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Abstract: Molecular docking is an important method for the research of protein-protein 

interaction and recognition. A protein can be considered as a network when the residues 

are treated as its nodes. With the contact energy between residues as link weight, a 

weighted residue network is constructed in this paper. Two weighted parameters (strength 

and weighted average nearest neighbors’ degree) are introduced into this model at the same 

time. The stability of a protein is characterized by its strength. The global topological 

properties of the protein-protein complex are reflected by the weighted average nearest 

neighbors’ degree. Based on this weighted network model and these two parameters, a new 

docking scoring function is proposed in this paper. The scoring and ranking for 42 

systems’ bound and unbounded docking results are performed with this new scoring 

function. Comparing the results obtained from this new scoring function with that from the 

pair potentials scoring function, we found that this new scoring function has a similar 

performance to the pair potentials on some items, and this new scoring function can get a 

better success rate. The calculation of this new scoring function is easy, and the result of its 

scoring and ranking is acceptable. This work can help us better understand the mechanisms 

of protein-protein interactions and recognition. 
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1. Introduction 

Protein-protein docking is an important method for the protein-protein interaction and molecular 

recognition [1–6]. The aim of the protein-protein docking is to forecast the structure of the complex 

based on the structure of the two monomers. After an efficient search for the conformation space, we 

need a rational and sensitive scoring function to evaluate the docking results [7,8]. With an efficient 

docking scoring function, we can distinguish a correct docking binding pattern from the incorrect ones. 

Finally, some native-like structures can be picked out from the decoy set [3]. In order to get a good 

scoring and ranking result, the docking scoring function needs to take some important elements into 

account, for instance, the geometry complementarity [9] and potential energy functions [5,10–12]. The 

potential energy contains the influence of different factors, such as the residue pairing preference, 

static electricity, hydrogen bond and hydrophobic interaction. Unfortunately, some calculations of 

these factors are related with the atoms’ location. So, the calculation of these potential energy functions 

will be time-consuming, and the computational accuracy of these functions will also be affected by the 

accuracy of the structure data. Based on the interaction between residues, some new docking scoring 

functions have been developed, and these functions can be calculated quickly [5,10,11,13–15]. For the 

binding between proteins, different binding modes have different interface characteristics, such as the 

composition of different types of amino acid, the hydrophobicity and electrostatic potential. The 

research of the docking scoring function has made some progress. However, due to the various binding 

modes of different complex systems, there is still no suitable scoring function for the protein docking 

of all types’ molecular systems.  

From the view point of complex network [16–18], we can treat a protein molecule as a complex 

network [19–23]. With the aid of the network model, some research has produced a few meaningful 

results. Most of these studies are related to the protein folding or the relation between structure and 

function. Such works include: the identification of the key residues for a protein through the residue 

network parameterbetweenness [19]; through the measuring of the topology for the protein contact 

network, the topological property of the protein conformation is shown to have an influence on the 

kinetic ability when the protein folding [24]; the average shortest path length is found to have a high 

correlation with the residue fluctuations [25]; the active site residues can be identified through the 

network parametercloseness [21]. 

In the residue network model, we simplify each residue to a single point, and this point is used to be the 

node of the network. Based on the distances between these points, the links between them can be set. If the 

distance between two nodes is less than a cut-off value, then there will be a link between these two  

nodes [26]. Consulting the various interaction situations between different residues, we can assign appropriate 

weights to the network links. The weight can be the number of atom contacts between nodes [26], or it 

can be the probability of the contact between amino acids [19]. In this paper, we use the contact energies 

as the link weight [27]. The contact energies can reflect the various interactions between residues.  

In our previous works, we have used the residue network to do the protein-protein docking  

scoring [13,14]. In those works, we divided the residue network into some sub-network according to 

the type of residue (hydrophilic, hydrophobic and neutral), and proposed some scoring terms based on 

the unweighted network parameters. We also researched the network rewiring on the binding interface 

when two monomers interacted. 
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When we consider the contact energy between residues, we can get some interesting results [28]. 

This weighted network model does not need to make a distinction between the types of residue. With 

this weighted residue network model, an exploratory work on the docking scoring function [29,30] is 

presented in this paper, and a new scoring function is proposed. In order to realize a quick calculation 

for the scoring rank, the types of the docking system are not distinguished in this scoring function.  

2. Material and the Research System 

From the data set of protein-protein docking benchmark 2.0 [31], we select 42 dimer complexes to 

do the docking calculation.  

