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Abstract: Oxidative stress is implicated in the pathogenesis and/or complications of 

hypertension and/or diabetes mellitus. A combination of these disorders increases the risk 

of developing cardiovascular events. This study investigated the effects of streptozotocin 

(60 mg/kg; ip)-induced diabetes on blood pressure, oxidative stress and effects of honey on 

these parameters in the kidneys of streptozotocin-induced diabetic Wistar-Kyoto (WKY) 

and spontaneously hypertensive rats (SHR). Diabetic WKY and SHR were randomized 

into four groups and received distilled water (0.5 mL) and honey (1.0 g/kg) orally once 

daily for three weeks. Control SHR had reduced malondialdehyde (MDA) and increased 

systolic blood pressure (SBP), catalase (CAT) activity, and total antioxidant status (TAS). 

SBP, activities of glutathione peroxidase (GPx) and glutathione reductase (GR) were 

elevated while TAS was reduced in diabetic WKY. In contrast, SBP, TAS, activities of 
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GPx and GR were reduced in diabetic SHR. Antioxidant (honey) treatment further reduced 

SBP in diabetic SHR but not in diabetic WKY. It also increased TAS, GSH, reduced 

glutathione (GSH)/oxidized glutathione (GSSG) ratio, activities of GPx and GR in diabetic 

SHR. These data suggest that differences in types, severity, and complications of diseases 

as well as strains may influence responses to blood pressure and oxidative stress. 

Keywords: hypertension; diabetes mellitus; streptozotocin; spontaneously hypertensive 

rats; antioxidant enzymes; oxidative stress; kidney; tualang honey 

 

1. Introduction 

Epidemiological studies suggest that hypertension or diabetes mellitus is a major risk factor for 

cardiovascular disease [1]. It is also known that persons with both hypertension and diabetes mellitus 

are at a higher risk of developing cardiovascular events than are individuals with either
 
risk factor 

alone [2]. Similarly, in animal models, chemically induced diabetes produces more profound effects in 

spontaneously hypertensive rats (SHR) than it does in normotensive strains such as Wistar-Kyoto 

(WKY) rats [3]. In diabetes mellitus and/or hypertension, the kidney is either a target or it plays a 

prominent role in these disorders. 

The actual mechanisms by which diabetes exacerbates hypertension still remain unclear. However, 

a number of hypotheses have been postulated to explain some of these mechanisms [4,5]. One of such 

mechanisms is the role of oxygen-derived free radicals. During atherogenesis, enhanced
 
monocyte 

adherence to the endothelium, believed to be mediated
 
by induced expression of adhesion molecules 

and chemotactic
 
proteins, is linked to imbalances or changes in the redox or oxidative state of the 

endothelial cells [4,6]. In diabetes, hyperglycemia and/or hyperlipidemia is implicated in the increased
 

generation of reactive oxygen species from vascular cells [7,8]. This oxidative stress may trigger a 

number of oxidant-responsive
 
genes that play a prominent role in monocyte-endothelial cell adhesion 

resulting in endothelial dysfunction [9–11]. Friedman et al. [12] showed that the combination of 

hypertension and diabetes mellitus is accompanied by higher oxidative stress than that observed in the 

individual disorder alone [12]. These results would suggest that combined effects of diabetes and 

hypertension might elicit more pronounced effects not only on redox or antioxidant status but also on 

their complications compared to the influence of either disease alone.  

A number of ex vivo studies have documented the antibacterial, antiproliferative, and antioxidant 

properties of Malaysian tualang honey [13–15]. This honey has been shown by us to produce glucose 

lowering as well as protective effects against oxidative stress in kidney and pancreas in 

streptozotocin-induced diabetic Sprague-Dawley rats [16–18]. Since oxidative stress is recognized as
 
a 

putative factor in the development and complications of both diabetes mellitus
 
and hypertension, it 

would be interesting to explore the effects of honey in experimental animals with combined diabetic 

and hypertensive pathologies. In the present study, we have investigated the effects of 

streptozotocin-induced diabetes on blood pressure, antioxidant enzymes, markers of oxidative stress 

and the effects of tualang honey on some of these parameters in the kidneys of streptozotocin-induced 

diabetic WKY and SHR. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Friedman%20J%22%5BAuthor%5D
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2. Results and Discussion  

2.1. Systolic Blood Pressure 

Figure 1 shows the systolic blood pressure (BP) in control and STZ-induced diabetic WKY and 

SHR. Control SHR had significantly (p < 0.001) higher systolic BP than control WKY. Systolic BP 

was significantly (p < 0.05) reduced in STZ-induced diabetic SHR while it was significantly (p < 0.01) 

increased in STZ-induced diabetic WKY compared to their corresponding control partners. Treatment 

with tualang honey further reduced significantly (p < 0.01) BP in STZ-induced diabetic SHR but not in 

STZ-induced diabetic WKY.  

2.2. Blood Glucose and Body Weight 

Figure 2 shows the blood glucose levels in control and STZ-induced diabetic WKY and SHR. 

