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Abstract: In order to develop new biorational pesticides, ten new 6-substituted ester 

derivatives of Celangulin-V were designed and synthesized. The structures of the new 

derivatives were confirmed by IR, 1H-NMR, 13C-NMR and ESI-MS spectral analysis. 

Insecticidal activities of these compounds were tested against the third-instar larvae of 

Mythimna separata. Two derivatives (1.1, 1.2) showed higher insecticidal activities than 

Celangulin-V, with mortality of 75.0% and 83.3%, respectively. While four compounds 

(1.3, 1.4, 1.7, 1.8) denoted lower insecticidal activities, the others (1.5, 1.6, 1.9, 1.10) 

revealed no activities at a concentration of 10 mg.mL−1. The results suggest that C-6 

substitutions of Celangulin-V are very important in determining the insecticidal activities 

of its ester-derivatives. That the acetyl (1.1) and propionyl (1.2) derivatives possessed 

much higher insecticidal activities than Celangulin-V itself supported the view that 

Celangulin-V has the potential to be a lead structure of semi-synthetic green insecticides. 

Keywords: Celastraceae; dihydroagarofuran; biorational pesticides 

 

1. Introduction 

Plants have been a major source of chemical structure models for insecticides. Several important 

classes of synthetic insecticides have ancestors in nature. As a result of our program of screening 
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insecticidal activity constituted from plants of China, some sesquiterpene polyol esters with insecticidal 

activity were isolated [1–4]. Celangulin-V (Figure 1), a β-dihydroagrofuran sesquiterpene polyol ester, 

from the root bark of Chinese bittersweet, Celastrus angulatus Max [5,6], showed prominent stomach 

toxic effects against Mythimna separate acting on mid-gut tissue with a special mechanism of toxicology 

and suggested it to be a new lead compound for a botanical insecticide [7]. 

Figure 1. Structure of Celangulin-V. 
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With the objective to search for more potent compounds than Celangulin-V and to clarify the 

potential structural factors needed for the biological activity of Celangulin-V analogues, ten new C-6 

substituted Celangulin-V ester analogues were designed and synthesized. The biological activities of 

these compounds were tested against the third-instar larvae of Mythimna separata.  

Like its C-6 ether analogues [8], the insecticidal activities of Celangulin-V C-6 esters varied with the 

different C-6 substitution. Concurrently, the symptoms of the tested larvae of Mythimna separata. 

were characterized in the same way as in our previous reports[3,4,6–8]. In this paper, the synthesis, 

characterization and insecticidal activity of new C-6 substituted Celangulin-V esters is described. 

2. Results and Discussion  

2.1. Synthesis of Celangulin-V Derivatives  

As shown in Scheme 1, ten new 6-acyloxy derivatives (1.1–1.10) of Celangulin-V were 

successfully prepared. Compound 1 reacted with anhydrides in dried pyridine at room temperature to 

give Compounds 1.1, 1.2, 1.3 and 1.7. Compounds 1.4, 1.5, 1.6, 1.8, 1.9 and 1.10 were obtained from 

ordinary esterifications of 1 with carboxylic acids by using N,N-dicyclohexylcarbodiimide (DCC) as a 

condensation agent with a catalytic amount of 4-dimethylaminopyridine (DMAP) at room temperature. 

The structures of all the target compounds were well characterized by 1H-NMR, 13C-NMR, ESI-MS, 

IR, and MP (see Tables 1–3). 
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Scheme 1. Synthetic route of target compounds. N,N-dicyclohexylcarbodiimide 

(DCC),4-dimethylaminopyridine (DMAP), dichloromethane DCM and pyridine (pyr). 
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Table 1. Experimental Data of Celangulin-V and its derivatives. 

