxBrazilDried heartwoodQuinone fractionCarrageenan-induced pedal edema/IntragastricRatActive[133]
BrazilDried heartwoodQuinone fractionDextran-induced pedal edema/IPRatActive[133]
BrazilDried heartwoodQuinone fractionCarrageenan-induced pedal edema/IPRatActive[133]
Cordia verbenaceaBrazilFreeze-dried leafLyophilized extractMiconazole-induced edema/IntragastricRatActive[134]
BrazilFreeze-dried leafLyophilized extractNystatin-induced edema/ExternalRatActive[134]
BrazilFresh leafEtOH (70%) extCotton pellet granuloma/ExternalRatActive[135]
BrazilFresh leafEtOH (70%) extCotton pellet granuloma/IntragastricRatActive[135]
BrazilDried leafEtOH (70%) extCroton oil-induced edema/ExternalMouseActive[136]
BrazilDried leafEtOH (70%) extNystatin-induced pedal edema/Gastric intubationRatActive[136]
BrazilDried leafEtOH (70%) extCold stress and carrageenin-induced edema combined/Gastric intubationRatActive[136]
BrazilFresh leafEtOH (70%) extCarrageenan-induced pedal edema/OralRatActive[137]
BrazilFresh leafEtOH (70%) extCotton pellet granuloma/OralRatActive[137]
BrazilFreeze-dried leafLyophilized extractNystatin-induced edema/ExternalRatActive[134]
Symphytum officinaleBrazilDried leafAqueous high speed supernatantCarrageenan-induced pedal edema/Gastric intubationRatInactive[138]
Bromeliaceae
Nidularium procerumBrazilDried leafH2O extLPS-induced inflammatory/IPMouseActive[139]
Tillandsia streptocarpaBrazilDried entire plantMeOH extCroton oil-induced edema/ExternalMouseActive[140]
Burseraceae
Bursera simarubaVenezuelaDried leafHexane extCarrageenan-induced pedal edema/IntragastricRatActive[94]
VenezuelaDried leafEtOH (100%) extCarrageenan-induced pedal edema/IntragastricRatActive[94]
VenezuelaDried barkEtOH (100%) extCarrageenan-induced pedal edema/IntragastricRatActive[94]
VenezuelaDried leafHexane extCarrageenan-induced pedal edema/IntragastricRatActive[141]
Protium kleiniiBrazilDried barkEther extArachidonic acid-induced edema/ExternalMouseInactive[142]
BrazilDried barkEther ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/ExternalMouseActive[142]
Celastraceae
Cheiloclinium cognatumBrazilDried rootbarkMeCl2 extCroton oil-induced edema/IntragastricMouseActive[143]
Maytenus aquifoliumBrazilDried leaf/plus piroxicanHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[144]
BrazilDried leafHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[144]
Maytenus boariaChileDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[145]
Maytenus ilicifoliaBrazilDried leafHexane-acetone**/IntragastricRatActive[82]
BrazilDried leafEtoAc extCarrageenan-induced pedal edema/IntragastricRatActive[82]
BrazilDried leafHexane-acetoneFormalin-induced pedal edema/IntragastricMouseActive[82]
BrazilDried leafEtoAc extFormalin-induced pedal edema/IntragastricMouseActive[82]
Maytenus laevisColombiaBarkEtOH (95%) extCarrageenin-induced pedal edema/SCRatActive[146]
Maytenus rigidaBrazilDried barkEtOH (95%) extCarrageenan-induced pedal edema/IntragastricRatActive[147]
Chloranthaceae
Hedyosmum bonplandianumColombiaDried leafButanol extCarrageenan-induced pedal edema/IntragastricMouseActive[148]
Clusiaceae
Hypericum brasilienseBrazilDried leafType ext not statedCarrageenan-induced pedal edema/OralRatActive[149]
Convolvulaceae
Cuscuta chilensisChileDried entire plantMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[150]
ChileDried entire plantInfusionCarrageenan-induced pedal edema/IntragastricGuinea pigActive[150]