Blood glucose concentrations were similar in the control WKY and control SHR. The blood glucose 

levels were significantly (p < 0.01) elevated in the STZ-induced diabetic WKY and SHR compared to 

the control WKY and control SHR, respectively. The blood glucose concentrations were significantly 

(p < 0.05) increased in STZ-induced diabetic SHR compared to STZ-induced diabetic WKY. 

Treatment with honey significantly (p < 0.05) reduced blood glucose levels in diabetic WKY but not 

significantly in diabetic SHR.  

Figure 3 shows change in body weight in control and STZ-induced diabetic WKY and SHR at the 

end of the treatment period. Before commencement of treatment, SHR had reduced body weight 

compared to WKY (data not shown). At the end of the treatment period, body weight was significantly 

(p < 0.01) lower in the control SHR compared to control WKY. With STZ-induced diabetes, body 

weight was significantly (p < 0.01 and p < 0.001) reduced in WKY and SHR, respectively compared to 

control rats of the same strain. STZ-induced diabetic SHR lost more weight (but not statistically 

significant) than STZ-induced diabetic WKY. Treatment of diabetic WKY and SHR with honey 

produced no effect on body weight.  

2.3. Antioxidant Enzymes 

Figure 4 shows the catalase (CAT) activity in control and STZ-induced diabetic WKY and SHR. 

Control SHR had significantly (p < 0.05) higher CAT activity compared to control WKY. With  

STZ-induced diabetes, CAT activity was reduced in both WKY and SHR. The reduced CAT activity 

was more pronounced in diabetic SHR than in diabetic WKY. Treatment of diabetic WKY and 

diabetic SHR with honey did not restore CAT activity. Figure 5 shows the GPx activity in control and 

STZ-induced diabetic WKY and SHR. GPx activity was similar in the control WKY and control SHR. 

GPx activity was significantly (p < 0.05) elevated in diabetic WKY while it was significantly  

(p < 0.05) reduced in diabetic SHR. Treatment with honey significantly (p < 0.05) restored GPx 

activity in both diabetic WKY and diabetic SHR. Figure 6 shows that GR activity was increased 

though not significantly in diabetic WKY while it was significantly (p < 0.05) reduced in diabetic 

SHR. Treatment with honey significantly (p < 0.05) reduced GR activity in diabetic WKY while it 



Int. J. Mol. Sci. 2011, 12             

 

 

1891 

significantly (p < 0.05) increased GR activity in diabetic SHR. Activities of Superoxide Dismutase 

(SOD) and Glutathione-S-Transferase (GST) remained the same in the all the groups (data not shown). 

2.4. Markers of Oxidative Stress 

Figure 7 shows the total antioxidant status (TAS) in control and STZ-induced diabetic WKY and 

SHR. Control SHR had significantly (p < 0.05) higher TAS than did control WKY. TAS was 

significantly reduced in diabetic WKY and diabetic SHR (p < 0.01 and p < 0.001, respectively). 

Treatment with honey significantly (p < 0.01) increased TAS in diabetic SHR but not in diabetic 

WKY. Figure 8 shows the malondialdehyde (MDA) levels in control and STZ-induced diabetic WKY 

and SHR. Control SHR had significantly (p < 0.01) lower MDA levels than did control WKY. MDA 

levels were much lower (though not statistically significant) in the remaining SHR groups compared to 

corresponding WKY. Treatment with honey further reduced MDA levels but not significantly in both 

diabetic WKY and diabetic SHR. 

Figures 9 and 10 show the levels of reduced glutathione (GSH) and GSH/GSSG (oxidized 

glutathione) ratio in control and STZ-induced diabetic WKY and SHR. The levels of GSH and 

GSH/GSSG ratio were similar in the control WKY and control SHR. With STZ-induced diabetes, the 

levels of GSH and GSH/GSSG ratio still remained comparable in the diabetic WKY and diabetic SHR. 

Treatment with honey increased GSH significantly (p < 0.01) in diabetic SHR but not significantly in 

diabetic WKY. Also, with honey treatment, GSH/GSSG ratio was increased significantly (p < 0.05) in 

both diabetic WKY and diabetic SHR. The levels of GSSG remained the same in all the groups (data 

not shown). 