Compounds 
Molecular 
Formula 

M.P °C 
ESI-MS 
(M + Na)

Optical Rotation 
[α]°, (MeOH, c = mg.100 mL−1)

Celangulin-V C34H46O13 198–200 685 −12.2, (10.8) 
1.1 C36H48O14 214–216 727 −10.6, (16.0) 
1.2 C37H50O14 94–96 741 −10.1, (15.0) 
1.3 C38H52O14 114–116 755 −10.3, (18.5) 
1.4 C39H54O14 102–104 769 −33.0, (18.0) 
1.5 C40H56O14 64–66 783 −15.2, (15.0) 
1.6 C41H58O14 colorless oils 797 −26.4, (19.0) 
1.7 C38H52O14 98–100 755 −39.6, (17.0) 
1.8 C40H56O14 112–114 783 −95.8, (11.5) 
1.9 C43H54O14 124–126 817 −29.7, (12.5) 

1.10 C41H06O14 96–98 789 −51.7, (13.5) 
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Table 2. 13C-NMR Spectral Data [125 MHz, δ(ppm)] for compounds 1 and 1.1-10 in CDCl3. 

No. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 
1 75.17 75.20 75.22 75.22 75.23 75.22 75.23 75.23 75.25 75.19 75.20
2 67.44 67.69 67.71 67.70 67.72 67.71 67.72 67.71 67.72 67.68 67.74
3 41.25 42.01 41.98 41.94 41.94 41.93 41.94 41.99 41.79 41.99 42.51
4 72.23 69.61 69.64 69.63 69.63 69.63 69.65 69.64 69.64 69.59 69.81
5 91.56 92.09 92.11 92.08 92.08 92.08 92.08 92.17 92.04 92.08 91.94
6 77.04 75.60 75.58 75.59 75.60 75.60 75.60 75.61 75.69 75.63 76.43
7 53.69 52.31 52.36 52.40 52.39 52.39 52.39 52.43 52.62 52.31 52.31
8 73.86 75.19 73.57 73.54 73.55 73.54 73.55 73.60 73.48 73.51 73.39
9 75.45 75.54 75.49 75.46 75.49 75.49 75.50 75.42 75.69 75.53 75.70

10 50.71 51.46 51.47 51.47 51.48 51.47 51.48 51.49 51.54 51.45 51.57
11 84.61 84.34 84.31 84.29 84.29 84.28 84.29 84.29 84.21 84.27 84.44
12 61.82 61.79 61.80 61.79 61.80 61.80 61.81 61.79 61.79 61.79 61.87
13 24.32 24.85 24.93 24.93 24.96 24.97 24.98 24.92 25.13 24.76 24.57
14 26.45 25.89 25.90 25.89 25.90 25.90 25.91 25.89 25.87 25.86 25.89
15 30.15 29.72 29.72 29.73 29.74 29.74 29.75 29.75 29.83 29.66 29.81

Table 3. 1H-NMR Spectral Data [500 MHz, δH (J in Hz)] of compounds 1 and 1.1-10 in CDCl3. 

No. 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 

1 
5.49 

(d,1H, 
3.5) 

5.48 
(d,1H, 
3.5) 

5.48 
(d,1H, 
3.5) 

5.48 
(d,1H, 
3.5) 

5.48 
(d,1H, 
3.5) 

5.48 
(d,1H, 
3.5) 

5.48 
(d,1H, 
3.5) 

5.48 
(d,1H, 
3.5) 

5.49 
(d,1H, 
3.5) 

5.46 
(d,1H, 
3.5) 

5.52 
(d,1H, 
3.5) 

2 
5.39 

(m,1H) 
5.36 

(m,1H) 
5.36 

(m,1H) 
5.36 

(m,1H) 
5.36 

(m,1H) 
5.36 

(m,1H)
5.36 

(m,1H)
5.36 

(m,1H)
5.37 

(m,1H) 
5.35 

(m,1H)
5.39 

(m,1H)

3 

2.09 
(m,1H), 

2.03 
(m,1H) 

2.11 
(m,1H), 

1.97 
(m,1H) 

2.11 
(m,1H), 

1.96 
(m,1H) 

2.12 
(m,1H), 

2.07 
(m,1H) 

2.14 
(m,1H),

2.09 
(m,1H) 

2.12 
(m,1H),

1.95 
(m,1H)

2.12 
(m,1H),

1.95 
(m,1H)

2.13 
(m,1H),

1.95 
(m,1H)

2.12 
(m,1H), 

1.95 
(m,1H) 

2.11 
(m,1H),

1.95 
(m,1H)

2.17 
(m,1H),

2.02 
(m,1H)