Ipomoea fistulosaArgentinaOven dried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricRatActive[123]
ArgentinaOven dried aerial partsCH2Cl2 extPhorbol myristate acetate-induced ear inflammation/ExternalMouseActive[123]
Crassulaceae
Bryophyllum calcinumBrazilDried leafLyophilized extractCarrageenan-induced pedal edema/IntragastricRatActive[151]
Kalanchoe brasiliensisBrazilFresh leafPlant juiceCarrageenan-induced pedal edema/IntragastricRatActive[152]
BrazilFresh leafJuiceZymosan-induced inflammation/IPMouseActive[153]
BrazilFresh fruit juice (unripe)Juice**/IPMouseActive[154]
Cucurbitaceae
Cayaponia tayuyaBrazilDried rootMeOH extCarrageenan-induced pedal edema/Gastric intubationMouseInactive[155]
BrazilDried rootCHCl3 extCarrageenan-induced pedal edema/Gastric intubationMouseWeak activity[155]
BrazilDried rootMeOH extCarrageenan-induced pedal edema/IPMouseWeak activity[155]
BrazilDried rootCHCl3 extCarrageenan-induced pedal edema/IPMouseActive[155]
BrazilDried rootInfusionDye diffusion assay/IntragastricMouseEquivocal[119]
Wilbrandia ebracteataBrazilDried rootCH2Cl2 extCarrageenan-induced pedal edema/IntragastricRatWeak activity[156]
BrazilDried rootCHCl3 soluble fractionCarrageenan-induced pleurisy/IntragastricMouseActive[156]
BrazilDried rootCH2Cl2 extCarrageenan-induced pedal edema/IPRatActive[156]
BrazilDried rootChromatographic fractionCarrageenan-induced pleurisy/IPMouseActive[156]
BrazilDried rootCHCl3 soluble fractionCarrageenan-induced pleurisy/IPMouseActive[156]
Wilbrandia speciesBrazilDried rhizomeEtOH (70%) extAcetic acid-induced pedal edema/IntragastricMouseActive[157]
BrazilDried rhizomeEtOH (70%) extCarrageenan-induced pedal edema/IntragastricRatActive[157]
BrazilDried rhizomeEtOH (70%) extCarrageenan-induced granuloma/IntragastricRatActive[157]
Cyatheaceae
Trichipteris proceraPeruInner barkEtOH (95%) ext**/**RabbitActive[158]
Cyperaceae
Mariscus pedunculatusBrazilVenomEssential oilLPS-induced pleurisy model/IntragastricMouseActive[159]
Dilleniaceae
Curatella americanaBrazilDried stembarkHydro-alcoholic extCarrageenan-induced pedal edema/IPRatActive[160]
BrazilDried stembarkHydro-alcoholic ext12-O-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/IPMouseActive[160]
BrazilDried stembarkHydro-alcoholic extCapsaicin induced mouse ear edema/IPMouseActive[160]
Equisetaceae
Equisetum arvenseBrazilStemEtOH - H2O (1:1) extCarrageenan-induced pedal edema/IPMouseActive[161]
Erythroxylaceae
Erythroxylum argentinumBrazilDried leafEtOH (70%) extCarrageenan-induced pedal edema/IntragastricRatActive[162]
BrazilDried leafEtOH (70%) extCarrageenan-induced pedal edema/IPRatActive[162]
Euphorbiaceae
Alchornea castaneaefoliaPeruDried part not specifiedEtOH (95%) extCarrageenan-induced pedal edema/IPRat**[132]
PeruDried stembarkEtOH (100%) extEpp-induced rat ear edema/**RatActive[103]
Croton cajucaraBrazilBark essential oilEssential oilCarrageenan-induced pedal edema/IntragastricMouseActive[163]
BrazilBark essential oilEssential oilCotton pellet granuloma/IntragastricRatActive[163]
Croton celtidifoliusBrazilDried barkH2O extCarrageenan-induced pedal edema/IntragastricMouseActive[164]
BrazilDried barkEtoAc extCarrageenan-induced pedal edema/IntragastricMouseActive[164]
BrazilDried barkEtOH (80%) extCarrageenan-induced pedal edema/IntragastricMouseActive[164]
BrazilDried barkButanol extCarrageenan-induced pedal edema/IntragastricMouseActive[164]