Figure 1. Effect of honey on systolic blood pressure in streptozotocin-induced diabetic 

WKY and SHR. Each group consisted of five to seven animals. Data are expressed as 

mean ± SEM. WKY, Wistar-Kyoto rats; SHR, spontaneously hypertensive rats; C-WKY, 

control WKY; C-SHR, control SHR; D-WKY, diabetic WKY; D-SHR, diabetic SHR; 

DH-WKY, diabetic WKY + honey; DH-SHR, diabetic SHR + honey. ** p < 0.01, 

***p < 0.001 versus C-WKY; ‡p < 0.05 versus C-SHR; §§ p < 0.01 versus D-SHR. 

 

  ** 

 

  *** 

 
   ‡ 

  §§ 
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Figure 2. Effect of honey on fasting blood glucose in streptozotocin-induced diabetic 

WKY and SHR. Each group consisted of five to seven animals. Data are expressed as 

mean ± SEM. WKY, Wistar-Kyoto rats; SHR, spontaneously hypertensive rats; C-WKY, 

control WKY; C-SHR, control SHR; D-WKY, diabetic WKY; D-SHR, diabetic SHR; 

DH-WKY, diabetic WKY + honey; DH- SHR, diabetic SHR + honey. *** p < 0.001 

versus C-WKY; † p < 0.05 versus D-WKY; ‡‡ p < 0.01 versus C-SHR. 

 

Figure 3. Effect of honey on change in body weight of streptozotocin-induced diabetic 

WKY and SHR. Each group consisted of five to seven animals. Data are expressed as 

mean ± SEM. WKY, Wistar-Kyoto rats; SHR, spontaneously hypertensive rats; C-WKY, 

control WKY; C-SHR, control SHR; D-WKY, diabetic WKY; D-SHR, diabetic SHR; 

DH-WKY, diabetic WKY + honey; DH-SHR, diabetic SHR + honey. ** p < 0.01 versus 

C-WKY; ‡‡‡ p < 0.001 versus C-SHR. 

 

   † 

*** 

 

 
    †, ‡‡  

 

   ** 

 

   ** 

    ‡‡‡ 
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Figure 4. Effect of honey on catalase activity in kidney of streptozotocin-induced diabetic 

WKY and SHR. Each group consisted of five to seven animals. Data are expressed as mean 

± SEM. WKY, Wistar-Kyoto rats; SHR, spontaneously hypertensive rats; C-WKY, control 

WKY; C-SHR, control SHR; D-WKY, diabetic WKY; D-SHR, diabetic SHR; DH-WKY, 

diabetic WKY + honey; DH-SHR, diabetic SHR + honey. * p < 0.05 versus C-WKY;  

‡ p < 0.05 versus C-SHR. 

 

Figure 5. Effect of honey on glutathione peroxidase (GPx) activity in kidney of 

streptozotocin induced diabetic WKY and SHR. Each group consisted of five to seven 

animals. Data are expressed as mean ± SEM. WKY, Wistar-Kyoto rats; SHR, 

spontaneously hypertensive rats; C-WKY, control WKY; C-SHR, control SHR; D-WKY, 

diabetic WKY; D-SHR, diabetic SHR; DH-WKY, diabetic WKY + honey; DH-SHR, 

diabetic SHR + honey. * p < 0.05 versus C-WKY; † p < 0.05 versus D-WKY; ‡ p < 0.05 

versus C-SHR; § p < 0.05 versus D-SHR. 
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  ‡ 
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   † 
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Figure 6. Effect of honey on glutathione reductase (GR) activity in kidney of 

streptozotocin-induced diabetic WKY and SHR. Each group consisted of five to seven 

animals. Data are expressed as mean ± SEM. WKY, Wistar-Kyoto rats; SHR, 

spontaneously hypertensive rats; C-WKY, control WKY; C-SHR, control SHR; D-WKY, 

diabetic WKY; D-SHR, diabetic SHR; DH-WKY, diabetic WKY + honey; DH-SHR, 

diabetic SHR + honey. † p < 0.05 versus D-WKY; ‡ p < 0.05 versus C-SHR; § p < 0.05 

versus D-SHR. 

 

Figure 7. Effect of honey on total antioxidant status (TAS) in kidney of streptozotocin 

induced diabetic WKY and SHR. Each group consisted of five to seven animals. Data are 

expressed as mean ± SEM. WKY, Wistar-Kyoto rats; SHR, spontaneously hypertensive 

rats; C-WKY, control WKY; C-SHR, control SHR; D-WKY, diabetic WKY; D-SHR, 

diabetic SHR; DH-WKY, diabetic WKY + honey; DH-SHR, diabetic SHR + honey.  

* p < 0.05, ** p < 0.01 versus C-WKY; ‡‡‡ p < 0.001 versus C-SHR; §§ p < 0.01 versus 

D-SHR. 
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Figure 8. Effect of honey on malondialdehyde (MDA) in kidney of streptozotocin-induced 

diabetic WKY and SHR. Each group consisted of five to seven animals. Data are expressed 

as mean ± SEM. WKY, Wistar-Kyoto rats; SHR, spontaneously hypertensive rats;  

C-WKY, control WKY; C-SHR, control SHR; D-WKY, diabetic WKY; D-SHR, diabetic 

SHR; DH-WKY, diabetic WKY + honey; DH-SHR, diabetic SHR + honey. ** p < 0.01 

versus C-WKY. 