6 
5.22(s, 

1H) 
6.48(s, 

1H) 
6.49(s, 

1H) 
6.49(s, 

1H) 
6.48(s, 

1H) 
6.48(s,

1H) 
6.48(s,

1H) 
6.49(s,

1H) 
6.48(s, 

1H) 
6.47(s,

1H) 
6.61(s,

1H) 

7 
2.58 

(d,1H, 
3.5) 

2.49 
(d,1H, 
3.5) 

2.48 
(d,1H, 
3.5) 

2.47 
(d,1H, 
3.5) 

2.47 
(d,1H, 
3.5) 

2.47 
(d,1H, 
3.5) 

2.47 
(d,1H, 
3.5) 

2.46 
(d,1H, 
3.5) 

2.43 
(d,1H, 
3.5) 

2.39 
(d,1H, 
3.5) 

2.67 
(d,1H, 
3.5) 

8 
5.62 

(dd,1H,
9.5,3.5) 

5.77 
(dd,1H,
9.5,3.5) 

5.78 
(dd,1H,
9.5,3.5) 

5.79 
(dd,1H,
9.5,3.5) 

5.78 
(dd,1H, 
9.5,3.5) 

5.79 
(dd,1H,
9.5,3.5)

5.78 
(dd,1H,
9.5,3.5)

5.79 
(dd,1H,
9.5,3.5)

5.81 
(dd,1H,
9.5,3.5) 

5.76 
(dd,1H,
9.5,3.5)

5.93 
(dd,1H,
9.5,3.5)

9 
6.06 

(d,1H, 
9.5) 

6.03 
(d,1H, 
9.5) 

6.04 
(d,1H, 
9.5) 

6.04 
(d,1H, 
9.5) 

6.04 
(d,1H, 
9.5) 

6.03 
(d,1H, 
9.5) 

6.03 
(d,1H, 
9.5) 

6.04 
(d,1H, 
9.5) 

6.03 
(d,1H, 
9.5) 

6.02 
(d,1H, 
9.5) 

6.09 
(d,1H, 
9.5) 

12 

4.87, 
4.65 
(Abq, 
2H, 

13.5) 

4.90, 
4.65 
(Abq, 
2H, 

13.5) 

4.90, 
4.65 
(Abq, 
2H, 

13.5) 

4.90, 
4.64 
(Abq, 
2H, 

13.5) 

4.90,4.64
(Abq,2H,

13.5) 

4.90, 
4.64 
(Abq, 
2H, 

13.5) 

4.890, 
4.64 
(Abq, 
2H, 

13.5) 

4.89, 
4.65 
(Abq, 
2H, 

13.5) 

4.91, 
4.64 
(Abq, 
2H, 

13.5) 

4.88, 
4.64 
(Abq, 
2H, 

13.5) 

4.93, 
4.70 
(Abq, 
2H, 

13.5) 

13 
1.77(s, 

3H) 
1.57(s, 

3H) 
1.57(s, 

3H) 
1.73(s, 

3H) 
1.73(s, 

3H) 
1.74(s,

3H) 
1.72(s,

3H) 
1.72(s,

3H) 
1.72(s, 

3H) 
1.69(s,

3H) 
1.75(s,

3H) 

14 
1.72(s, 

3H) 
1.72(s, 

3H) 
1.72(s, 

3H) 
1.57(s, 

3H) 
1.57(s, 
3H)) 

1.56(s,
3H) 

1.56(s,
3H) 

1.58(s,
3H) 

1.58(s, 
3H) 

1.47(s,
3H) 

1.59(s,
3H) 

15 
1.61(s, 

3H)  
1.50(s, 

3H)  
1.49(s, 

3H)  
1.49(s, 

3H)  
1.49(s, 

3H) 
1.49(s,

3H) 
1.49(s,

3H) 
1.49(s,

3H)  
1.51(s, 

3H) 
1.42(s,

3H) 
1.53(s,

3H) 
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2.2. Insecticidal Activities 

From the insecticidal activities (according to the Table 4), screening, compounds 1.1 and 1.2 

exhibited higher activity against 3th instar larvae of Mythimna separate than Celangulin-V, 

compounds(1.3, 1.4, 1.7 and 1.8) exhibited less potency than Celangulin-V, and compounds 1.5, 1.6, 

1.9 and 1.10 even no activity at the tested concentration. 