BrazilDried barkEtoAc extCarrageenan-induced pedal edema/IPMouseActive[164]
BrazilDried barkH2O extCarrageenan-induced pedal edema/IPMouseActive[164]
BrazilDried barkButanol extCarrageenan-induced pedal edema/IPMouseActive[164]
Croton lechleriPeruFresh sapLatex**/IinjectionRatActive[165]
EcuadorFreeze-drild latex**Carrageenan-induced pedal edema/IPRatActive[166]
Croton malamboVenezuelaDried barkH2O extAlbumin-induced edema/IPMouseActive[167]
Croton menthodorusEcuadorDried seedCH2Cl2 extCarrageenan-induced pedal edema/IntragastricMouseActive[96]
EcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseWeak activity[95]
Croton pullei var. glabriorBrazilDried leafMeOH extCarrageenan-induced pedal edema/IntragastricMouseActive[78]
Jatropha ellipticaBrazilFresh tuberEtOH-H2O(50%) extCarrageenan-induced pedal edema/IntragastricRatActive[168]
BrazilFresh tuberEtOH-H2O (50%) extDextran-induced pedal edema/IntragastricRatInactive[168]
BrazilFresh tuberEtOH-H2O(50%) extSerotonin-induced pedal edema/IntragastricRatActive[168]
Phyllanthus amarusBrazilDried aerial partsHexane extCfa induced edema/IntragastricMouseActive[169]
Phyllanthus carolinensisBrazilDried entire plantHydro-alcoholic extFormalin-induced pedal edema/IPMouseActive[170]
Phyllanthus corcovadensisBrazilDried leaf + root + stemEtOH-H2O(1:1) extCarrageenan-induced pedal edema/vs.dextran-induced pedal edema/IPMouseInactive[171]
Fabaceae
Apuleia leiocarpaBrazilFresh barkInfusionDye diffusion assay/IntragastricMouseActive[119]
Bauhinia guianensisBrazilDried stembarkCH2Cl2 extDextran-induced pedal edema/IPRatActive[172]
BrazilDried stembarkCH2Cl2 extHistamine-induced edema/IPRatInactive[172]
BrazilDried stembarkEtoAc extHistamine-induced edema/IPRatActive[172]
BrazilDried stembarkEtoAc extDextran-induced pedal edema/IPRatActive[172]
BrazilDried stembarkMeOH extCarrageenan-induced pedal edema/IPRatActive[172]
BrazilDried stembarkMeOH extDextran-induced pedal edema/IPRatActive[172]
BrazilDried stembarkMeOH extHistamine-induced edema/IPRatActive[172]
Bauhinia tarapotensisEcuadorDried leafH2O extCroton oil-induced edema/**MouseActive[76]
EcuadorDried leafDichloromethane extCroton oil-induced edema/**MouseActive[76]
EcuadorDried leafMeOH extCroton oil-induced edema/**MouseActive[76]
EcuadorDried leafHexane extCroton oil-induced edema/**MouseActive[76]
EcuadorDried leafCHCl3 extCroton oil-induced edema/**MouseActive[76]
Caesalpinia ferreaBrazilDried fruitH2O extCarrageenan-induced pedal edema/IntragastricRatActive[173]
Calliandra angustifoliaPeruDried barkEtOH (100%) extEpp-induced rat ear edema/**RatInactive[103]
Copaifera cearensisBrazilDried balsamOleoresinCarrageenan-induced pedal edema/IntragastricMouseActive[174]
Copaifera langsdorfiiBrazilDried oleoresinResinAcetic acid-induced colitis/IntragastricRatActive[174]
Copaifera speciesBrazilOleoresinOleoresinCarrageenan-induced pedal edema/IntragastricRatActive[174]
BrazilOleoresinOleoresinCotton pellet granuloma/IntragastricRatActive[174]
BrazilOleoresinOleoresinHistamine-induced vascular peremability/IntragastricRatActive[174]
Erythrina velutinaBrazilDried leafDecoctionCarrageenan-induced pedal edema/IntragastricRatInactive[175]
BrazilDried leafDecoctionCarrageenan-induced pedal edema/IntragastricRatInactive[175]
BrazilDried leafDecoctionCarrageenan-induced pedal edema/IntragastricRatInactive[175]
Erythrina crista-galliArgentinaDried aerial partsDichloromethane ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/**MouseActive[176]