In the docking benchmark 2.0, there are four types of test cases: enzyme-inhibitor, antibody-antigen, 

other and difficult test cases. For the antibody-antigen complexes, there are some complementarity-

determining regions, and the binding modes in the antibody-antigen complexes are relatively fixed. So 

we did not include the antibody-antigen complexes in our test.  

In the remainder of test cases, only the single-chain monomer structures for ligand and receptor 

were selected to do the docking and the residue network analysis. These 42 complexes can be 

classified into two groups. The ‘Enzyme-Inhibitor’ group contains 18 complex structures. The ‘others’ 

group contains 24 structures. The size of these protein complexes is from 185 to 1100. With the 

RosettaDock 1.0 program [32], we do the bound and unbound docking calculations for all 42 systems. 

In each case, we generated 1000 structures for farther calculation. 

3. Theory and Method 

In the residue network, the geometrical center of each amino acid’s side chain is chosen to act as 

network node. The link between a pair of nodes is determined by the distance between these two nodes. 
If the distance between residues i  and j , marked with ijr , is less than the cut-off ( cr ) value of 6.5 Å, 

then there will be a link between these two residues. Thereby, the unweighted residue network can be 

given and its adjacency matrix element can be expressed as follows:  
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Based on the contact energies between residues, the weighted network can be constructed, and its 

adjacency matrix element can be expressed as: 
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where ijw  is the link weight. According to the magnitude of the contact energy between residues i  and 

j  suggested by Miyazawa et al. [27], appropriate weights are assigned to the network links. These link 

weights are related with the types of these two amino acids. To avoid a negative weight value, the 

absolute value of the contact energy is used as the weight.  

For the contact energies between residues used in this work, all the values of the contact energies 

are less than zero. In other words, all the energies in this set of potential are negative value. So, the use 



Int. J. Mol. Sci. 2011, 12 8776 

 

 

of the absolute value of the contact energy is reasonable, and we can do the addition and subtraction 

between these absolute values. 

For the covalent bond between residues i  and 1i , the link weight is assumed to be 2.55, which is 

the absolute value of the average collapse energy [27]. 

Additionally, a new network parameterstrength (marked with S) is introduced into the weighted 

residue network. The definition of strength of node i  can be written as [33]: 




N

j

w
iji aS

1
 (3) 

where N  is the number of network nodes. w
ija  is a matrix element of the weighted adjacency matrix. 

Strength of node i  ( iS ) represents the sum of the link weights, which belongs to the link with node i  

as an endpoint. Furthermore, the strength of the whole network ( S ) can be defined as the expression in 

Equation 4. This parameter represents the sum of all link weights of the network model. 
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For the contact energy between residues suggested by Miyazawa et al., the stronger the  

non-covalent interaction between two residues, the more the link between residues contributes to the 

stability of the whole protein. The link, corresponding to a stronger interaction between residues, will 

get a bigger weight in the residue network model. For the strength of the whole network, a more stable 

protein will obtain a bigger strength than an unstable one. So, we can use this parameter to evaluate the 

stability of the protein. 
In the unweighted network model, the average nearest neighbors degree innk ,  is defined as [33]: 
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where ija  is an adjacency matrix element of the network, ik  is the degree of node i . When link weight 

is introduced into the residue network model, the weighted average nearest neighbors degree w
innk ,  can 

be defined as [33,34]: 
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where the meaning of iijiji kwaS ,,,  is the same as the definition mentioned above. The superscript w  

means that it is for the weighted network model. In this weighted model, we use a standardized 

coefficient to calculate the nearest neighbors degree. This standardized coefficient is based on the 

weight of the link. So, we can define the weighted average nearest neighbors degree w
nnk  for the 

whole weighted network: 
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where N  is the number of network nodes, and w
innk ,  is the nearest neighbors degree of node i .  
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The nearest neighbor degree of a given node measures the effective attraction of this node to 

connect with its environment. For nodes with a high degree or low degree in the environment of a 

specific node, the weight of the interactions is taken as a referential meaning. The weighted average 

nearest neighbors degree of the whole network measures the weighted assortative or disassortative 

properties of the whole weighted network, also with the weights of actual interactions among nodes as 

a referential standard. This parameter can be used to evaluate the connection mode between different 

nodes with various degrees. 