Table 4. Insecticidal activities of Celangulin-V derivatives. 

Compounds Mortality(%） 
Acetone 0 

Celangulin-V 66.7 
1.1 75.0 
1.2 83.3 
1.3 16.7 
1.4 33.3 
1.5 0 
1.6 0 
1.7 8.3 
1.8 8.3 
1.9 0 
1.10 0 

Note: The concentration is a 10 mg test sample dissolved in 1 mL acetone. 

3. Experimental 

3.1. General Experimental Procedures 

Melting points were measured on an electrothermal digital apparatus made in Beijing and were 

uncorrected. The 1H-NMR (500 MHz), and 13C-NMR (125 MHz) were obtained on a Bruker AM-500 

FT-NMR spectrometer with CDCl3 as the solvent and TMS as the internal standard. MS were recorded 

under ESI conditions using a Thermo LCQ Fleet instrument. Infrared spectra were measured on a 

Nicolet FT-IR-20SX instrument using a potassium bromide (KBr) disk, scanning from 625 to 4000 cm−1. 

Optical rotation was measured by Rudolph Autopol II. Analytical thin layer chromatography (TLC) was 

carried out on precoated plates (silica gel), and spots were visualized with H2SO4/EtOH. Yields were not 

optimized. Solvents were dried by standard methods. The title compounds were synthesized under a 

nitrogen atmosphere. 

3.2. Synthesis of the Derivatives of Celangulin-V  

1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-9β-benzoyloxy-6α-acetyloxy-4α-hydroxy-β-dihydro- 

agarofuran (1.1): A mixture of celangulin-V (1) (0.100 g, 0.15 mmol) and acetic anhydride (1 mL) in 

dry Pyridine (Pyr, 20 mL) was stirred over night at room temperature (RT). When the reaction was 

complete (checked by TLC), 1mL methanol was added to quench the reaction, then 50mL water was 

added to the mixture which was then extracted with ethyl acetate (50 mL × 3). The ethyl acetate layers 

were combined and washed with 30mL water and 5mL saturated sodium chloride ,dried over anhydrous 
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sodium sulfate and separated by column chromatography(silica gel, 200~300 mesh) with a gradient of 

petroleum ether (60–90 °C) and ethyl acetate as eluent to yield compound 1.1 as white powder.ESI-MS: 

Found 727 [M + Na]+. Its IR spectrum revealed characteristic ester absorptions at 1722 cm−1, and a free 

hydroxyl absorption at 3552 cm−1. (6-)OCOCH3 was certified by 1H-NMR δ: 2.13 (s, 3H) and 13C-NMR 

δ: 169.58 (CO), 21.42 (CH3), other data see Table 2 and Table 3. 

1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-9β-benzoyloxy-6α-propyloxy-4α-hydroxy-β-dihydro- 

agarofuran (1.2): This compound was obtained as a white powder following a similar procedure to the 

synthesis of compound 1.1. ESI-MS: Found 741 [M + Na]+. Its IR spectrum revealed characteristic ester 

absorptions at 1726 cm−1, and a free hydroxyl absorption at 3548 cm−1. (6-)OCOCH2CH3 was 

certificated by 1H-NMR δ: 1.19 (3H, t, 7.5), 2.42 (2H, q, 7.5) and 13C-NMR δ: 172.84 (CO), 28.21 CH2, 

8.95 CH3, other data see Table 2 and Table 3. 

1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-9β-benzoyloxy-6α-butanoyloxy-4α-hydroxy-β-dihydro- 

agarofuran (1.3): This compound was obtained as a white powder following a similar procedure to the 

synthesis of the compound 1.1. ESI-MS: Found 755 [M + Na]+. Its IR spectrum revealed characteristic 

ester absorptions at 1721 cm−1, and a free hydroxyl absorption at 3546 cm−1. (6-)OCOCH2CH2CH3 was 

certificated by 1H-NMR δ: 2.35 (m, 2H), 1.70 (m, 2H), 0.96 (3H, t, 7.0) and 13C-NMR δ: 172.07 (CO), 