ArgentinaDried aerial partsMeOH ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/**MouseActive[176]
ArgentinaDried aerial partsH2O ext12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/**MouseActive[176]
ArgentinaDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricRatActive[176]
ArgentinaDried aerial partsH2O extCarrageenan-induced pedal edema/IntragastricRatActive[176]
ArgentinaDried aerial partsDichloromethane extCarrageenan-induced pedal edema/IntragastricRatActive[176]
Marsypianthes chamaedrysBrazilFresh leafInfusionDye diffusion assay/IntragastricMouseActive[119]
Psoralea glandulosaChileDried aerial partsInfusionCarrageenan-induced pedal edema/IntragastricGuinea pigActive[150]
ChileDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[150]
ChileDried aerial partsPet ether extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[177]
ChileDried aerial partsDichloromethane extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[177]
ChileDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[177]
Pterocarpus uleiPeruDried stembarkEtOH (100%) extEPP-induced rat ear oedema/**RatInactive[103]
Pterodon emarginatusBrazilDried fruitHexane extCarrageenan-induced pedal edema/IntragastricRatActive[178]
BrazilDried fruitHexane extCarrageenan-induced pedal edema/IntragastricRatActive[178]
Stryphnodendron adstringensBrazilDried stembarkAcetic acid induced vascular permeability/IntragastricMouseActive[179]
BrazilDried stembarkAcetone extDextran-induced pedal edema/carrageenan-induced pedal edema/IntragastricRatActive[179]
BrazilDried stembarkAcetone ext**/IntragastricRatWeak activity[179]
Torresea cearensisBrazilDried stembarkCarrageenan-induced pedal edema/IntragastricRatActive[180]
Flacourtiaceae
Casearia sylvestrisBrazilFresh bark + leafInfusionDye diffusion assay/IntragastricMouseWeak activity[119]
Gentianaceae
Gentianella achalensisArgentinaDried aerial partsChromatographic fraction12-O-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/**MouseActive[181]
ArgentinaDried aerial partsPet ether ext12-O-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/**MouseInactive[181]
ArgentinaDried aerial partsMeOH ext12-O-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/**MouseInactive[181]
ArgentinaDried aerial partsDichloromethane ext12-O-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/**MouseActive[181]
ArgentinaDried aerial partsDichloromethane extCarrageenan-induced pedal edema/IntragastricRatInactive[181]
ArgentinaDried aerial partsPet ether extCarrageenan-induced pedal edema/IntragastricRatInactive[181]
ArgentinaDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricRatInactive[181]
Lamiaceae
Hyptis pectinataBrazilDried leafH2O extArachidonic acid-induced edema/IntragastricRatActive[182]
BrazilDried leafH2O extCarrageenan-induced pedal edema/IntragastricRatActive[182]
Lavandula latifoliaParaguayAerial partsChromatographic fractionCarrageenan-induced pedal edema/**RatActive[183]
ParaguayAerial partsEtOH (70%) extCarrageenan-induced pedal edema/**RatActive[183]
Raphiodon echinusBrazilDried aerial partsH2O extAcetic acid-induced dye diffusion/IntragastricMouseActive[129]
Liliaceae
Polygonatum punctatumArgentinaOven dried aerial partsCH2Cl2 extPhorbol myristate acetate-induced ear inflammation/**MouseActive[123]
ArgentinaOven dried aerial partsH2O extCarrageenan-induced pedal edema/IntragastricRatWeak activity[123]
