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Abstract: Colorectal cancer is a major health burden, and a leading cause of cancer-related 

deaths in industrialized countries. The steady improvements in surgery and chemotherapy 

have improved survival, but the ability to identify high- and low-risk patients is still 

somewhat poor. Molecular biology has, over the years, given insight into basic principles 

of colorectal cancer initiation and development. These findings include aberrations 

increasing risk of tumor development, genetic changes associated with the stepwise 

progression of the disease, and errors predicting response to a specific treatment. Potential 

biomarkers in colorectal cancer are extensively studied, and how the molecular aberrations 

relate to clinical features. Yet, little of this knowledge has been possible to transfer into 

clinical practice. In this review, an overview of colorectal cancer genetics will be given, as 

well as how aberrations found in this tumor type are proposed as biomarkers for risk 

prediction, as diagnostic tools, for prognosis or prediction of treatment outcome. 
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1. Introduction 

Colorectal cancer (CRC) is a major health burden in the western world. The disease normally 

develops from a benign polyp through an adenoma with dysplasia into a carcinoma with metastatic 

potential. The high incidence combined with high mortality from the disease if diagnosed at a late 
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stage, signifies the need for better diagnostic, prognostic and predictive tools. The emergence of 

knowledge on the molecular level has gained insight in causes for initiation and progression of tumor 

development. This knowledge has also revealed the complexity and heterogeneity of the disease, 

explaining why few biomarkers are in routine clinical use.  

Cancers arise as a result of genetic and epigenetic alterations accumulating in a cell [1]. These 

changes lead to dysregulation of fine-tuned pathways, and thereby disturb the normal proliferation and 

growth of the cell. Predominantly, colorectal cancer arises sporadically, although a smaller subgroup 

arises either as a result of inherited mutations, or as a result of inflammatory bowel disease (IBD; 

Crohn’s disease or ulcerative colitis). 

Roughly, three molecular subtypes of colorectal carcinomas (CRC) are described based on 

molecular characteristics of the tumor; microsatellite instability (MSI), chromosomal instability (CIN), 

and CpG island methylator phenotype (CIMP). In addition, all of these three subgroups have mutations 

in protein coding genes, as well as impaired gene functions, and changes in expression of microRNAs 

(miRNA) that results in changes in gene expression.  

Patient response to treatment is diverse, even if their disease seems similar when evaluating 

clinicopathological parameters. There is increasing evidence that treatment response is dependent on 

the normal genetic background of the individual in addition to aberrations in the tumor itself. Mapping 

the genetic defects in a patient tumor is yet of limited clinical importance, as the prognostic and 

predictive value is scarce. However, a large body of information about genetic aberrations underlying 

CRC has revealed complex and heterogeneous mechanisms underlying the occurrence of disease. This 

information is of the essence for understanding the disease behavior and related clinical outcome, and 

especially for future improvements in treatment and survival for the patients. 

The current review article addresses some of the key concepts in CRC development, and outlines 

how genetic and epigenetic aberrations can be utilized as biomarkers for the disease in the future. 

2. Phenotypic Subgroups of CRC 

Chromosomal aberrations and aneuploidy are known as a hallmark of solid tumors. In colorectal 

cancers the large portion of the tumors display numerical chromosomal alterations, referred to as 

chromosomal instability (CIN) [2]. These CIN tumors have chromosomal composition which changes 

at a higher rate compared to normal cells, and recurrent gains and losses seem to affect chromosomes 

in a non-random manner [3]. The underlying cause(s) of CIN is to date not known, but alterations in 

mechanisms associated with chromosome segregation during mitosis are suggested [4,5]. The tumors 

in which mutations in microsatellites are demonstrated are referred to as microsatellite instabile  

(MSI) [6]. Tumors of the MSI phenotype have defects in the mismatch machinery, leaving errors 

introduced during replication unrepaired. Microsatellites are repetitive units, and therefore more prone 

to errors, and exist in both protein-coding and non-coding regions of the DNA. Deficient effect of 

mismatch repair genes has been found to cause this effect, either due to mutations in or as a result of 

hypermethylation of the promoter of these genes. Tumors harboring the latter of these aberrations have 

changes in the normal promoter methylation pattern. Methylation is chemical modification of DNA 

that leads to gene expression changes. This phenotype was discovered somewhat later than the CIN 
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and MSI phenotypes, and named CpG island methylator phenotype (CIMP) [7,8]. As for the CIN 

phenotype, the underlying cause for CIMP is not revealed. 