18.16 CH2, 36.75 CH2, 13.73 CH3, other data see Table 2 and Table 3. 

1β,2β-diacetyloxy-6α,8α,12-triisobutanoyloxy-9β-benzoyloxy-4α-hydroxy-β-dihydro-agarofuran (1.7): 

This compound was obtained as a white powder following a similar procedure to the synthesis of the 

compound 1.1. ESI-MS: Found 755 [M + Na]+. Its IR spectrum revealed characteristic ester absorptions 

at 1724 cm−1, and a free hydroxyl absorption at 3542 cm−1. (6-)OCOCH(CH3)2 was certificated by 
1H-NMR δ: 1.21 (d, 3H, 7.0), 1.22 (d, 3H, 7.0), 2.59 (m, 1H) and 13C-NMR δ: 177.00 (CO), 34.42 CH, 

18.99 CH3, 19.14 CH3, other data see Table 2 and Table 3. 

1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-9β-benzoyloxy-6α-pentanoyloxy-4α-hydroxy-β-dihydro- 

agarofuran (1.4): A mixture of celangulin-V (1) (0.100 g, 0.15 mmol), pentanoic acid  

(1 mL), N,N-dicyclohexylcarbodiimide (DCC, 0.062 g, 0.30 mmol) and dimethylaminopyridine 

(DMAP, 0.005 g, 0.04 mmol) in dry dichloromethane (DCM 20 mL) was stirred over night at room 

temperature. When the reaction was complete (checked by TLC), 1 mL methanol was added to quench 

the reaction. Then 30mL water was added to the mixture and the resulting suspension was filtered then 

extracted with dichloromethane (30 mL × 3). The dichloromethane layers were combined and washed 

with 30mL water and 5mL saturated sodium chloride, dried over anhydrous sodium sulfate and 

separated by column chromatography(silica gel, 200~300 mesh) with a gradient of petroleum ether 

(60–90 °C) and ethyl acetate as eluent to yield compound 1.4 as a white powder. ESI-MS: Found 769  

[M + Na]+. Its IR spectrum revealed characteristic ester absorptions at 1718 cm−1, and a free hydroxyl 

absorption at 3547 cm−1. (6-)OCOCH2CH2CH2CH3 was certificated by 1H-NMR δ: 0.92 (m, 3H), 1.33 

(m, 2H), 2.38 (m, 2H), 1.65 (m, 2H) and 13C-NMR δ: 172.24 (CO), 13.66 CH3, 22.27 CH2, 26.68 CH2, 

34.58 CH2, other data see Table 2 and Table 3. 
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1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-9β-benzoyloxy-6α-hexanoyloxy-4α-hydroxy-β-dihydro- 

agarofuran (1.5): This compound was obtained as a white powder following a similar procedure to the 

synthesis of the compound 1.4. ESI-MS: Found 783 [M + Na]+. Its IR spectrum revealed characteristic 

ester absorptions at 1718 cm−1, and a free hydroxyl absorption at 3543 cm−1. 

(6-)OCOCH2CH2CH2CH2CH3 was certificated by 1H-NMR δ: 0.88 (t, 3H, 7.0), 1.31 (m, 4H), 2.38 (m, 

2H), 1.68 (m, 2H) and 13C-NMR δ: 172.07 (CO), 22.24 CH2, 24.31 CH2, 31.26 CH2, 34.81 CH2, 13.87 

CH3, other data see Table 2 and Table 3. 

1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-9β-benzoyloxy-6α-heptanoyloxy-4α-hydroxy-β-dihydro- 

agarofuran (1.6): This compound was obtained as a colorless oil following a similar procedure to the 

synthesis of the compound 1.4.ESI-MS: Found 797 [M + Na]+. Its IR spectrum revealed characteristic 

ester absorptions at 1716 cm−1, and a free hydroxyl absorption at 3547 cm−1. 