Linaceae
Vantanea peruvianaPeruDried stembarkEtOH (100%) extEPP-induced rat ear oedema/**RatStrong activity[103]
Loasaceae
Mentzelia chilensisPeruDried stemEtoAc extCarrageenan-induced pedal edema/IntragastricRatActive[184]
PeruDried stemH2O extCarrageenan-induced pedal edema/IntragastricRatActive[184]
Lythraceae
Adenaria floribundaPeruDried stemEtOH (100%) extEPP-induced rat ear oedema/**RatActive[103]
Magnoliaceae
Talauma ovataBrazilDried leafEtOH (95%) extCarrageenan-induced pedal edema/IPRatInactive[185]
Malvaceae
Sida cordifoliaBrazilDried leafH2O extCarrageenan-induced pedal edema/IntragastricRatActive[186]
Urena lobataEcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseWeak activity[95]
Meliaceae
Guarea guidoniaBrazilSeedEtOH (90%) extCarrageenan-induced pedal edema/Gastric IntubationRatActive[187]
BrazilSeedEtOH (90%) extCotton pellet granuloma/Gastric IntubationRatActive[187]
Trichilia glabraArgentinaDried leafZymosan-induced immediate inflammation moded/IPMouseActive[188]
Menispermaceae
Abuta grandifoliaPeruDried part not specifiedEtOH (95%) extCarrageenan-induced pedal edema/IPRat**[132]
Cissampelos sympodialisBrazilDried leafEtOH (80%) extCapsaicin induced edema/IPMouseActive[189]
BrazilDried leafEtOH (80%) ext12-O-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/IPMouseActive[189]
BrazilDried leafEtOH (80%) extCarrageenan-induced pedal edema/IPRatActive[189]
Monimiaceae
Peumus boldusChileDried leafEtOH (70%) extCarrageenan-induced pedal edema/IPRatActive[190]
Moraceae
Dorstenia brasiliensisBrazilFresh rootInfusionDye diffusion assay/IntragastricMouseWeak activity[119]
Myristicaceae
Virola pavonisPeruDried vineEtOH (95%) extCarrageenan-induced pedal edema/IPRatActive[132]
Virola peruvianaPeruDried part not specifiedEtOH (95%) extCarrageenan-induced pedal edema/IPRatActive[132]
Eugenia unifloraBrazilFresh leafInfusionCarrageenan-induced pedal edema/IntragastricRatActive[191]
BrazilFresh leafEtOH (100%) extCarrageenan-induced pedal edema/IntragastricRatActive[191]
BrazilFresh leafDecoctionCarrageenan-induced pedal edema/IntragastricRatActive[191]
BrazilDried leafInfusionCarrageenan-induced pedal edema/IntragastricRatInactive[191]
BrazilDried leafEtOH (100%) extCarrageenan-induced pedal edema/IntragastricRatInactive[191]
Psidium guineenseBrazilFresh leaf essential oilEssential oilCarrageenan-induced pedal edema/IntragastricRatActive[192]
Olacaceae
Heisteria acuminataEcuadorDried part not specifiedCH2Cl2 extCarrageenan-induced pedal edema/IntragastricMouseInactive[96]
EcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseActive[95]
Orchidaceae
Catasetum barbatumParaguayDried aerial partsEtOH (70%) extCarrageenan-induced pedal edema/**RatActive[193]
Phytolaccaceae
Petiveria alliaceaBrazilDried rootEtOH (70%) extCroton oil-induced irritation/**RatActive[194]
BrazilDried rootEtOH (70%) extCotton pellet granuloma/**RatActive[194]
BrazilDried rootHydro-alcoholic extNystatin induced edema/IntragastricRatActive[195]
BrazilDried rootHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[195]
BrazilDried rootLyophilized extractCarrageenan-induced pedal edema/IntragastricRatActive[196]
BrazilDried rootHydro-alcoholic extCotton pellet granuloma/IntragastricRatActive[195]
PeruDried entire plantEtOH (100%) extEPP-induced rat ear oedema/**RatInactive[103]
Phytolacca bogotensisEcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseInactive[95]