 

Figure 9. Effect of honey on reduced glutathione (GSH) in kidney of streptozotocin 

induced diabetic WKY and SHR. Each group consisted of five to seven animals. Data are 

expressed as mean ± SEM. WKY, Wistar-Kyoto rats; SHR, spontaneously hypertensive 

rats; C-WKY, control WKY; C-SHR, control SHR; D-WKY, diabetic WKY; D-SHR, 

diabetic SHR; DH-WKY, diabetic WKY + honey; DH-SHR, diabetic SHR + honey.  

§§ p < 0.01 versus D-SHR. 

 

 

§§ 
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Figure 10. Effect of honey on GSH/GSSG in kidney of streptozotocin induced diabetic 

WKY and SHR. Each group consisted of five to seven animals. Data are expressed as 

mean ± SEM. WKY, Wistar-Kyoto rats; SHR, spontaneously hypertensive rats; C-WKY, 

control WKY; C-SHR, control SHR; D-WKY, diabetic WKY; D-SHR, diabetic SHR; 

DH-WKY, diabetic WKY + honey; DH-SHR, diabetic SHR + honey. † p < 0.05 versus 

D-WKY; § p < 0.05 versus D-SHR. 

 

The use of spontaneously hypertensive rats as an animal model to study the pathogenesis and/or 

complications of hypertension is well documented [19]. Streptozotocin (STZ), an antibiotic derived 

from Streptomyces achromogenes, is a common chemical of choice for inducing animal models of 

diabetes. Its diabetogenic effect is attributed to its irreversible damage to pancreatic β-cells [20]. The 

induction of diabetes in normotensive and hypertensive rats serves as an experimental model to 

investigate the effects of diabetes alone as well as the combined effects of diabetes and hypertension in 

rats. In this study, STZ-treated Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) 

had significantly increased blood glucose levels compared to control WKY and SHR, respectively as 

previously reported [21]. In our preliminary results, we had observed that resistance to STZ was higher 

in WKY than in SHR while mortality was much higher in diabetic SHR than in diabetic WKY [22]. 

From our data, STZ-induced diabetes had a more profound effect on glycemia in SHR than in WKY. 

The reason for this is not quite clear. However, some studies have shown that the β-cells are selectively 

susceptible to STZ, an analog of N-acetylglucosamine (GlcNAc), because they contain higher activity 

of O-GlcNAc transferase (OGT) (OGT, the enzyme responsible for attaching O-GlcNAc to proteins) 

more than other cell types [23]. So, it is likely that OGT may be intrinsically over-expressed in SHR  

β-cells more than in WKY β-cells. There is also a possibility of increased uptake of STZ into SHR 

β-cells. Moreover, increased oxidative stress is reportedly generated in SHR compared to WKY [24]. 

Since cytotoxic effect of STZ is believed to be mediated partly through the release of nitric oxide (NO) 

and reactive oxygen species (ROS) [25,26], administration of STZ might further expose the SHR  

β-cells to increased levels of free radicals, thus resulting in increased cytotoxicity. These and other 

mechanisms which require further investigation may play a role in the increased sensitivity of SHR  

β-cells to STZ. Honey supplementation reduced hyperglycemia significantly in diabetic WKY, similar 

† 

 

   § 
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to what we found in diabetic Sprague-Dawley rats [16–18]. However, honey did not reduce 

hyperglycemia significantly in diabetic SHR. This might be due to the severity of hyperglycemia or 

diabetes in these rats. Insulin treatment, in spite of increased serum insulin, also did not reduce 

hyperglycemia in diabetic SHR [21]. The significantly reduced body weight observed in control SHR 

is similar to what was reported by other researchers [21]. Our results also showed that in STZ-induced 

diabetes, the magnitudes of weight loss were more in diabetic SHR than in diabetic WKY. In  

STZ-induced diabetes, proteolysis, enhanced utilization, and mobilization of lipid in the skeletal 

muscles are reported to cause weight loss [27,28]. Contrary to our previous findings [16,17], it is quite 

unclear why honey treatment did not improve body weight in both diabetic WKY and SHR. 

Systolic blood pressure (BP) was significantly higher in control SHR than in control WKY similar 

to what was previously reported [29]. Increased production of superoxide anions is implicated in the 

pathogenesis of elevated blood pressure in SHR [30]. We also found that STZ-induced diabetic WKY 

had significantly elevated BP compared to control WKY. Our results are consistent with those of 

Bunag et al. [31]. They found that BP, beginning by the second week, was significantly elevated in 

STZ-treated rats and the elevated blood pressure persisted through the seventh week. Other researchers 

also reported similar findings [32]. On the other hand, there are reports of decreased blood  

pressure [33], or no change [34], with STZ-induced diabetes. The mechanisms by which diabetic 

normotensive rats become hypertensive or hypotensive still remain poorly understood. At present, it is 

uncertain whether hypertension is secondary to diabetes or STZ causes hypertension. However, 

Kawashima et al. [35] showed that STZ at different doses, even the lowest dose (20 mg/kg) which did 

not have an effect on the blood glucose levels, significantly increased blood pressure. Based on their 

findings, they reported that hyperglycemia is not a prerequisite for induction of hypertension by 

STZ [35]. In this study, honey treatment in diabetic WKY did not reduce elevated BP. This seems to 

suggest that the mechanisms of hypertension in STZ-treated WKY might be unrelated to oxidative 

stress but due to other mechanisms which need further investigation. 