When we get the docking results, we superimpose the receptors of the decoy onto the native 
structure, so the RMSD of the ligand (L_RMSD) over its backbone atoms ),,,( OCCN  can be 

calculated. The near-native structure, or the hit structure, is defined as the one with L_RMSD ≤ 4.0 Å 

for the docking structures. 

For these decoy structures, we analyze two parameters of the weighted residue network: the strength ( S ) 

and the weighted average nearest neighbors degree of the whole network ( w
nnk ). And then we calculate 

the correlation between the S  and L_RMSD and that between the w
nnk  and L_RMSD. With the unbound 

decoys of 1udi as an illustration, the results are shown in Figure 1 and Figure 2.  

Figure 1. The relationship between the whole strength of the network (S) and the 

L_RMSD (The 1udi was taken as an illustration).  

 

Figure 2. The relationship between the weighted average nearest neighbors’ degree and the 

L_RMSD (The 1udi was taken as an illustration).  
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From these two figures, we can find that S  and w
nnk  all have a negative correlation with the 

L_RMSD for the 1udi system. For the calculation results of other different protein systems, it is very 

similar with that of 1udi. So, each of these two parameters has a discrimination power of docking 

decoys, and we can use a combination of them to act as a scoring function. 

For the parameter S , the dissimilarity between different systems is notable. The parameter ‘strength’ 

has relation with the size of the system. However, the sizes of various systems are distinctly different. 

So, these strengths are obviously dissimilar. But for the weighted average nearest neighbors degree 
w
nnk , there is no a remarkable difference. The value is about 6 for all the 42 systems. 

So, if we use a linear combination of these two parameters, the relative size of these two items will 

change dramatically with the system size. For a bigger system, the whole strength of the network will 

have a bigger contribution than that of w
nnk . For a small system, the situation is just the reverse. In 

order to balance the relative size of S and w
nnk , we need to adjust the linear combination coefficient 

with the sizes of different systems. This adjustment needs a heavy calculation, and it is time-consuming. 

Then, as an alternative choice, we take a nonlinear combinationthe product of these two 

parametersas the scoring function to do the scoring and ranking for the docking results. In order to 

compare with other scoring functions, in which a better docking decoy will get a lower score and can 

be ranked ahead in the scoring rank sequence, a negative value of this product is adopted. With this 

scoring function, the docking decoy with a small L_RMSD, which is regarded as a better docking 
structure, will be ranked ahead. We label this scoring function as nS : 

w
nnn kSS   (8) 

4. Result and Discussion 

For all 42 systems, we do a bound and unbound docking calculation in this paper. In order to assess 

the quality of this scoring function, we use some indicators to evaluate its discriminative ability for the 

docking decoy, such as: the correlation coefficients between the scoring values and L_RMSD; 

L_RMSD of the first rank; rank of the first hit and number of hits in top 10 scores. All these four 

indicators are commonly used in the evaluation process of other docking scoring functions. We select 

the pair potentials (RP) scoring function [35] to do the comparison with this new scoring function. As 

pair potentials, RP is based on the residue pairing preference in the interface, so it is reasonable to 

make a comparison between RP and this new scoring function on the residue level. On the other hand, 

RP is widely used in the relative works, and is adopted by the FTdock program. For all 42 systems, the 

four items mentioned above are calculated. The comparison of these indicators is carried out between 

the scoring results of the Sn and those of the RP. 

With the 1udi system as an illustration, Figure 3 shows the scoring rank result of unbound decoys 

with the Sn scoring function. The corresponding result of RP scoring is shown in Figure 4. From 

Figure 3, we can see that the decoy with low L_RMSD will get a low scoring value. So, it will be rank 

ahead in the scoring sequence from Sn. Apart from for the scoring results of RP, as shown in Figure 4, 

some decoys with high L_RMSD will also get a low scoring value.  
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Figure 3. The correlation between the L_RMSD and the Sn scoring function (The 1udi 

was taken as an illustration). 

 

Figure 4. The correlation between the L_RMSD and the RP scoring function (The 1udi 

was taken as an illustration). 

 

For the correlation coefficients between the scoring values and L_RMSD, it reflects the scoring 

results from the point view of whole, and a higher correlation coefficient value is more accepted. 

Through the comparison between Figure 3 and 4, we can find that the correlation got from Sn scoring 

function is higher than that of the RP score. For the 1udi system, Sn has a better performance than RP 

on the indicatorcorrelation.  