(6-)OCOCH2CH2CH2CH2CH2CH3 was certificated by 1H-NMR δ: 0.88 (t, 3H, 7.0), 1.29 (m, 6H),  

2.36 (m, 2H), 1.66 (m, 2H) and 13C-NMR δ: 172.26 (CO), 22.47 CH2, 24.61 CH2, 28.82 CH2, 31.37 CH2, 

34.86 CH2, 14.01 CH3, other data see Table 2 and Table 3. 

1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-9β-benzoyloxy-6α-(2-ethylbutanoyloxy)-4α-hydroxy-β- 

dihydro-agarofuran (1.8): This compound was obtained as a white powder following a similar 

procedure to the synthesis of the compound 1.4. ESI-MS: Found 783 [M + Na]+. Its IR spectrum 

revealed characteristic ester absorptions at 1720 cm−1, and a free hydroxyl absorption at 3544 cm−1. 

(6-)OCOCH(CH2CH3)2 was certificated by 1H-NMR δ: 2.28 (1H, m), 1.70 (4H, m), 0.91 (6H, m) and 
13C-NMR δ: 174.66 (CO), 49.29 CH, 24.58 CH2, 24.25 CH2, 12.02 CH3, 11.88 CH3, other data see 

Table 2 and Table 3. 

1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-9β-benzoyloxy-6α-(3-phenylpropanoyloxy)-4α-hydroxy- 

β-dihydro-agarofuran (1.9): This compound was obtained as a white powder following a similar 

procedure to the synthesis of the compound 1.4. ESI-MS: Found 817 [M + Na]+. Its IR spectrum 

revealed characteristic ester absorptions at 1716 cm-1, and a free hydroxyl absorption at 3547 cm−1. 

(6-)OCOCH2CH2C6H5 was certificated by 1H-NMR δ: 2.72 (m, 2H), 3.00 (m, 2H), 7.29 (m, 2H), 7.20 

(m, 3H) and 13C-NMR δ: 171.45 (CO), 36.36 CH2, 30.68 CH3, 140.05 C, 126.41 CH, 128.57  

CH × 2, 128.31 CH × 2, other data see Table 2 and Table 3. 

1β,2β-diacetyloxy-8α,12-diisobutanoyloxy-6α,9β-dibenzoyloxy-4α-hydroxy-β-dihydro- 

agarofuran (1.10): This compound was obtained as a white powder following a similar procedure to 
the synthesis of the compound 1.4. ESI-MS: Found 789 [M + Na]+. Its IR spectrum revealed 

characteristic ester absorptions at 1722 cm-1, and a free hydroxyl absorption at 3543 cm−1. (6-)OCOC6H5 

was certificated by 1H-NMR δ: 8.19 (2H, m), 7.47 (2H, m), 7.58 (1H, m) and 13C-NMR δ: 165.48 (CO), 

128.67 (2 × CH), 133.46 CH, 130.18 (2 × CH), 129.64 C, other data see Table 2 and Table 3. 

3.3. Bioassay for Insecticidal Activities 

Wheat leaf discs of known area (0.5 cm × 0.5 cm) were treated with 1μL from 10 mg test samples 

dissolved in 1mL acetone (acetone and celangulin V were used as negative and positive controls). The 
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3rd instar larvae of Mythimna separate were fed with the discs over 2 h (repeated 3 times for each sample). 

After 2 h, the numbers of knocked down larvae (symptoms: the larvae were narcotized, the bodies were 

very soft and immobilized, and response disappeared completely) were recorded. [3].The insecticidal 

activity result can be found in Table 4. 

4. Conclusions  

In conclusion, ten new 6-acyloxy derivatives of Celangulin-V (1.1–1.10) have been synthesized and 

evaluated for their insecticidal activities against the 3rd instar larvae of Mythimna separate in vivo at a 

concentration of 10 mg.mL−1. The bioassay of these analogues showed that some synthesized 

ester-derivatives of Celangulin-V showed the same stomach toxic effects against Mythimna separate as 

Celangulin-V and that the poisoned insects had the same symptoms as from its ether-derivatives. This 

implies the insecticidal ester-derivatives may act on the same target protein as Celangulin-V. The 

substitutions of C-6 have a notable influence on the insecticidal activity. Among the Celangulin-V 

ester-derivatives, two and three carbon substitutions may be more favorable for promoting the 

insecticidal activity as compared with much larger substitution groups at the C-6 position. These 

results have encouraged us to start further investigations into novel Celangulin-V derivatives as 

insecticidal agents and this will be reported in due course. 
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