With STZ-induced diabetes, BP was significantly reduced in diabetic SHR compared to control 

SHR. Also, there are conflicting reports on blood pressure in diabetic SHR. Our results are similar to 

those of Davidoff et al. [21], Rodgers [34] and Susic et al. [36] who all reported lower blood pressure 

in diabetic SHR. However, other researchers did report elevated blood pressure [32], or no change in 

blood pressure [37], in STZ-induced SHR. The hypotensive effect of diabetes in SHR is a consequence 

of reduced peripheral resistance [36]. The implications of reduced BP in diabetic SHR remain unclear. 

However, Davidoff and Rodgers [38] reported that decreased blood pressure of diabetic SHR was also 

accompanied by a progressive decline in heart rate. They further showed that insulin treatment 

prevented both the depressor and bradycardic effects of diabetes in SHR. Their findings seem to 

indicate that reduced blood pressure and bradycardia as a result of diabetes in SHR might 

be detrimental.  

Unlike in Davidoff and Rodgers’s study [38], honey supplementation in diabetic SHR resulted in 

further reduction of BP. Our results corroborate those of Medeiros et al. [39] who reported that olive 

oil or fish oil produced further diminution of blood pressure in diabetic SHR. Olive oil and fish oil, 

like tualang honey [16–18], are reported to ameliorate oxidative stress [40,41]. In view of the fact that 

oxidative stress is implicated in the pathogenesis and/or maintenance of hypertension in SHR, the 

further reduction of BP elicited by these oils or honey might be due to their antioxidant effects. On the 
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other hand, insulin, unknown to exhibit antioxidant effect, might improve diabetes and other metabolic 

derangements including hyperglycemia. These effects of insulin might diminish or counteract the 

effects of diabetes on blood pressure resulting in restoration of the BP towards that of the control SHR. 

Moreover, considering that these researchers reported hyperinsulinemia after a prolonged treatment 

period, it is possible that elevated insulin levels generated ROS contributing to the steady increments 

in blood pressure [42].  

Our data showed that the activities of GPx and GR were up-regulated in diabetic WKY whereas 

they were down-regulated in diabetic SHR. Further studies are required to clarify the reasons and also 

perhaps the implications of these disparities. However, since diabetic WKY compared to diabetic SHR 

had moderate levels of hyperglycemia, free radicals generated in diabetic WKY might be less 

compared to those formed in diabetic SHR. As a result, the up-regulated activities of GPx and GR 

might be a compensatory mechanism to protect the kidneys from the detrimental effects of free 

radicals [43]. On the other hand, considering the severity of hyperglycemia in diabetic SHR, the 

kidneys of these rats might be exposed to higher levels of oxidative stress resulting in glycation or 

inhibition of GPx and GR [44,45]. Besides, elevated blood pressure in SHR might also contribute to 

increased generation of free radicals [30]. Furthermore, there are reports that differences in sex, tissue, 

and duration of diseases influence the responses of antioxidant enzymes to changes in redox  

status [46,47]. Therefore, in diabetic WKY and diabetic SHR, the differential responses of GPx and 

GR activities (induction or inhibition) to oxidative stress might be attributed to differences in types, 

severity, and combinations/complications of diseases as well as strains of animals. We found a 

significantly reduced TAS and a slightly, non-significantly depressed activity of catalase in kidneys of 

diabetic WKY and diabetic SHR. Other markers of oxidative stress such as MDA, GSH, and 

GSH/GSSG ratio remained unchanged in kidneys of diabetic WKY and diabetic SHR. The beneficial 

effects of honey supplementation on some of these markers were noticed in kidneys of diabetic WKY 

and diabetic SHR.  

Our results showed that TAS was significantly higher in control SHR compared to control WKY. 

Higher TAS is suggestive of lower oxidative stress. In some studies, TAS is reported to be lower in 

SHR [48]. However, another study found no significant difference in TAS between SHR and 

WKY [49]. In our study, the reason for the increased TAS in control SHR still remains unclear. 

Although TAS is supposed to reflect or indicate total antioxidant capacity, this is not always the case. 