For the unbound decoys of all 42 systems, the comparison results on this indicator between Sn and 

RP is shown in Figure 5. From this figure, for all 42 systems, we can find that there are 22 systems on 

which Sn gets a higher correlation coefficient value than the RP scoring function. Moreover, there are 

two systems and the Sn gets the same results as the RP scoring function. So, we can conclude that Sn 

has a similar performance to RP on the indicatorcorrelation coefficient.  
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Figure 5. For the unbound dock results, the comparison of the correlation between the 

score value and the L_RMSD for Sn and RP score. 

 

For the number of hits in top 10 scores, it measures the discriminatory power of the scoring 

function to pick hits out in their top 10 scores. This indicator is a most indicative one, so this parameter 

is commonly used to measure the ‘success rate’ in docking. The more hits that are picked out, the more 

preferable the scoring function can be considered.  

There are 30 systems on which the Sn and the RP do not pick the hit out in their top 10 scores. In 

the remaining 12 systems, there are six systems on which the Sn gets more hits in their top 10 scores 

than that of RP, and there is one system that the Sn gets the same account of hits as RP. All the 

comparisons regarding the number of hits are shown in Figure 6. Especially for the system 1e6e and 

1udi in the Enzyme Inhibitor group (as the two highest squares in Figure 6), the Sn gets nine hits in the 

top 10 scores. However, the results of RP are 0 and 5 respectively. So, on the whole, it can be 

concluded that the Sn has a similar performance with the RP on the number of hits in top 10 scores. 

However, Sn has a better discriminatory power than RP on some specific systems. 

Figure 6. For the unbound dock results, the comparison of the numbers of the hit structures 

of the Sn and RP score function. 
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For the rank of the first hit, it reports the rank position of the best decoy in the scoring sequence. If 

the rank value is 1, i.e., the best decoy has been picked out firstly by the scoring function, it will be 

thought as the best situation. The comparison result between Sn and RP on 42 systems is shown in 

Figure 7. We find that the results of Sn are superior to those of the RP scoring function. In all the 42 

systems, there are 26 systems for which the Sn gets better results, or ahead rank positions for hits, than 

RP scoring function. In 8 systems, these two scoring functions get the same results. On this indicator, 

the Sn also has a better performance than the RP. 

Figure 7. For the unbound dock results, the comparison of the rank of the first hit structure 

of the Sn and RP score function. 

 

The RMSD of 1st rank reflects the quality of the first decoy in the rank sequence. The smaller the 

RMSD of the first ranked decoy, the better the scoring function performed. The comparison result on 

this indicator between Sn and RP on 42 systems is shown in Figure 8.  

Figure 8. For the unbound dock results, the comparison of the RMSD of the first rank 

structures obtained from the Sn and the RP score function. 

 

For the first rank structures, if its RMSD is larger than 10 Angstroms, this first rank structure should 

be thought of as wrong. Consequently there is no sense in comparing these structures.  
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There are 19 complexes with a low L_RMSD (less than 10 Angstroms) in Figure 8. For these 19 

complexes, the Sn function gets smaller RMSD than the RP scoring in nine systems. The Sn function 

gets higher RMSD than the RP scoring in nine systems. In one system, these two scoring function get 

the same RMSD value for the first rank. So we can conclude that the Sn has a similar performance to 

the RP on the RMSD of the first rank. 

From a global perspective, we carried out a performance evaluation of the Sn scoring function. As 

generally used in the related work, the success rate of a scoring function is used to measure its average 

ability to rank a near-native structure within some number of predictions (NP).  

If we can find at least one near-native structure in the top NP decoys from the ranked queue, this 

case is defined as a successful case under NP. Then we can calculate the percentage of successful test 

cases in the data set. When the NP changed, we were able to get the success rate curve.  

We calculated the success rate for the Sn scoring function and the RP scoring function. For a 

comparison, we also did a random ranking for 100 times, and then calculated its average success rate. 

For the unbound decoys, the success rate of Sn, RP and a random scoring are shown in Figure 9.  

Figure 9. For the unbound dock results, the comparison of the success rate between the Sn 

scoring function, RP scoring function and a random rank. 

 

From Figure 9, we can see that the Sn has a better performance than the RP at most NP. When we 

select NP as 10, the success rate is about 30%. This means that when we select the top 10 decoys from 

the ranking queue, we can find at least one hit with a probability of about 30%. Only at the beginning 

of the success rate curve, or when we select a few decoys (NP from one to three), the difference 

between Sn and RP is small. Sn and RP all have a much better performance than a random rank. 