Initially, the CIN and MSI phenotype was thought of as mutually exclusive, but later found to be 

partly overlapping. The CIMP phenotype is largely overlapping with the MSI phenotype, and to some 

extent with CIN tumors. There is a small subgroup of tumors in which none of the phenotypes are 

detected, referred to as triple negative [9]. 

3. Biomolecules 

The constant development and refinement of molecular techniques and knowledge about traits  

have increased our understanding of the human genome and its complexity in general, as well as  

cancer-specific aberrations. The total DNA content in a cell is referred to as the genome. The genes 

encoded by the genome are composed of both introns and exons, exons being the mRNA-encoding 

entities. The total content of mRNA in a cell at a given time point is referred to as the transcriptome. 

MicroRNAs (miRNA) are short RNA molecules that bind to complementary mRNA molecules, 

hindering the translation of the mRNA into a protein. In recent years both complete cancer genomes, 

transcriptomes, and exomes have been sequenced [10–12], DNA methylation profiles have been used 

to subgroup colorectal carcinomas [13], and even nucleic molecules such as microRNAs (miRNA) 

have been shown to play a role in cancer [14,15]. As non-protein-coding transcripts have been conserved 

throughout evolution, indicates that crucial functions exist for these molecules. For example, 

microRNAs (miRNAs) have been found to modulate several cellular processes [16]. The protein 

classes of RNA-binding proteins include essential regulators of miRNA biogenesis, turnover and 

activity. RNA-RNA and protein-RNA interactions are essential for post-transcriptional regulation in 

normal development and may be deregulated in disease. DNA, mRNA and miRNA are released and 

circulate in the blood [17]. Changes in the levels and types of circulating nucleic acids have been 

associated with tumor burden and malignant progression. Consequently, their potential role as markers 

of disease or risk for cancer is currently intensively investigated. 

Faster and cheaper sequencing technology has made comparison of tumor exomes from patients 

with the same tumor type possible, helping the identification of cancer-driving mutations [12]. Also, 

comparison of primary tumor and the associated distant metastasis has aided the search for genes, 

which is important for the metastatic process or the progression of disease [18]. 

4. Adenoma Carcinoma Sequence 

In colorectal cancer, adenomas are considered the most important precursor lesion for carcinomas, 

although a subgroup of hyperplastic polyps have also been shown to have malignant potential [19]. By 

the age of 70 years around 50% of the population has one or several adenomas presented in the colon. 

However, not all adenomas progress to carcinomas. The adenoma-carcinoma sequence suggests that 

specific mutations occur at specific stages, in order to transform the cell to a carcinoma with a 

metastatic potential. These mutations affect genes and pathways important for regulation of cell 

growth and differentiation.  

The WNT pathway increases the proliferation rate in a cell when active, and is known as an early 

event in the adenoma-carcinoma-sequence [20]. The APC gene is thought to be the initial event 
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transforming a normal cell into an adenoma, and is found in ~80% of all colorectal carcinomas. If APC 

is mutated, the WNT signaling pathway is constantly on, even if WNT signal is absent, and the cell 

proliferates, Figure 1. Mutation in the oncogene KRAS is another aberration seen both frequently 

(~40%), and early in the transformation of normal cells. Mutations in the oncogene BRAF, yet another 

gene in the MAPK pathway, are seen early in malignant transformation. Both KRAS and BRAF 

mutations will increase the proliferation rate in the cell, comparable to mutations in APC. The TGFb 

pathway has been shown to be abrogated later in the development, transforming an intermediate 

adenoma to a late adenoma. Mutations in SMAD4, TGFBR2 or deletions at 18q are observed [21]. 