TAS assays generally measure mainly the chain breaking antioxidants such as urate, ascorbate, 

bilirubin, α-tocopherol, carotenoids, and flavonoids, without taking into consideration the contribution 

of antioxidant enzymes and other metal binding proteins [50]. Urate, a weak antioxidant in vivo, is 

known to contribute more than 50% of total antioxidant activity in most TAS assays [50]. A study 

reported that patients suffering from renal failure had increased TAS as a result of elevated urate in 

spite of the fact that these patients had reduced ascorbate and other chain breaking antioxidants as well 

as increased free radical damage [51]. Consequently, it is recommended that TAS as an indicator of 

reduced oxidative stress should be interpreted cautiously because it may mislead and give a false 

impression of enhanced antioxidant status or defenses [50,51]. Accordingly, we do not believe that 

higher TAS in control SHR is indicative of reduced oxidative stress. The elevated BP in control SHR 

also lends credence to this view. The TAS results may corroborate previous findings as well as views 

expressed by other researchers that TAS, as a marker of oxidative stress, is not sufficient and thus 
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should be coupled with the measurements of antioxidant enzymes, individual antioxidants, and other 

markers of oxidative damage [50,51].  

Whether oxidative stress precedes hypertension or vice versa remains controversial. This is because 

there is evidence in support of either view [30,52]. Our results showed that the control SHR compared 

to control WKY had significantly increased CAT activity. Considering that SHR, compared to WKY, 

are known to exhibit increased oxidative stress [12,19,24,30], it is possible that the over-expressed 

activity of CAT might be a compensatory mechanism to protect the kidney against the deleterious 

effects of free radicals [43]. We are also of the view that the enhanced CAT activity might contribute 

considerably to the significantly reduced levels of MDA in control SHR. Surprisingly, the same rats 

(control SHR) also had significantly elevated BP. Normally, with the reduced levels of MDA, one 

would have inferred that the levels of oxidative stress were much lower in control SHR than in control 

WKY. However, it may not be scientifically sound to make such an inference in view of the elevated 

BP in control SHR coupled with the numerous evidences that support the role of oxidative stress in the 

development of hypertension or vice versa [30,52]. In fact, it is plausible to hypothesize that the 

reduced levels of MDA and increased TAS in control SHR might be consequences of enhanced 

CAT activity.  

3. Materials and Methods 

3.1. Animals 

This study complied with the institutional guidelines for the Care and Use of Animals for Scientific 

Purposes and was approved by the Animal Ethics Committee, Universiti Sains Malaysia [USM/Animal 

Ethics Approval/2009/(46) (145)]. Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto 

(WKY) rats aged 12–14 weeks and weighing 250–300 g were used. The animals were obtained from 

the Laboratory Animal Research Unit of Universiti Sains Malaysia, Health Campus, Kelantan, 

Malaysia. The rats were housed in polypropylene cages of one animal per cage. Standard pellet food 

and water were provided ad libitum. The rats were kept in a ventilated animal room with a  

12-h dark/12 h-light cycle (lights on 7.00 a.m., lights off 7.00 p.m.) and controlled 

temperature (25 ± 2 °C). 

3.2. Chemicals and Tualang Honey 

Streptozotocin (STZ), sodium citrate buffer and thiobarbituric acid were obtained from 

Sigma-Aldrich (St. Louis, MO, U.S.). Superoxide dismutase and glutathione peroxidase assay kits 

were purchased from Cayman (MI, U.S.). GSH:GSSG assay kit was purchased from Calbiochem (CA, 

U.S.). Bio-Rad protein assay kit was purchased from Bio-Rad (U.S.). All other chemicals used were of 

analytical grade obtained from commercial sources. 

Tualang honey (AgroMas®, Malaysia) was supplied by Federal Agricultural Marketing Authority 

(FAMA), Kedah, Malaysia. It has the following composition: total reducing sugar (67.5%) [fructose 

(29.6%), glucose (30.0%), maltose (7.9%); fructose/glucose ratio (0.99)], sucrose (0.6%) and water 

(20.0%). Tualang honey was freshly diluted with distilled water just before administration. The daily 

dose of tualang honey (1.0 g/kg body weight) was chosen based on the findings from our preliminary 
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study [16]. Our subsequent studies have also confirmed this dose to be effective and devoid of any 

detectable adverse events in pancreas and kidney of diabetic and non-diabetic rats [17,18].  

3.3. Induction of Diabetes and Treatment 

Experimental diabetes was induced in SHR and normotensive WKY rats (250–300 g) by a single 

intraperitoneal injection of STZ (60 mg/kg body weight; dissolved in sodium citrate buffer, pH 4.5) 

after an overnight fast (at least 16 hours). Control groups (non-diabetic SHR and WKY rats) received 

only sodium citrate buffer without STZ. Forty-eight hours after the administration of STZ or citrate 

buffer, fasting blood glucose concentrations were measured with a portable glucometer (Accu-Chek, 

Roche, Germany) using a drop of blood from the tail vein. Rats with fasting blood glucose 

level  12.0 mmol/L were considered diabetic and included in the study. Diabetic and non-diabetic 

SHR and WKY rats were randomly assigned to groups of five to seven rats. With the aid of oral 

gavage, once each morning, the rats were treated with distilled water or tualang honey for three weeks 

as shown in Table 1. 

Table 1. Treatment groups. 