From these comparison results, as a whole, we can conclude that the Sn scoring function has a 

similar discriminative ability with the RP scoring function for unbounded docking decoy. 

For the bound docking results, we also did the comparisons from these four point views. For the 

correlation coefficients between the scoring values and L_RMSD, we find that there are 22 systems on 

which Sn has a better performance than the RP scoring function. For the number of hits in top 10 

scores, there are 18 systems on which Sn picks more hits out in their top 10 scores, and there are 15 
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systems that these two scoring function get the same amount of hits in the top 10. Sn has a powerful 

discrimination to pick more hits out in their top 10 scores than the RP. For the rank of the first hit, we 

find that there are 19 systems in which the first hit is ranked ahead by Sn than the RP score. In addition, 

there are 13 systems that the rank position of the first hit is same in the Sn as that in the RP. For the 

RMSD of 1st rank, there are 29 complexes with a small RMSD (less than 10 Angstroms). For these 29 

systems, there are 16 systems in which the Sn function gets smaller RMSD than the RP scoring, and 

there are 13 systems that the Sn function gets higher RMSD than the RP scoring. 

For bounded docking decoy, we also compared the success rate between the Sn scoring function, 

RP scoring function and a random rank. The result is shown in Figure 10. 

Figure 10. For the bound dock results, the comparison of the success rate between the Sn 

scoring function, RP scoring function and a random rank. 

 

From Figure 10, we can find that, for a scoring rank of bound decoys, the Sn has a better 

performance than the RP scoring function for most of NP. Moreover, the Sn and RP scoring functions 

all get a better result than the random rank for a small NP. Due to the monomer structure from the 

complex, the docking will get more near native structures, so the success rate of a bound docking is 

obviously higher than that of an unbound docking. When we select the top 10 decoys from the scoring 

rank queue, or the NP is equal to 10, the success rate is about 60%. It is about two times that of the 

unbound docking.  

Because the hit number of a bound docking is bigger than that of an unbound docking, the random 

rank of bound decoys set will get a better performance than a random rank for a set of unbound  

docking decoys. 

From the comparison of the results mentioned above, we can conclude that Sn also has a similar 

discriminative ability with the RP scoring function on the scoring and ranking of the bounded  

docking decoy.  

On the different group, the same scoring function has a different performance. The results of Sn on 

the Enzyme-Inhibitor are better than that of the ‘others’ type. The highest correlation coefficients 

between the scoring values and L_RMSD is 0.7, obtained from the 1udi system in the Enzyme-
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Inhibitor group. The main reason for this phenomenon is that the ‘others’ complex is a kind of 

structure which is difficult to research in the docking. The ‘others’ complex often holds an important 

role in the signal transduction or in the synergistic effect of organism. They have the essential 

characteristic of drug identification targets. This type of complex has a great theoretical research value 

and a potential application prospect. However, if the conformation change before and after the binding 

is great, then the sampling and the scoring all have certain difficulties in the docking process.  

5. Conclusions 

Based on the weighted residue network, we proposed a new docking scoring function Sn. With this 

scoring function, we do the scoring rank for 42 systems’ bound and unbound docking results. 

Comparing with the results obtained from the RP scoring function, we find that the Sn scoring function 

has a similar performance with the RP on four items. On some special systems, or on some indicators, 

this new scorning function has a better performance. When comparing the success rate, Sn has a better 

performance than RP. So, we can conclude that Sn has a higher power to pick the hit out than RP.  

Compared with other types scoring function, the advantage of this new scoring function is the 

simplicity and clearness of its calculation. It does not need a heavy computation, but the scoring rank 

result is acceptable. 

Furthermore, with the weighted residue network model, the global topological characteristics of the 

protein-protein complex can be considered in this scoring function. The detail of the interaction 

between residues, containing the interaction modes and interaction strength, will be taken into account 

in the calculation of this scoring function. It is helpful for the explanation of the structure mechanisms 

for protein-protein interactions. 

In this work, we only test this new scoring function with 42 single-chain monomer structures. 

Actually, it can be used to evaluate multi-chain protein complexes.  

This scoring function can be used as a scoring item for a combinational scoring function, and the 

related work is undergoing. There are some new scoring methods, and some relative works have been a 

very big inspiration to our work [11]. In our future work, we will improve our method and do the 

comparison with these new pairwise propensities. 
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