Mutations in the tumor suppressor gene TP53, or loss of 17p where TP53 is located, are observed in 

more than 50% of colorectal tumors, and as late events in CRC development. This high frequency of 

TP53 inactivity found in carcinomas, but not in adenomas, suggests TP53 to be pivotal for the 

malignant transformation of the cell. 

A subgroup of hyperplastic polyps, sessile serrated adenomas, were previously regarded as not 

giving increased risk of colorectal carcinoma development [19]. An equivalent to the adenoma-carcinoma 

sequence has been suggested for these adenomas [22], of which an activating mutation in the BRAF 

gene is regarded as the initiating event of the malignant transformation. Furthermore, methylation of 

promoter regions resulting in epigenetic silencing of a number of genes is observed in these lesions, 

the so-called CIMP phenotype. The MLH1 gene is one of the genes frequently shown to be methylated, 

and abrogation of the normal function of MLH1 will eventually cause MSI tumors. The observation 

that sessile serrated adenomas gives rise to CIMP and MSI tumors are supported by the fact that these 

polyps are most frequently found in the right colon [23,24]. 

Figure 1. Signaling pathways frequently found to be changed in colorectal cancer [25]. 

 

Genes found to be mutated in cancer cells have been defined as either proto-oncogenes or tumor 

suppressor genes. The proto-oncogenes are promoting cell growth, and when mutated the proliferation 

rate in the cell is high even in the absence of growth signals. In contrast, mutant tumor suppressor 

genes are deprived of their cell cycle regulatory function, resulting in cell proliferation even if severe 
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damages are introduced in the cell–thus, the normal regulation and balance between apoptosis and 

proliferation is skewed towards an uncontrolled proliferative state with loss of cell death. However, 

several more hallmarks are needed for a cancer cell to sustain its growth, expand, invade and ultimately 

seed and soil its metastatic cells in distant organ sites.  

Sjoblom et al. [26] and Wood et al. [27] reported that around 70 genes on average are mutated in a 

colorectal tumor sample, of which ~10 are likely to drive tumorigenesis, based on sequencing of 

13,023 protein coding genes. Later, Timmermann et al. [12] performed exome sequencing (16,755 

RefSeq genes) of MSI and microsatellite stable (MSS) CRCs, and compared the mutation pattern in 

each tumor to normal colonic mucosa from the same patient. This highlighted specific mutation 

patterns in the two CRC subtypes, and 359 and 45 functionally significant mutations were reported in 

MSI and MSS tumors, respectively, which confirms MSI as the mutator phenotype. Furthermore, the 

BMPR1A gene, mutated in germline cells in juvenile polyposis, was found to be mutated in both MSI 

and MSS tumors, indicating that this gene might also have an important function in sporadic  

CRC development. 

5. Biomarkers 

The growing insight in molecular mechanisms of cancers has increased the expectations of these 

aberrations and compounds to be used as biomarkers. A plethora of molecules have been suggested as 

markers for risk, diagnosis, prognosis and treatment response, Table 1. But so far, mutations in the 

oncogene KRAS is the only biomarker in routine clinical use in CRC, validated to have information 

predicting response to treatment, [28].  

Table 1. Type of biomarkers, and examples of biomarkers in use/suggested for use in 

colorectal cancer. 

Type of Biomarker Objective for use Biological marker References 

Risk stratification Assess the likelihood that cancers 

will develop 

APC, AXIN2, BMPR1A, SMAD4, 

MUTYH, MSH2, MLH1, MSH6, PMS2, 

STK11, PTEN, EPCAM, 8q24, 15q13.3, 

SMAD7, LOC120376 

[29–40] 

Screening Detect cancers in the 

asymptomatic population 

Stool tests, blood based tests [41] 

Diagnosis Definitively establish the presence 

of cancer 

Vimentin (ColoSure *), SEPT9 

(ColoVantage *), miR-17-3p, miR-92 

[42–44] 