 Group Treatment 

 Non-diabetic WKY Distilled water (0.5 mL) 

 Diabetic WKY Distilled water (0.5 mL)  

Diabetic WKY Tualang honey (1.0 g/kg/body weight) 

 Non-diabetic SHR Distilled water (0.5 mL) 

 Diabetic SHR Distilled water (0.5 mL)  

Diabetic SHR Tualang honey (1.0 g/kg/body weight) 

3.4. Measurement of Blood Pressure, Blood Glucose and Body Weight  

Systolic blood pressure, blood glucose and body weight were measured before commencement of 

treatment and at the end of the treatment period. Systolic blood pressure was measured in conscious 

rats by a tail-cuff plethysmographic non-invasive method (Model 179, Life Science, U.S.). At least 

four consecutive measurements were recorded and the average was calculated. Fasting blood glucose 

concentrations were measured using a glucometer (Accu-Chek, Roche, Germany). The body weight 

was measured with the aid of a weighing balance. After treatment for 3 weeks, the animals were fasted 

for at least 16 hours and sacrificed by decapitation.  

3.5. Processing of Tissues and Biochemical Assays  

The left kidney was rapidly excised, washed in ice-cold normal saline, blotted and quickly stored at 

−80 °C until use. 10% (w/v) homogenate of kidney was prepared in Tris-HCl (0.1 M, pH 7.4) using an 

ice-chilled glass homogenizing vessel in a homogenizer fitted with Teflon pestle (Glas-Col, U.S.) at 

900 rpm. The suspended mixture was centrifuged at 1000 × g for 10 min at 4 °C in a refrigerated 

centrifuge. The resulting supernatant was used for the assay of total protein, activities of antioxidant 

enzymes and other markers of oxidative stress. 
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3.6. Superoxide Dismutase (SOD) Assay 

SOD activity was determined using Cayman assay kit according to manufacturer’s instruction. This 

assay kit utilizes a tetrazolium salt for the detection of superoxide radicals generated by xanthine 

oxidase and hypoxanthine. One unit of SOD is defined as the amount of enzyme needed to exhibit 

50% dismutation of superoxide radical. The SOD assay measures all the three types of SOD (Cu/Zn, 

Mn, and FeSOD). 

3.7. Catalase (CAT) Assay 

CAT activity was measured according to the method of Goth [53]. Briefly, this assay involves the 

incubation of sample test tube containing 0.5 mL of hydrogen peroxide and 0.1 mL of kidney 

homogenate. After incubation at 37 °C for 60 seconds, the enzymatic reaction was stopped by addition 

of 0.5 mL of a Mmonium molybdate solution. The yellow complex of ammonium molybdate and 

hydrogen peroxide was then measured spectrophotometrically at 405 nm. One unit of CAT was 

defined as the amount of enzyme that catalyzes the decomposition of 1 µmol of hydrogen peroxide 

per minute.  

3.8. Glutathione Peroxidase (GPx) Assay 

GPx activity was measured using Cayman assay kits according to manufacturer’s instructions. This 

kit measures GPx activity indirectly by a coupled reaction with glutathione reductase (GR). Oxidized 

glutathione (GSSG), produced upon reduction of hydroperoxide by GPx, is recycled to its reduced 

state by GR and NADPH. The oxidation of NADPH is accompanied by a decrease in absorbance at 

340 nm. One unit of GPx is defined as the amount of enzyme that catalyzes the oxidation of 1 nmol of 

NADPH per minute at 25 C. 

3.9. Glutathione-S-Transferase (GST) Assay 

GST activity was assayed according to the method of Habig et al [54]. Briefly, 2 mL of 0.3 M 

potassium phosphate buffer (pH 6.35), 75 µL of 30 mM CDNB solution, 725 µL of distilled water and 

0.1 mL of kidney homogenate were pipetted into a test tube. The test tube was vortexed and incubated 

at 37 °C for 10 minutes. After incubation, the reaction was initiated by addition of 100 µL of 30 mM 

reduced glutathione solution. The decrease in absorbance was measured spectrophotometrically at 

340 nm and recorded every 30 seconds for 4 minutes. One unit of GST was defined as the amount of 

enzyme that catalyzes the conjugation of 1 nmol of GSH-CDNB per minute. 

3.10. Glutathione Reductase (GR) Assay 

GR activity was assayed according to the method of Goldberg and Spooner [55]. Briefly, 1 mL of 

2.728 mM GSSG solution and 40 µL of kidney homogenate were incubated for 5 minutes at 37 °C. 

After incubation, the reaction was initiated by addition of 200 µL of 1.054 mM NADPH solution. The 

decrease in absorbance was measured at 340 nm using a spectrophotometer (Unico UV-2800, China) 

and recorded every 30 seconds over a period of 5 minutes. One unit of GR was defined as the amount 
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of enzyme that catalyzes the oxidation of 1 nmol of NADPH per minute. One unit of GR was defined 

as the amount of enzyme that catalyzes the oxidation of 1 nmol of NADPH per minute.  