EcuadorDried entire plantCH2Cl2 extCarrageenan-induced pedal edema/IntragastricMouseInactive[96]
Phytolacca rivinoidesEcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseWeak activity[95]
EcuadorDried entire plantCH2Cl2 extCarrageenan-induced pedal edema/IntragastricMouseInactive[96]
Piperaceae
Peperomia pellucidaBrazilDried aerialH2O extCarrageenan-induced pedal edema/IntragastricRatActive[197]
Piper lenticellosumEcuadorDried entire plantEtOH (100%) extCarrageenan-induced pedal edema/IntragastricMouseActive[95]
EcuadorDried fruitCH2Cl2 extMouseActive[96]
Piper marginatumBrazilDried leafH2O extCarrageenan-induced pedal edema/IntragastricRatActive[198]
Plantaginaceae
Plantago australisBrazilDried rootHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[199]
BrazilDried leafHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[199]
BrazilDried fruitHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[199]
Plantago majorBrazilDried leafH2O extCroton oil-induced edema/**MouseInactive[200]
BrazilDried leafH2O extCroton oil granuloma/** pouch/IntragastricRatActive[200]
BrazilDried leafH2O extDextran-induced pedal edema/IntragastricRatInactive[200]
BrazilDried leafH2O extCarrageenan-induced pleurisy/IntragastricRatActive[200]
BrazilDried leafH2O extCarrageenan-induced pedal edema/IntragastricMouseWeak activity[200]
Polygonaceae
Polygonum punctatumBrazilDried entire plantDecoctionCarrageenan-induced pedal edema/Gastric intubationRatActive[201]
BrazilDried entire plantEtOH-H2O (1:1) extCarrageenan-induced pedal edema/Gastric intubationRatActive[201]
BrazilDried entire plantEtOH-H2O (1:1) extCarrageenan-induced pedal edema/**RatInactive[201]
BrazilDried entire plantDecoctionCarrageenan-induced pedal edema/**RatInactive[201]
Polypodiaceae
Campyloneurum phyllitidisParaguayDried leafH2O extCroton oil-induced edema/**MouseActive[106]
ParaguayDried leafCH2Cl2 extCroton oil-induced edema/**MouseActive[106]
ParaguayDried leafMeOH extCroton oil-induced edema/**MouseActive[106]
ParaguayDried leafH2O extCarrageenan-induced pedal edema/IPMouseActive[106]
ParaguayDried leafMeOH extCarrageenan-induced pedal edema/IPMouseActive[106]
ParaguayDried leafCH2Cl2 extCarrageenan-induced pedal edema/IPMouseActive[106]
Proteaceae
Lomatia hirsutaChileDried leafInfusionCarrageenan-induced pedal edema/IntragastricGuinea pigActive[202]
Rhamnaceae
Trevoa trinervisChileDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[203]
ChileDried aerial partsHexane extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[203]
ChileDried aerial partsDichloromethane extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[203]
ChileDried aerial partsH2O extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[203]
ChileDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[203]
Rosaceae
Acaena splendensChileDried bark + spinesCH2Cl2 extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[204]
ChileDried bark + spinesInfusionCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[204]
ChileDried bark + spinesMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[204]
Kageneckia oblongaChileDried aerial partsHexane extAcetic acid-induced pedal edema/**MouseActive[205]
ChileDried aerial partsCHCl3-MeOH extract (2:1)Acetic acid-induced pedal edema/**MouseActive[205]
ChileDried aerial partsMeOH extAcetic acid-induced pedal edema/**MouseActive[205]
ChileDried aerial partsCHCl3-MeOH extract (2:1)Carrageenan-induced pedal edema/IntragastricGuinea pigActive[205]