Classification Classify patients by disease subset MSI, CIN, CIMP  

Prognosis Predict the probable outcome of 

cancer regardless of therapy 

MSI, 18-gene signature (ColoPrint *), 

12-gene signature (OncoType DX *), 

GCC expression (Previstage *), miR-21 

[45–53] 

Prediction/treatment 

stratification 

Predict response to particular 

therapies and choose the drug that is 

mostly likely to yield a favorable 

response in a given patient 

EGFR, KRAS, BRAF, PIK3CA, PTEN, 

TP53, miR-140 

Panel (TP53, KRAS, CCDN1, MTHFR) 

[54–56] 

Abbreviations; MSI: microsatellite instability, CIN: Chromosomal instability, CIMP: CpG island methylator 

phenotype; * Details of biomarkers used are specified in Supplementary Table 1. 
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5.1. Markers Aiding in Prediction of Risk 

Familial syndromes are estimated to cause 25% of colorectal cancer, but only around 5% of 

colorectal cancers are identified to have a known genetic defect [57]. The best described syndromes 

are Lynch syndrome (aka Hereditary Non-Polyposis Colorectal Cancer, HNPCC), developed on a 

background of an inherited germline defect DNA-mismatch repair systems leading to widespread MSI, 

and the Familial Adenomatous Polyposis (FAP) syndrome, caused by germline mutations in the APC 

gene. HNPCC is clinically associated with other cancers such as gastric and endometric cancer but no 

widespread development of colonic polyps despite cancer development at an early age (<50 years). 

FAP patients however, develop polyps in hundreds and thousands, necessitating total colectomy often 

at or before the age of 20 to avoid malignant transformation. Although most patients do not fall into 

one of these two hereditary categories, many patients may have family members with the disease, 

despite no clear cut genetic association found. However, to date, several genes are known to harbor 

mutations causing hereditary syndromes involving colorectal cancer [58–60].  

In addition to inherited mutations, a number of chromosomal locations and single nucleotide 

polymorphisms (SNPs) have been suggested as having increased risk for CRC development,  

but few have been validated in larger cohorts. However, in 8q24 [34–37], 15q13.3 [29,37,38],  

SMAD7 [32,37,39,40], and LOC120376 [33,37,39], SNPs have been validated, and each of them 

shown to be associated with increased risk of CRC development. Furthermore, if the SNP is located in 

a miRNA target site it might interfere binding, resulting in changes in gene and protein expression. 

More aberrations, especially those causing disease in a recessive manner, are predicted to be 

discovered in the future.  

5.2. Diagnostic Markers 

Early detection of colorectal cancer is pivotal for a good outcome of the disease. The fecal occult 

blood test (FOBT) is a non-invasive diagnostic test based on detection of blood in the feces. The test 

has shown low sensitivity and specificity, especially for early disease stages, as not all cancers bleed, 

and bleeding can be caused by other conditions than cancer. Whether the test reduces mortality is 

debated [61], although at least three large randomized controlled trials have demonstrated a reduction 

in cancer-specific mortality with the use of FOBT. A further drawback is the need for invasive  

follow up (usually by colonoscopy) for positive findings. Screening populations using colonoscopy or 

sigmoidoscopy is expensive and unpleasant for the individual, which reduces the compliance among 

patients. Further colonoscopy is associated with a small but relevant risk for adverse event (perforation 

during the procedure) which may indeed be life-threatening. “Virtual colonography” or CT colonography 

has been proposed as a non-invasive alternative, but introduces the risk of radiation exposure, and 

again, a number of follow up test will be needed to investigate positive findings. Consequently, the 

need for better and preferably less invasive tests are warranted. Testing for changes in methylation 

pattern in feces and blood samples have shown improvements in sensitivity and specificity compared 

to the FOBT test [61,62]. The commercially available test ColoSureTM examines methylation in the 

Vimentin gene in feces samples, for early diagnosis of CRC [63,64]. Although its sensitivity (77%) and 

specificity (83%) is enhanced compared to FOBT, detection rates have not been assessed in a normal 
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population and its clinical utility is therefore not established [42]. Panels of methylated genes have 

been recognized in feces samples, in which increased sensitivity and specificity of colorectal tumors 

are identified [65,66]. 