3.11. Total Antioxidant Status (TAS) Assay 

TAS was measured according to the method of Koracevic et al. [56]. 10 µL of kidney homogenate 

was pipetted in a test tube containing 0.49 mL of 100 mM sodium phosphate buffer. This was followed 

by the addition of 0.5 mL of 10 mM sodium benzoate solution, 0.2 mL of Fe-EDTA mixture and 

0.2 mL of 10 mM H202 solution. Negative control (with phosphate buffer instead of the kidney 

homogenate) containing similar reagents as in sample test tubes was also prepared. The test tubes were 

vortexed and incubated at 37 °C for 60 minutes. This was followed by the addition of 1 mL of 20% 

acetic acid and 0.8% (w/v) thiobarbituric acid (TBA). The reaction tubes were incubated at 100 °C for 

10 minutes. After cooling to room temperature, the absorbance of the mixture was measured 

spectrophotometrically at 532 nm against distilled water. TAS in the kidney homogenates was 

calculated using uric acid as standard. TAS was expressed as nmol uric acid equivalent per mg protein.  

3.12. Lipid Peroxidation Assay 

Lipid peroxidation was determined as malondialdehyde (MDA) according to the method of  

Ohkawa et al. [57]. For this, 100 µL of kidney homogenates or MDA standards were pipetted into test 

tubes containing 1.5 mL of 20% (w/v) glacial acetic acid (pH 3.5), 200 µL of 8.1% (w/v) sodium 

dodecyl sulphate (SDS), 1.5 mL of 0.8% (w/v) TBA and 700 µL of distilled water. After incubation at 

95 °C for 60 minutes, the test tubes were cooled and then centrifuged at 3000 × g for 10 minutes. The 

MDA concentration was measured at 532 nm using a spectrophotometer (Unico UV-2800, China).  

1,1,3,3-Tetraethoxypropane (TEP) was used as MDA standard. The MDA concentration was expressed 

as nmol MDA per mg protein. 

3.13. Assay of Reduced and Oxidized Glutathione  

Total glutathione and oxidized glutathione (GSSG) were estimated using GSH:GSSG ratio assay kit 

(Calbiochem, CA, U.S.) according to the manufacturer's instructions. Reduced glutathione (GSH) and 

GSH/GSSG ratio were then calculated. Briefly, the kidney homogenates were deproteinized in 5% 

metaphosphoric acid, centrifuged and the supernatants were used for the estimation of glutathione. For 

GSSG assay, the kidney homogenates were immediately mixed with the thiol-scavenging
 
reagent,  

1-methy-2-vinylpyridinium trifluoromethanesulfonate to derivatize GSH. Samples were mixed 

sequentially with the chromogen 5,5’-dithiobis-2-nitrobenzoic acid, glutathione reductase and
 

NADPH. The absorbance of each sample was recorded at 412 nm and the
 
reaction rate was 

determined. A standard curve was constructed
 
using a known quantity of GSH standards. GSH and 

GSSG concentrations were
 
calculated by linear regression against the standard curve. GSH/GSSG ratio 

was calculated using the formula [ratio = (GSH − 2GSSG)/GSSG]. GSH and GSSG concentrations 

were expressed as nmol of glutathione per mg protein. 
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3.14. Protein Assay 

Protein concentration was estimated using Bio-Rad protein assay kit based on the method of 

Bradford [58]. The assay is a dye-binding assay in which a differential color change of a dye, with 

maximum absorbance at 595 nm, occurs in response to various concentrations of protein. A standard 

curve was obtained using bovine serum albumin. 

3.15. Statistical Analysis 

Statistical analysis was carried out using SPSS 18.0.1. Data were analyzed using independent t test 

to identify significance of difference between two groups. Data are expressed as mean ± SEM.  

P value < 0.05 was considered to be statistically significant.  

4. Conclusions  

If hyperglycemia is not a prerequisite for the development of high blood pressure in diabetic 

normotensive rats [35], then oxidative stress in diabetic normotensive rats may be a consequence of 

hypertension and/or diabetes. Furthermore, our data seem to suggest that oxidative stress, unlike in 

SHR, may not contribute considerably to elevated blood pressure in STZ-treated diabetic rats. Though 

additional studies with other potent antioxidants such as tempol are required, the inability of tualang 

honey to decrease elevated BP of diabetic WKY further substantiates this view. The effectiveness of 

antioxidants including tualang honey not only in ameliorating oxidative stress but also in reducing 

elevated BP in diabetic SHR corroborate the prominent role of ROS in elevated BP of SHR. Our 

results indicate that differences in types, severity, and combinations/complications of diseases 

(hypertension and/or diabetes), as well as strains, may influence antioxidant enzymes in response to 

changes in redox status. Our study underscores the need for additional studies to elucidate the 

mechanisms by which STZ-induced diabetes causes hypertension in diabetic normotensive rats. 

Further studies that investigate the protein and gene expressions of GPx and GR may reveal a 

differential role in regulating post-translational modification of these antioxidant enzymes in diabetic 

WKY and diabetic SHR.  
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