ChileDried aerial partsH2O soluble fractionCarrageenan-induced pedal edema/IntragastricGuinea pigActive[205]
ChileDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[205]
ChileDried aerial partsHexane extCarrageenan-induced pedal edema/IntragastricGuinea pigActive[205]
Rubiaceae
Chiococca brachiataBrazilFresh rootInfusionDye diffusion assay/IntragastricMouseactive[119]
Coutarea hexandraBrazilDried stembarkEtOH (95%) extCarrageenan-induced pedal edema/IntragastricRatActive[206]
Uncaria guianensisPeruDried barkLyophilized extract**/**Human adultActive[207]
Uncaria tomentosaPeruFreeze-dried barkH2O extCarrageenan-induced pedal edema/IntragastricMouseActive[208]
PeruFreeze-dried barkHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricMouseActive[208]
PeruDried barkLyophilized extract**/IPMouseActive[209]
PeruDried barkLyophilized extract**/OralHuman adultActive[209]
PeruDried barkH2O extCell CultureIn vitroActive[210]
PeruDried barkH2O ext5-ht-induced pedal edema/IntragastricRatActive[211]
PeruDried barkLyophilized extract**/OralHuman adultActive[207]
PeruDried vineType ext not stated**/Route not givenHuman adultActive[212]
PeruDried barkPet ether ext5-ht-Induced pedal edema/IPRatActive[213]
PeruDried barkH2O extChronic intestinal inflammation induced by indomethacin/**RatActive[210]
PeruDried rootRootbarkConvulsions strychnine-induced/carrageenan-induced pedal edemaI/IntragastricRatActive[214]
PeruDried barkEtoAc ext5-ht-Induced pedal edema/IntragastricRatActive[211]
PeruPart not specifiedType ext not stated**/**Human adultEquivocal[215]
Rutaceae
Zanthoxylum chiloperoneBrazildried leafPet ether extCarrageenan-induced pedal edema/IntragastricActive[216]
Sapindaceae
Dodonaea viscosaBrazilDried leafEtOH (70%) extCarrageenan-induced pedal edema/IntragastricRatActive[217]
Sapotaceae
Bumelia sartorumBrazilDried rootbarkEtOH (95%) extCarrageenan-induced pedal edema/Gastric IntubationRatActive[218]
Scoparia dulcisBrazilDried entire plantEtOH (95%) extHistamine-induced edema/carrageenan-induced pedal edema/IntragastricRatActive[219]
BrazilDried entire plantH2O extCarrageenan-induced pedal edema/IntragastricRatInactive[219]
BrazilDried entire plantEtOH (95%) extDextran-induced pedal edema/IntragastricRatActive[219]
BrazilDried entire plantEtOH (95%) extCotton pellet granuloma/IntragastricRatInactive[219]
Simaroubaceae
Simaba cedronSouth AmericaSeedEther ext**/SCRatInactive[220]
South AmericaSeedPet ether ext**/SCRatInactive[220]
South AmericaSeedEtOH (95%) extCotton pellet granuloma/SCRatWeak activity[220]
South AmericaSeedH2O extDextran-induced pedal edema/SCRatWeak activity[220]
Solanaceae
Brunfelsia bonodoraPeruDried part not specifiedEtOH (95%) extCarrageenan-induced pedal edema/IPRatActive[132]
Brunfelsia unifloraBrazilRootMeOH extCarrageenin-induced pedal edema/OralRatActive[221]
BrazilRootCHCl3 extData incomplete/OralRatActive[222]
BrazilFresh leafInfusionDye diffusion assay/IntragastricMouseInactive[119]
Solanum ligustrinumChileDried aerial partsInfusionCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[223]
ChileDried aerial partsDecoctionCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[223]
ChileDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[223]
ChileDried aerial partsDichloromethane extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[223]
ChileDried aerial partsH2O extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[223]