The presence of methylation of the Septin9 (SEPT9) gene has been shown to be highly correlated to 

occurrence of colorectal tumor cells. [67] Testing for methylation of SEPT9 in plasma has been 

commercialized as ColoVantageTM.  

Using dysregulation of the expression of circulating miRNAs as markers for early diagnosis has 

gained more attention over the last years. In a study by Ng et al., elevated levels of miR-17-3p and 

miR-92 were reported to be statistically significant compared to the levels in healthy individuals, and 

also compared to gastric cancer and inflammatory bowel disease [44]. 

5.3. Prognostic Markers 

Even if meta-analyses have clearly shown a better prognosis of MSI cancers compared to CIN [68], 

clinical and histopathological data is still used as the main prognosticator and basis for treatment 

regime in CRC. The outcome of patients at disease stage II and III is however difficult to predict. 

Especially, for stage II cancers, defined on the basis of not finding metastases in lymph nodes, which 

could be erroneous, as a pathologist will not have the possibility to investigate all cells in all resected 

lymph nodes. Gene expression of GCC in tissue from lymph nodes has shown a good correlation to 

disease outcome, refining correct staging of stage II patients. The test is available as a commercial test 

manufactured as Previstage [51]. A more precise separation of stage II and III CRCs in high- and low 

risk groups have been obtained using mRNA expression profiles of 18 genes, commercialized as 

ColoPrint, Table 2 [46]. Yet another commercially available test, (OncoType DX), uses mRNA 

expression profile of 12 genes in order to indicate a risk of relapse in stage II patients [48]. Also, 

expression of miR-21 has been shown to be correlated to poor survival and therapeutic outcome in 

stage II and III CRCs [52], as well as being an independent predictor of overall survival in CRC [53].  

Table 2. Details of commercially available tests. 

Test name Biological material Biomarker(s) 
ColoSureTM Methylated DNA in feces Vimentin 
ColoVantage® Methylated DNA in plasma SEPT9 
ColoPrint® mRNA expression in tumor 

tissue 
MCTP1, LAMA3, CTSC, PYROX D1, EDEM1, 
IL2RB, ZNF697, SLC6A11, IL2RA, CYFIP2, 
PIM3, LIF, PLIN3, HSD3B1, ZBED4, PPARA, 
THNSL2, CA4388O2 

OncoType 
DX® 

mRNA expression in tumor 
tissue 

Ki-67, C-MYC, MYBL2, FAP, BGN, INHBA, 
GADD45B, ATP5E, PGK1, GPX1, UBB, VDAC2 

PrevistageTM mRNA expression in lymph 
node tissue 

GCC (GUCY2C) 

5.4. Predictive Markers 

The KRAS proto-oncogene is a molecular switch that controls cellular proliferation and 

differentiation, and its activation through EGFR is of essence for its proliferative effect in CRC. 



Int. J. Mol. Sci. 2011, 12 9433 

 

Overexpression, amplification and mutations of EGFR, resulting in signalling through the MAPK  

and PI3K pathways, are frequent in CRC, and it is therefore a good target for treatment of CRC. For 

metastatic colorectal cancer (mCRC) treatment by EGFR-targeted drugs is one of few therapeutic 

alternatives. However, when EGFRs downstream effector KRAS is mutated, it becomes constitutively 

active, the MAPK pathway is constantly switched on, and thus, treatment targeting EGFR will fail. 

Furthermore, only ~30% of the wild-type KRAS patients benefit from this treatment [69]. This 

indicates that other downstream effectors of the MAPK pathway or the PI3K pathway might have 

activating mutations. There are increasing evidences that the V600E mutation in the BRAF gene also 

inhibits effective treatment with anti-EGFR-therapies [69,70]. Furthermore, mutations in the PIK3CA 

gene, and overexpression of PTEN have also been associated with lack of response, and a combined 

analysis of these four genes would predict outcome in 70% of the patients [71]. Another theory that 

has been suggested for the lack of effect in KRAS wt samples, is heterogeneity within the tumor and 

between primary tumor and metastasis [72,73]. 

A panel of markers has recently been published to be associated with resistance to neoadjuvant 

chemoradiation therapy in rectal cancer [55]. The mutation profile of 23 genes was studied, and 

correlated to patient response to chemoradiation determined, in order to identify which patients will 

benefit from this treatment. Using a subset of four markers (TP53, KRAS, CCND1 and MTHFR), they 

report a specificity of 97%, and a sensitivity of 52% for predicting patients without pathologic complete 

response. This implies a possibility to predict which patients will be resistant to chemoradiation 

therapy, and spare these patients unwanted side-effects [41]. 

Despite the fact that the knowledge of miRNA’s existence is few than 20 years, their function has 

been linked to anticancer chemotherapy in model systems. Resistance to 5-FU and methotrexate has 

been associated with expression of the miRNA miR-140 in the HCT116 cell line [56].  

6. Conclusions and the Way Forward 

Colorectal cancer most frequently develops sporadically, and at an increasing rate also in young 

patients (<50 years), although the highest prevalence still occurs in those aged 60–70 years. As 

patients having a localized disease stage at time of surgery have a very favorable prognosis, the early 

detection of the disease represents a compelling opportunity to reduce the disease burden. Clinical 

symptoms are non-specific, or unnoticeable at early disease stages, therefore there is a need for modes 

of early detection to reduce morbidity and mortality of the disease. Colonoscopy is still the golden 

standard in detecting aberrant lesions, but expensive and unpleasant for the patient. The excitement 

regarding blood and stool-based tests has therefore been great, but to date these tests have shown poor 

sensitivity and specificity compared to colonoscopy. 

Over the last decade, large-scale technology has been implemented in the search for deviations 

underlying diseases. Despite initial optimism regarding the output from these analyses, findings have 

not revolutionized the field of colorectal cancer yet. First and foremost this technology is hypothesis-

generating. Findings must be validated, e.g., with different downstream analysis tools; in new patient 

sample sets; and, with other methods, before robust implementation of biomarkers in the clinic can be 

recommended. The most recent advance in the large-scale technology field is the next-generation 

sequencing methodology. Identification of variants and mutations in an individual tumor will add 
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information to the type of cancer and refine classification of the specific tumor. Also, a comparison of 

the whole genome sequence of normal cells from the tumor bearing individual will reveal tumor-specific 

aberrations. In total this can be utilized as prognostic and predictive tools in a clinical setting, and as 

information supporting a more personalized treatment. However, as knowledge about additional 

mechanisms of impairing cell signaling, such as molecular modification of DNA (e.g., methylation), 

regulation of mRNA and protein generation (e.g., miRNA), redundant pathways and genetic mechanisms 

has emerged, the realization that mutation screening solely will probably not reveal outcome of disease 

and treatment has also dawned.  

Several genes and pathways affected by changes have been identified in colorectal tumors, and the 

knowledge about initiation and progression of the disease is extensive. Also, the number of published 

articles aiming at using this knowledge as biomarkers is numerous. However, the implementation of 

this knowledge into clinical practice is so far limited. To date, testing the gene KRAS for activating 

mutations is in routine clinical use, as it has been shown to have predictive information in relation to 

treatment with antibodies against the EGFR-receptor. Findings reported in the literature support 

additional testing of BRAF, PTEN and PIK3CA before anti-EGFR treatment in metastatic colorectal 

cancer. On the other hand, there is an increasing panel of treatments that have been designed to target 

specific genes and pathways, which further highlights the role of normally functioning genes in order 

for the drug to have the desired effect in the patient. 

As more biomarkers are identified and validated it is anticipated that these will be used more 

extensively in clinical decision making. Optimization of tools to predict the risk for developing cancer, 

diagnose a disease at an early stage, give a prognosis that is as correct as possible, and predict 

treatment response in the patient, is of invaluable significance. First and foremost this applies to the 

patient itself, but also to the health personnel, and in a socioeconomic perspective. 
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