ChileDried aerial partsPet ether extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[223]
ChileDried aerial partsMeOH extCarrageenan-induced pedal edema/IntragastricGuinea pigWeak activity[223]
Solanum lycocarpumBrazilDried fruitEtOH (95%) extCroton oil-induced edema/IntragastricMouseActive[224]
BrazilDried fruitAlkaloid fractCarrageenan-induced pedal edema/SCMouseActive[224]
BrazilDried fruitAlkaloid fractCroton oil-induced edema/SCMouseActive[224]
Turneraceae
Turnera ulmifoliaBrazilDried entire plantHydro-alcoholic extCotton pellet granuloma/IntragastricRatActive[225]
BrazilDried entire plantEtoAc extCarrageenan-induced pedal edema/IntragastricRatInactive[225]
Verbenaceae
Bouchea fluminensisBrazilDried leafH2O extCarrageenan-induced pedal edema/Route not givenRatActive[87]
Brazildried aerial partsEtOH (95%) ext5-ht-induced pedal edema/IntragastricMouseActive[226]
Brazildried aerial partsEtOH (95%) extHistamine-induced edema/IntragastricMouseActive[226]
Brazildried aerial partsEtOH (95%) extCarrageenan-induced pedal edema/IntragastricMouseActive[226]
Stachytarpheta cayennensisBrazilDried leafEtOH (70%) extCarrageenan-induced pedal edema/IntragastricRatWeak activity[227]
BrazilDried leafInfusionCarrageenan-induced pedal edema/IntragastricRatActive[227]
BrazilDried entire plantH2O extDextran-induced pedal edema/carrageenan-induced pedal edema/histamine-induced edema/IntragastricMouseInactive[227]
BrazilDried leafButanol extCarrageenan-induced pedal edema/IPSalvelinus alpinusWeak activity[227]
BrazilDried leafButanol extCarrageenan-induced pedal edema/IPRatActive[228]
Winteraceae
Drimys winterBrazilDried barkHydro-alcoholic extPgE2 induced paw oedma/IntragastricRatEquivocal[229]
BrazilDried barkHydro-alcoholic extHistamine-induced edema/IntragastricRatInactive[229]
BrazilDried barkHydro-alcoholic extCarrageenan-induced pedal edema/IntragastricRatActive[229]
BrazilDried barkHydro-alcoholic extDextran-induced pedal edema/IntragastricRatActive[229]
BrazilDried barkHydro-alcoholic extBradykinin-induced pedal edema/IntragastricRatWeak activity[229]
BrazilDried barkHydro-alcoholic extPaw oedema/IntragastricRatWeak activity[229]
BrazilDried barkHydro-alcoholic extPaf-acether induced paw oedema/IntragastricRatWeak activity[229]
BrazilDried barkHydro-alcoholic extOvalbumine induced paw oedema/IntragastricRatWeak activity[229]
Zingiberaceae[229]
Zingiber officinaleBrazilFresh rhizomeHydro-alcoholic extCarrageenan-induced pedal edema/IPRatActive[230]
BrazilFresh rhizomeHydro-alcoholic ext5-ht-induced pedal edema/IPRatActive[230]
BrazilFresh rhizomeHydro-alcoholic ext48180 compound-induced edema/**RatActive[230]
BrazilFresh rhizomeHydro-alcoholic ext48180 and 5-ht induced skin edema/IPRatActive[230]
Zygophyllaceae
Larrea divaricataArgentinaDried leafMeOH extCotton pellet granuloma/IntragastricRatActive[231]
ArgentinaDried leafH2O extPeritoneal macrophages/IPMouseActive[232]

**Incompleted dates; IP = intraperitoneal; SC = subcutaneous; EtOH = ethanolic extract ; H2O ext = aqueous extract; MeOH ext = methanol extract; EtoAc ext = ethyl acetate extract; CH2Cl2 ext = dichloromethane extract; CHCl3 ext = chloroformic extract ; CCl4 = chloroform; MeCl2 ext = dichloromethane extract; EtOH-H2O = crude aqueous/alcoholic extract; CHCl3-MeOH extract = dichloromethane and methanol extract.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert